The Domain Name System

3035/GZ01 Networked Systems
Kyle Jamieson

A

I

Department of Computer Science
University College London

Today

1. The Domain Name System (DNS)

2. DNS security

3. Coursework 2 introduction

Host names versus IP addresses

* Host names (e.g. www.bbc.co.uk)
— Mnemonic name appreciated by humans
— Variable length, full alphabet of characters
— Provide little (if any) information about location
— Examples: www.cnn.com and bbc.co.uk

* |P addresses
— Numerical address appreciated by routers
— Fixed length, binary number
— Hierarchical, related to host location

Original design of the DNS ﬁn

* Per-host file named /etc/hosts
— Flat namespace: each line is an IP address and a name

— SRI (Menlo Park, California) kept the master copy
— Everyone else downloads regularly

* But, a single server doesn’t scale
— Traffic implosion (lookups and updates)

— Single point of failure

e Need a distributed and hierarchical collection of servers

A
Domain Name System (DNS) [

* Hierarchical name space divided into pieces called zones

e Zones are distributed over a collection of DNS servers

* Hierarchy of DNS servers
— Root servers (identity is hardwired into other servers)
— Top-level domain (TLD) servers
— Authoritative DNS servers

* Performing the translations
— Local DNS servers located near clients
— Resolver software running on clients

The DNS namespace is hierarchical

Root:

Top-level / ‘ %

Domains (TLDs): com.
/ \

ac.uk. cmu.edu. mit.edu.

ucl.ac.uk. W

e Hierarchy of servers follows hierarchy of DNS zones

Many uses of DNS i

* Hostname to IP address translation
* |IP address to hostname translation (reverse lookup)

* Host name alq'asin_? allows other names for a host
— Can be arbitrarily many aliases
— Alias host names point to canonical hostname

* Mail server location
— Lookup zone’s mail server based on zone name

* Content distribution networks
— Load balancing among many servers with different IP
addresses
— Complex, hierarchical arrangements are possible

DNS root nameservers i

e 13 root servers (see http://www.root-servers.org)
— Labeled A through M
* Does this scale?

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London
H ARL Aberdeen, MD

J Verisign

| Autonomica, Stockholm

E NASA Mt View, CA
F Internet Software
Consortium

Palo Alto, CA \

M WIDE Tokyo

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

[Slide credit: Scott Shenker]

DNS root nameservers i

* 13 root servers (see http://www.root-servers.org)
— Labeled A through M

e Each server is really a cluster of servers (some
geographically distributed), replication via IP anycast

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)

D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London (plus 16 other locations)
H ARL Aberdeen, MD

J Verisign (21 locations)

| Autonomica, Stockholm (plus

_ 290ther locations)
E NASA Mt View, CA

F Internet Software
Consortium,

Palo Alto, CA \

(and 37 other locations)

M WIDE Tokyo
plus Seoul, Paris,
San Francisco

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

A
TLD and Authoritative Servers |

e Top-level domain (TLD) servers

— Responsible for com, org, net, edu, etc, and all top-
level country domains: uk, fr, ca, jp

— Network Solutions maintains servers for com TLD
— Educause for edu TLD

 Authoritative DNS servers

— An organization’s DNS servers, providing authoritative
information for organization’s servers

— Can be maintained by organization or service provider

Local name servers

* Do not strictly belong to hierarchy

 Each ISP (company, university) has one
— Also called default or caching name server

* When host makes DNS query, query is sent to its local
DNS server

— Acts as proxy, forwards query into hierarchy
— Does work for the client

DNS in operation

 Most queries and responses are UDP datagrams
 Two types of queries:

e Recursive: www.scholarly.edu?
Client «~ L N
L
.\N

. Answer: www.scholarly.edu A 10.0.0.1
* [terative:

www.scholarly.edu?

Client - ——— NS
&=
M

Referral: .edu NS 10.2.3.1

\
/

A recursive DNS lookup (simplified)

o . (root) authority 198.41.0.4
- edu.: NS192.5.6.30
no.: NS 158.38.8.133
i uk.: NS 156.154.100.3
edu. authority 192.5.6.30

scholarly.edu.:NS 12.35.1.1
pedantic.edu.: NS 19.31.1.1

__— www.scholarly.edu? ——

_—

www.scholarly.edu? Contact 12.35.1.1 for scholarly.edu.

www.scholarly.edu?

scholarly.edu. authority 12.35.1.1

Lg] Client www.scholarly.edu.: A 12.35.2.30

edu.: NS 192.5.6.30
scholarly.edu.: NS 12.35.1.1 www.scholarly.edu.: A 12.35.51.30

A
Local NS does clients’ work |

Root NS
——— 1. Client’s resolver makes a
recursive query to local NS

2. Local NS processing:

— Local NS sends iterative
queries to other NS’s

— or, finds answer in cache

U4 \
I 1
|
] i 3. Local NS responds with an
! o answer to the client’s
! f ' request
i] < :
|
! [4| 8 Clients !
N = /

4
]
\

\

Recursive versus iterative queries

Recursive query

Less burden on client

More burden on
nameserver (has to return
an answer to the query)

Most root and TLD servers
will not answer (shed load)

— Local name server
answers recursive query

Iterative query

e More burden on client

e Less burden on nameserver
(simply refers the query to
another server)

A
DNS resource record (RR): Overview i

DNS is a distributed database storing resource records

RR includes: (name, type, value, time-to-live)

 Type = A (address) Type = CNAME
— name is hostname — name is an alias for some
— value is IP address “canonical” (real) name

— e.g. www.cs.ucl.ac.uk is really
haig.cs.ucl.ac.uk
— wvalue is canonical name

 Type = NS (name server)
— name is domain (e.g.

cs.ucl.ac.uk)

— value is hostname of Type = MX (mail exchange)
authoritative name server for — value is name of mail server
this domain associated with domain name

— pref field discriminates
between multiple MX records

Example: A real recursive query

digl@a.root—servers.net www.freebsd.ora|+norecurse

<<>> DiG 9.4.3-P3 <<>> WGa.root-servers.net www.freebsd.org
+norecurse
(1 server found)
global options: printcmd
Got answer:
->>HEADER<<- opcode: QUERY, status: NOERROR, lid: 57494
flags: qr; QUERY: 1, ANSWER:@ AUTHORITY: 6, ADDITIONAL: 12

WO MO NO WO WO

; QUESTION SECTION:
;www.freebsd.org. IN A

.
4
.

s+ AUTHORITY SECTION:
org. 172800 IN NS |bO.org.afilias-nst.orq.
org. 172800 IN NS dO.org.afilias-nst.org.

“Glue” record

.afilias-nst.or 172800 IN A 199.19.54.1
.org.afilias-nst.orgqg.

Query time: 177 msec

SERVER: 198.41.0.4#53(198.41.0.4)
WHEN: Wed Oct 28 07:32:02 2009
MSG SIZE rcvd: 435

|Ne WNe WO WO
|Ne WO WO wO

; <<>>Di1G 9.4.3-P3 <<>> (@al.org.afilias-nst.org www.freebsd.org
+norecurse
(1 server found)
global options: printcmd
Got answer:
->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39912
flags: gr; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: O

;7 QUESTION SECTION:
;www.freebsd.org. IN A

s AUTHORITY SECTTONS

freebsd.org. 86400 IN NS nsl.isc—sns.net.l
' 36200 IN NS c1SC— . .

freebsd.org. 86400 IN NS ns3.isc-sns.info.

Query time: 128 msec

SERVER: 199.19.56.1#53(199.19.56.1)
; WHEN: Wed Oct 28 07:38:40 2009
; MSG SIZE rcvd: 121

No glue record provided for nsl.isc-sns.net, so need to go off
and resolve (not shown here), then restart the query

Example: A real recursive query (3)

$ digI@nsl.isc-sns.net!www.freebsd.org +norecurse
; <<>>7DIG J.2.3-P3 > @nsl.isc-sns.net www.freebsd.org +norecurse

(1 server found)

global options: printcmd

Got answer:

->>HEADER<<- opcode: QUERY, sta : NOERROR, id: 17037

flags: gqr aa; QUERY: 1, ANSWER:ij AUTHORITY: 3, ADDITIONAL: 5

;7 QUESTION SECTION:
;www.freebsd.org. IN A

;+ ANSWER SECTION:

www. freebsd.org. 3600 IN 69.147.83.33]

;7 AUTHORITY SECTION:

freebsd.org. 3600 IN ns2.isc-sns.com.
freebsd.org. 3600 IN nsl.isc-sns.net.
freebsd.org. 3600 IN ns3.isc-sns.info.

;3 ADDITIONAL SECTION:

nsl.isc-sns.net. 3600 IN 72.52.71.1
ns2.isc-sns.com. 3600 IN 38.103.2.1
ns3.isc-sns.info. 3600 IN 63.243.194.1

A
DNS Caching Jinn|

* Performing all these queries takes time
— And all this before actual communication takes place
— e.g., one-second latency before starting Web download

e Caching can greatly reduce overhead
— The top-level servers very rarely change
— Popular sites (e.g., www.cnn.com) visited often
— Local DNS server often has the information cached

* How DNS caching works
— DNS servers cache responses to queries
— Responses include a time-to-live (TTL) field
— Server deletes cached entry after TTL expires

A
Reverse mapping (IP to hostname) [

* How do we go the other direction, from an IP address to the
corresponding hostname?

— Why do we care to? Troubleshooting, security, spam
* |P address already has natural “quad” hierarchy: 12.34.56.78

e But: IP address has most-significant hierarchy element on
the left, while www.cnn.com has it on the right

* Idea: reverse the quads = 78.56.34.12, and look that up in
the DNS

 Under what top-level domain?
— Convention: in-addr.arpa
— So lookup isfor 78.56.34.12.in-addr.arpa

: : o
Inserting resource records into DNS i

* Example: just created startup “FooBar”

* Get a block of address space from ISP, say 212.44.9.128/25

* Register foobar.com at Network Solutions (say)

— Provide registrar with names and IP addresses of your
authoritative name server (primary and secondary)

— Registrar inserts RR pairs into the com TLD server:

 (foobar.com,dnsl. foobar.com, NS)
* (dnsl.foobar.com,212.44.9.129,34)

* Putinyour (authoritative) server dnsl. foobar.com:
— Type A record for www . foobar.com
— Type MX record for foobar.com

Setting up foobar.com (cont’d) [

* In addition, need to provide reverse PTR bindings
—e.gd.,212.44.9.129 — dnsl.foobar.com

* Normally, these would goin9.44.212.in-addr.arpa

* Problem: you can’t run the name server for that domain.
Why not?
— Because your block is 212.44.9.128/25, not
212.44.9.0/24

— And whoever has 212.44.9.0/25 won’t be happy with
you owning their PTR records

e Solution: ISP runs it for you, but it’s more of a headache to
keep it up-to-date : - (

DNS protocol operation

* Most queries and responses via UDP, server port 53

N N e ——

Source |IP > |P header

Destination IP

Source port Dest port

UDP length UDP cksum

= UDP header

2 Z]rcode

Q AlT|r
Query ID |R opcodeialcip

/\/\/\4

~ DNS payload

—]
’

L

Clieht
10.0.0.1

DNS server state

W

10.0.0.1

10.0.0.3

11001 53

UDP length | UDP cksum

[Ppcd I rcod
11 Jechi -]

Ve Ty e

NS\ N

10.0.0.2

10.0.0.3

22002 53

UDP length | UDP cksum

PrcdiiH rcod
22 HecH-I:

Ve T e

UDP socket listening on port 53

/

O

Local NS
10.0.0.3

%

10.0.0.3

10.1.0.1

33001

53

UDP length

UDP cksum

23001

——

Dpccﬂfi 7 rcod
de i e

e e
G O o

10.2.0.1

10.0.0.3

53

33002

UDP length

UDP cksum

| 23002

opccﬂfi 7 rcod
de i e

——

——

Local NS at least needs to keep state associating

Query ID 2 which query (if any)

TLD NS
10.1.0.1

TLD NS
10.2.0.1

A DNS resource record (RR) in detail ﬁn

* type: determines the meaning 1
of rdata 0123456789012345

name (variable length)

* class: always IN (Internet) type
class
 rdata: data associated with
the RR ttl
rdlength

rdata (variable length)

DNS protocol message [

 Query and reply messages have
identical format

Header

* Question section: query for

name server Question section
 Answer section: RRs answering Answer section E

the question
e Authority section: RRs that Authority section %

point to an authoritative NS

Additional section E

* Additional section: “glue” RRs

DNS protocol header

* Query ID: 16-bit identifier shared between query, reply

* Flags word

e gdcount: number of question entries (QEs) in message

QR: query (0) or response (1)
opcode: standard query (0)
AA: authoritative answer
TC: truncation

RD: Recursion desired

RA: Recursion available

Z: (reserved and zeroed)
rcode: response code; ok (0)

1

0123456789012345

Query ID

opcode

> >

TIR|R
C|D]A

Z

rcode

gdcount

ancount

nscount

arcount

e ancount: number of RRs in the answer section
* nscount: number of RRs in the authority section
e arcount: number of RRs in the additional section

Today

1. The Domain Name System (DNS)

2. DNS security

3. Coursework 2 introduction

Implications of subverting DNS i

1. Redirect victim’s web traffic to rogue servers

2. Redirect victim’s email to rogue email servers (MX
records in DNS)

 Does Secure Sockets Layer (SSL) provide protection?

— Yes—user will get “wrong certificate warnings” if SSL
is enabled

— No—SSL not enabled or user ignores warnings
— No—how is SSL trust established? Often, by email!

Security Problem #1: Coffee shop nﬁl

* Asyou sip your latte and surf the Web, how does your laptop
find google.com?

* Answer: it asks the local DNS nameserver
— Which is run by the coffee shop or their contractor
— And can return to you any answer they please

— Including a “man in the middle” site that forwards your
query to Google, gets the reply to forward back to you,
yet can change anything they wish in either direction

 How can you know you’re getting correct data?
— Today, you can’t. (Though if site is HTTPS, that helps)
— One day, hopefully: DNSSEC extensions to DNS

Security Problem #2: Cache poisoning]ﬁn

* Suppose you are evil and you control the name server
for foobar.com. You receive a request to resolve
www . foobar.com and reply:

;77 QUESTION SECTION:
swww . foobar.com. IN A

;3 ANSWER SECTION:
www . foobar.com. 300 IN A 212.44.9.144

7+ AUTHORITY SECTION:

foobar.com. 600 IN NS dnsl.foobar.com.

foobar.com. 600 IN NS google.com.

;7 ADDITIONAL SECTION:

google.com. <:::> IN A <:ZE§.44.9.£§§:>
A f

Evidence of the attack disappears

. ds later! A foobar.com machine, not google.com
seconds iater!

DNS cache poisoning (cont’d) i

* Okay, but how do you get the victim to look up
www . foobar.com in the first place?

* Perhaps you connect to their mail server and send
— HELO www. foobar.com

— Which their mail server then looks up to see if it
corresponds to your source address (anti-spam measure)

* Note, with compromised name server we can also lie about
PTR records (address — name mapping)

— e.qg., for 212.44.9.155 = 155.44.9.212.in-addr.arpa return
google.com (or whitehouse.gov, or whatever)

* If our ISP lets us manage those records as we see fit, or
we happen to directly manage them

Bailiwick checking

 DNS resolver ignores all RRs not in or under the same
zone as the question

* Widely deployed since ca. 1997

;7 OUESTION SECTION:

swww. foobar.com.

s » ANSWER /SECTION:
www . foobar.com.

s ; AUTHOHITY SECTION:
foobar.cpm.
foobar.

google.com.

; » ADDIYIONAL SECTION:

300

600
600

IN

IN

IN
IN

IN

NS
NS

212.44.9.144

dnsl.foobar.com.
google.com.

212.44.9.155

. . A
Poisoning the local nameserver i

* Let’s get more sophisticated and try to target the
local nameserver instead of a single client

* When does the nameserver accept a reply?
— Reply’s dest. UDP port = query’s source UDP port
— Matching question section
— Matching (16-bit) query IDs

e So if the bad guy can achieve the above, he can
inject incorrect data into a nameserver’s cache

— Let’s see how

Predicting the next query ID

Root NS TIDNS « Next query ID=Query D +1
w Source port Dest port
UDP length UDP cksum
Query ID %opcodeﬁ-crgi Z |rcode
Victim \ v | e —— -
- ,’ ~
NS Z ' Bad guy’s network

www.badguy.com?

”Sbadgm
: [—

1

!
—_— \ ns.badguy.com
== \ ;

Nameserver cache poisoning

Root NS TLD NS

’

Barclay’s NS

i . A
Requirements for a successful exploit i

1. Attacker has to know the UDP source port the victim
NS sent the query on (otherwise UDP drops the forged

reply)
— ca. 2008, most NSs used a well-known source port!

2. Attacker has to correctly guess the 16-bit Query ID

— Countermeasure: name servers now use
pseudorandom query IDs

— Although, older servers used an easily-guessable
pseudorandom number generator

3. Forged replies have to arrive first

4. Name can’t already be in victim’s cache

5. Forged reply passes the bailiwick check (trivial)

: L A
Kaminsky nameserver poisoning [

* Now let’s assume the nameserver uses query ID
randomization

* Two main ideas behind Kaminsky DNS cache poisoning:

1. Compromise an entire domain instead of just an IP
— Now the attacker targets the glue records

2. Launch multiple (K) simultaneous uncached queries to
increase odds of success, for example:

— www123.barclays.co.uk
— www1234.barclays.co.uk
— www12345 . barclays.co.uk

A
Kaminsky nameserver poisoning (1): One query I

barclays.co.uk NS nsl.barclays.co.uk n§._c_s>.uk

nsl.barclays.co.uk A 10.0.0.1 .
nsl.barclays.co.uk
Root NS

QID = 3817 Bad guy’s network

nsl.badguy.com

‘-----—/

Kaminsky nameserver poisoning (2) i

* Now how likely is this attack to work?

— The attacker is successful if he does not guess the wrong query

ID K times
1

65,535

Pr(guess correct query id) =

K
Pr(guess wrong query id K times) = (1 — 1)

65,535
4 0.99994
40 0.9994
400 0.994
4,000 0.94

40,000 0.54

Kaminsky nameserver poisoning (3) A
Multiple queries and replies m

* Legitimate NS is now cached in the victim NS, but victim
NS still makes requests for new random names

e Attacker injects responses
. I nsl.barclays.co.uk
with bogus glue records! W 000

 Bad guy’s network

nsl.badguy.com

www123.barclays.co.uk?
www1234.barclays.co.uk?

‘_-----_'

Increasing the chances of success

e Suppose we send a burst of L queries and L forged
responses

— Random query IDs everywhere |

65,535

Pr(one query/response pair matches) -

R
|

Pr(guess wrong query id L times) = (1 —

65,535
L(L-1)
1 2
765,535
* |n practice, takes about
_ 10 0.9994
10 minutes 00 0996

290 0.54

Mitigating nameserver poisoning

A
I

Solution: Randomize the query’s UDP source port

Reply checking:

1. Kernel network stack matches destination port of
TLD server’s reply with UDP source port of local

NS’s query

2. DNS server matches query ID of reply with query id

of request

MS DNS server pre-allocates

2,500 UDP ports for requests

1

1

Pr(correct guess) = (65 000

~6x10~

)(

2,500

|

\/\/\/\N

Source IP

Destination IP

Source port

Dest port

UDP length

UDP cksum

Query ID

IR

g odeﬁlgﬁi Z |rcode

opc

/\/\/\

Today

1. The Domain Name System (DNS)

2. DNS security

3. Coursework 2 introduction

