
Reliable Transport II:
TCP and Congestion Control

Brad Karp
UCL Computer Science

CS 3035/GZ01
24th November 2011

2

Outline

•  RTT estimator
•  AIMD Congestion control
•  Throughput, loss, and RTT equation
•  Connection teardown
•  Protocol state machine

3

TCP: Retransmit Timeouts

•  Sender sets timer for each sent packet
–  when ACK returns, timer canceled
–  if timer expires before ACK returns, packet resent

•  Expected time for ACK to return: RTT
•  TCP estimates round-trip time using EWMA

–  measurements mi from timed packet/ACK pairs
–  RTTi = ((1-α) x RTTi-1 + α x mi)
–  Retransmit timeout: RTOi = β × RTTi

–  original TCP: β = 2

•  Is this accurate enough?
–  Recall dangers of too-short and too-long RTT

estimates from previous lecture

4

Mean and Variance:
Jacobson’s RTT Estimator

•  Above link load of 30% at router, β × RTTi
will retransmit too early!

•  Response to increasing load: waste
bandwidth on duplicate packets

•  Result: congestion collapse!
•  [Jacobson 88]: estimate vi, mean

deviation (EWMA of |mi – RTTi|), stand-in
for variance

 vi = vi-1 × (1-γ) + γ × |mi-RTTi|
•  Use RTOi = RTTi + 4vi

5

Mean and Variance:
Jacobson’s RTT Estimator

•  Above link load of 30% at router, β × RTTi
will retransmit too early!

•  Response to increasing load: waste
bandwidth on duplicate packets

•  Result: congestion collapse!
•  [Jacobson 88]: estimate vi, mean

deviation (EWMA of |mi – RTTi|), stand-in
for variance

 vi = vi-1 × (1-γ) + γ × |mi-RTTi|
•  Use RTOi = RTTi + 4vi

Mean and Variance RTT estimator used by all
modern TCPs

6

Retransmit Behavior

•  Original TCP, before [Jacobson 88]:
– at start of connection, send full window of

packets
–  retransmit each packet immediately after its

timer expires

•  Result: window-sized bursts of packets
sent into network

7

Pre-Jacobson TCP (Obsolete!)

•  Time-sequence plot taken at sender
•  Bursts of packets: vertical lines
•  Spurious retransmits: repeats at same y value
•  Dashed line: available 20 Kbps capacity

8

Self-Clocking: Conservation of Packets

•  Goal: self-clocking transmission
–  each ACK returns, one data packet sent
–  spacing of returning ACKs: matches spacing of

packets in time at slowest link on path

9

Reaching Equilibrium: Slow Start

•  At connection start, sender sets congestion
window size, cwnd, to pktSize (one packet’s
worth of bytes), not whole window

•  Sender sends up to minimum of receiver’s
advertised window and cwnd

•  Upon return of each ACK until receiver’s
advertised window size reached, increase cwnd
by pktSize bytes

•  “Slow” means exponential window increase!
•  Takes log2W RTTs to reach receiver’s advertised

window size W

10

Post-Jacobson TCP: Slow Start and
Mean+Variance RTT Estimator

•  Time-sequence plot at sender
•  “Slower” start
•  No spurious retransmits

11

Outline

•  Packet header format
•  Connection establishment
•  Data transmission
•  Retransmit timeouts
•  RTT estimator
•  AIMD Congestion control
•  Throughput, loss, and RTT equation
•  Connection teardown
•  Protocol state machine

12

Goals in Congestion Control

•  Achieve high utilization on links; don’t
waste capacity!

•  Divide bottleneck link capacity fairly
among users

•  Be stable: converge to a steady allocation
among users

•  Avoid congestion collapse

13

Congestion Collapse

•  Cliff behavior observed in [Jacobson 88]

Offered load (bps)

Th
ro

ug
hp

ut
 (

bp
s)

Congestion
collapse!

Knee

14

Congestion Requires Slowing Senders

•  Recall: bigger buffers cannot prevent congestion
•  Senders must slow to alleviate congestion
•  Absence of ACKs implicitly indicates congestion
•  TCP sender’s window size determines sending

rate
•  Recall: correct window size is bottleneck

bandwidth-delay product
•  How can sender learn this value?

–  Search for it, by adapting window size
–  Feedback from network: ACKs return (window OK)

or do not return (window too big)

15

Avoiding Congestion:
Multiplicative Decrease

•  Recall that sender uses sending window of size
min(cwnd, rwnd), where rwnd is receiver’s
advertised window

•  Upon timeout for sent packet, sender presumes
packet lost to congestion, and:
–  sets ssthresh = cwnd / 2
–  sets cwnd = pktSize
–  uses slow start to grow cwnd up to ssthresh

•  End result: cwnd = cwnd / 2, via slow start
•  Sender sends one window per RTT; halving

cwnd halves transmit rate

16

Avoiding Congestion:
Additive Increase

•  Drops indicate TCP sending more than its
fair share of bottleneck

•  No feedback to indicate TCP using less
than its fair share of bottleneck

•  Solution: speculatively increase window
size as ACKs return

•  Additive increase: for each returning ACK,
 cwnd = cwnd + (pktSize × pktSize)/cwnd

–  Increases cwnd by ~pktSize bytes per RTT

17

Avoiding Congestion:
Additive Increase

•  Drops indicate TCP sending more than its
fair share of bottleneck

•  No feedback to indicate TCP using less
than its fair share of bottleneck

•  Solution: speculatively increase window
size as ACKs return

•  Additive increase: for each returning ACK,
 cwnd = cwnd + (pktSize × pktSize)/cwnd

–  Increases cwnd by ~pktSize bytes per RTT

Combined algorithm:
Additive Increase, Multiplicative Decrease
(AIMD)

18

Refinement: Fast Retransmit (I)

•  Sender must wait well over RTT for timer
to expire before loss detected

•  TCP’s minimum retransmit timeout: 1
second

•  Another loss indication: duplicate ACKs
– Suppose sender sends 1, 2, 3, 4, 5, but 2 lost
– Receiver receives 1, 3, 4, 5
– Receiver sends cumulative ACKs 2, 2, 2, 2
– Loss causes duplicate ACKs!

19

Fast Retransmit (II)

•  Upon arrival of 3
duplicate ACKs,
sender:
– sets cwnd = cwnd/2
–  retransmits “missing”

packet
– no slow start

•  Not only loss causes
dup ACKs
– Reordering, too

data, seqno = 1

ACK = 513

data, seqno = 513

time

A B

data, seqno = 513
data, seqno = 1025

data, seqno = 1537

ACK = 513

ACK = 513

data, seqno = 2049

ACK = 513

20

AIMD in Action

•  Sender searches for correct window size

21

Why AIMD?

•  Other control rules possible
– E.g., MIMD, AIAD, …

•  Recall goals:
– Links fully utilized (efficient)
– Users share resources fairly

•  TCP adapts all flows’ window sizes
independently

•  Must choose a control that will always
converge to an efficient and fair allocation
of windows

22

Chiu-Jain Phase Plots

•  Consider two users
sharing a bottleneck
link

•  Plot bandwidths
allocated to each

•  Efficiency: sum of two
users’ rates fixed

•  Fairness: two users’
rates equal

•  Equi-Fairness: ratio of
two users’ rates fixed

User 1 (bps)
U

se
r

2
(b

ps
)

Efficiency Line

Fairness Line

Overload

Underload

Equi-Fairness Line (MI)

Optimum

(AI)

23

Chiu Jain: AIMD

•  AIMD converges to optimum efficiency
and fairness

Efficiency Line

Fairness Line

24

Chiu Jain: AIMD

•  AIMD converges to optimum efficiency
and fairness

Efficiency Line

Fairness Line

25

Chiu Jain: AIMD

•  AIMD converges to optimum efficiency
and fairness

Efficiency Line

Fairness Line

26

Chiu Jain: AIMD

•  AIMD converges to optimum efficiency
and fairness

Efficiency Line

Fairness Line

27

Chiu Jain: AIMD

•  AIMD converges to optimum efficiency
and fairness

Efficiency Line

Fairness Line

28

Chiu Jain: AIMD

•  AIMD converges to optimum efficiency
and fairness

Efficiency Line

Fairness Line

29

Chiu Jain: AIMD

•  AIMD converges to optimum efficiency
and fairness

Efficiency Line

Fairness Line

30

Chiu Jain: AIMD

•  AIMD converges to optimum efficiency
and fairness

Efficiency Line

Fairness Line

31

Chiu Jain: AIAD

•  AIAD doesn’t converge to optimum point!
•  Similar oscillations for MIMD

Efficiency Line

Fairness Line

32

Outline

•  Packet header format
•  Connection establishment
•  Data transmission
•  Retransmit timeouts
•  RTT estimator
•  AIMD Congestion control
•  Throughput, loss, and RTT equation
•  Connection teardown
•  Protocol state machine

33

Modeling Throughput, Loss, and RTT

•  How do packet loss rate and RTT affect
throughput TCP achieves?

•  Assume:
– only fast retransmits
– no timeouts (so no slow starts in steady-

state)

34

Evolution of Window Over Time

•  Average window size: 3W/4
•  One window sent per RTT
•  Bandwidth:

– 3W/4 packets per RTT
–  (3W/4 x packet size) / RTT bytes per second
– W depends on loss rate…

time

W

W/2

35

Loss and Window Size

•  Assume no delayed ACKs, fixed RTT
•  cwnd grows by one packet per RTT
•  So it takes W/2 RTTs to go from window

size W/2 to window size W; this period is
one cycle

•  How many packets sent in total?
–  ((3W/4) / RTT) x (W/2 x RTT) = 3W2/8

•  One loss per cycle (as window reaches W)
–  loss rate: p = 8/3W2

– W = sqrt(8/3p)

36

Throughput, Loss, and RTT Model

•  W = sqrt(8/3p) = (4/3) x sqrt(3/2p)
•  Recall:

– Bandwidth: B = (3W/4 x packet size) / RTT

•  B = packet size / (RTT x sqrt(2p/3))
•  Consequences:

–  Increased loss quickly reduces throughput
– At same bottleneck, flow with longer RTT

achieves less throughput than flow with
shorter RTT!

37

Outline

•  Packet header format
•  Connection establishment
•  Data transmission
•  Retransmit timeouts
•  RTT estimator
•  AIMD Congestion control
•  Throughput, loss, and RTT equation
•  Connection teardown
•  Protocol state machine

38

TCP: Connection Teardown
•  Data may flow

bidirectionally
•  Each side independently

decides when to close
connection

•  In each direction, FIN
answered by ACK

•  Must reliably terminate
connection for both sides
–  During TIME_WAIT state at

first side to send FIN, ACK
valid FINs that arrive

•  Must avoid mixing data
from old connection with
new one
–  During TIME_WAIT state,

disallow all new connections
for 2 x max segment lifetime

FIN, seqno = i

ACK = i+1

ACK = j+1

time

A B

FIN, seqno = j

enter
TIME_WAIT
state

39

TCP: Protocol State Machine

40

Summary: TCP and Congestion Control

•  Connection establishment and teardown
–  Robustness against delayed packets crucial

•  Round-trip time estimation
–  EWMAs estimate both RTT mean and deviation

•  Congestion detection at sender
–  Timeout: retransmit timer expires, half window, slow

start from one packet
–  Fast Retransmit: three duplicate ACKs, half window,

no slow start
•  Search for optimal sending window size

–  Additive increase, multiplicative decrease (AIMD)
–  AIMD converges to high utilization, fair sharing

