Reliable Transport II:
TCP and Congestion Control

Brad Karp
UCL Computer Science

A
I

CS 3035/Gz01
24t November 2011

Outline

o RTT estimator

e AIMD Congestion control

e Throughput, loss, and RTT equation
e Connection teardown

e Protocol state machine

TCP: Retransmit Timeouts

Sender sets timer for each sent packet
— when ACK returns, timer canceled
— if timer expires before ACK returns, packet resent

Expected time for ACK to return: RTT

TCP estimates round-trip time using EWMA
— measurements m. from timed packet/ACK pairs
— RTT, = ((1-a) x RTT;; + a x m,)

— Retransmit timeout: RTO, = 3 x RTT,
— original TCP: B = 2
Is this accurate enough?

— Recall dangers of too-short and too-long RTT
estimates from previous lecture

Mean and Variance:
Jacobson’s RTT Estimator

e Above link load of 30% at router, B x RTT.
will retransmit too early!

e Response to increasing load: waste
bandwidth on duplicate packets

e Result: congestion collapse!

e [Jacobson 88]: estimate v;,, mean
deviation (EWMA of |m, — RTT,|), stand-in
for variance

Vi = Vi X (1-y) + y X [m-RTT}|
e Use RTO, = RTT, + 4v,

Mean and Variance:
Jacobson’s RTT Estimator

e Above link load of 30% at router, B x RTT.
will retransmit too early!

e Response to increasing load: waste
bandwidth on duplicate packets

" Mean and Variance RTT estimator used by all

modern TCPs

_

for variance
V; = V4 X (1-y) + y X [m-RTT;|
e Use RTO, = RTT, + 4v,

Retransmit Behavior

e Original TCP, before [Jacobson 88]:

— at start of connection, send full window of
packets

— retransmit each packet immediately after its
timer expires

e Result: window-sized bursts of packets
sent into network

Pre-Jacobson TCP (Obsolete!)

Packet Sequence Number (KB)
20 30 40 50

N3 TIme (seC)

Time-sequence plot taken at sender

Bursts of packets: vertical lines

Spurious retransmits: repeats at same y value
Dashed line: available 20 Kbps capacity

Self-Clocking: Conservation of Packets

— P

I [[[
Sender Receiver
[[Il [
/ - A, \

A — A, —

e Goal: self-clocking transmission
— each ACK returns, one data packet sent

— spacing of returning ACKs: matches spacing of
packets in time at slowest link on path

Reaching Equilibrium: Slow Start

At connection start, sender sets congestion
window size, cwnd, to pktSize (one packet’s
worth of bytes), not whole window

Sender sends up to minimum of receiver’s
advertised window and cwnd

Upon return of each ACK until receiver’s
advertised window size reached, increase cwnd
by pktSize bytes

“Slow” means exponential window increase!

Takes log,W RTTs to reach receiver’s advertised
window size W

Post-Jacobson TCP: Slow Start and
Mean+Variance RTT Estimator

2 L / 4
o _.-".-..) ./
8- /
f 8 -".-. /
27
E K
= ’
88 | & /
'
g ._._.- / .
B o
= ."_.- P rs
a 'ff
- /' ¢
.
I /!
‘..." _—
=t | | | |
0 < 8 0

Send Time (sec)

e Time-sequence plot at sender
e “"Slower” start
e No spurious retransmits

10

Outline

e Packet header format

e Connection establishment

e Data transmission

e Retransmit timeouts

o RTT estimator

e AIMD Congestion control

e Throughput, loss, and RTT equation
e Connection teardown

e Protocol state machine

11

Goals in Congestion Control

e Achieve high utilization on links; don't
waste capacity!

e Divide bottleneck link capacity fairly
among users

e Be stable: converge to a steady allocation
among users

e Avoid congestion collapse

12

Congestion Collapse

Knee
m \
Q
@)
N’
H -
a3 Congestion
S collapse!
-
(@)
| -
-
|_

Offered load (bps)

o Cliff behavior observed in [Jacobson 88]

13

Congestion Requires Slowing Senders

e Recall: bigger buffers cannot prevent congestion
e Senders must slow to alleviate congestion
e Absence of ACKs implicitly indicates congestion

e TCP sender’s window size determines sending
rate

e Recall: correct window size is bottleneck
bandwidth-delay product

e How can sender learn this value?
— Search for it, by adapting window size

— Feedback from network: ACKs return (window OK)
or do not return (window too big)

14

Avoiding Congestion:
Multiplicative Decrease

Recall that sender uses sending window of size
min(cwnd, rwnd), where rwnd is receiver’s
advertised window

Upon timeout for sent packet, sender presumes
packet lost to congestion, and:

— sets ssthresh = cwnd / 2

— sets cwnd = pktSize

— uses slow start to grow cwnd up to ssthresh

End result: cwnd = cwnd / 2, via slow start

Sender sends one window per RTT; halving
cwnd halves transmit rate

15

Avoiding Congestion:
Additive Increase

e Drops indicate TCP sending more than its
fair share of bottleneck

e No feedback to indicate TCP using less
than its fair share of bottleneck

e Solution: speculatively increase window
size as ACKs return
e Additive increase: for each returning ACK,
cwnd = cwnd + (pktSize x pktSize)/cwnd
— Increases cwnd by ~pktSize bytes per RTT

16

Avoiding Congestion:
Additive Increase

e Drops indicate TCP sending more than its
fair share of bottleneck

e No feedback to indicate TCP using less
than its fair share of bottleneck

Combined algorithm:

Additive Increase, Multiplicative Decrease
(AIMD)

cwnd = cwnd + (pktSize x pktSize)/cwnd
— Increases cwnd by ~pktSize bytes per RTT

17

Refinement: Fast Retransmit (I)

e Sender must wait well over RTT for timer
to expire before loss detected

e TCP's minimum retransmit timeout: 1
second

e Another loss indication: duplicate ACKs
— Suppose sender sends 1, 2, 3, 4, 5, but 2 lost
— Receiver receives 1, 3, 4, 5
— Receiver sends cumulative ACKs 2, 2, 2, 2
— Loss causes duplicate ACKs!

18

Fast Retransmit (II)

e Upon arrival of 3
duplicate ACKs,
sender:

— sets cwnd = cwnd/?2

— retransmits “missing”
packet

— no slow start

e Not only loss causes
dup ACKs

— Reordering, too

time

19

AIMD in Action

duplicate

acknowledgement

received
1
\
‘e

Window
size

slow start

multiplicative

decrease
additive
increase
o’ timer
expires,
, sfop sending
| -— s
slow start,
again
;
1
delay - -|_)
o (&
\

Time =—

e Sender searches for correct window size

20

Why AIMD?

e Other control rules possible
— E.qg., MIMD, AIAD, ...

e Recall goals:
— Links fully utilized (efficient)
— Users share resources fairly

o TCP adapts all flows’ window sizes
independently

e Must choose a control that will always
converge to an efficient and fair allocation
of windows

21

Chiu-Jain Phase Plots

Consider two users
sharing a bottleneck
link

Plot bandwidths
allocated to each

Efficiency: sum of two
users’ rates fixed

Fairness: two users’
rates equal
Equi-Fairness: ratio of
two users’ rates fixed

User 2 (bps)

Equi-Fairness Line (MI)

Fairness Line

(AI)

Overload
——— Optimum

Efficiency Line

Underload

User 1 (bps)

22

Chiu Jain: AIMD

Fairness Line

Efficiency Line

o AIMD converges to optimum efficiency
and fairness

23

Chiu Jain: AIMD

Fairness Line

Efficiency Line

o AIMD converges to optimum efficiency
and fairness

24

Chiu Jain: AIMD

Fairness Line

/ Efficiency Line

o AIMD converges to optimum efficiency
and fairness

25

Chiu Jain: AIMD

Fairness Line

/ Efficiency Line

o AIMD converges to optimum efficiency
and fairness

26

Chiu Jain: AIMD

Fairness Line

Efficiency Line

o AIMD converges to optimum efficiency

and fairness

27

Chiu Jain: AIMD

Fairness Line

Efficiency Line

o AIMD converges to optimum efficiency

and fairness

28

Chiu Jain: AIMD

Fairness Line

Efficiency Line

o AIMD converges to optimum efficiency

and fairness

29

Chiu Jain: AIMD

Fairness Line

Efficiency Line

o AIMD converges to optimum efficiency

and fairness

30

Chiu Jain: AIAD

Fairness Line

Efficiency Line

e AIAD doesn’t converge to optimum point!
e Similar oscillations for MIMD

31

Outline

e Packet header format

e Connection establishment

e Data transmission

e Retransmit timeouts

o RTT estimator

e AIMD Congestion control

e Throughput, loss, and RTT equation
e Connection teardown

e Protocol state machine

32

Modeling Throughput, Loss, and RTT

e How do packet loss rate and RTT affect
throughput TCP achieves?

e Assume:
— only fast retransmits

— no timeouts (so no slow starts in steady-
state)

33

Evolution of Window Over Time
W

time
e Average window size: 3W/4
e One window sent per RTT
e Bandwidth:
— 3W/4 packets per RTT

— (3W/4 x packet size) / RTT bytes per second
— W depends on loss rate...

34

Loss and Window Size

e Assume no delayed ACKs, fixed RTT
e cwnd grows by one packet per RTT

e So it takes W/2 RTTs to go from window
size W/2 to window size W; this period is
one cycle

e How many packets sent in total?
— ((3W/4) / RTT) x (W/2 x RTT) = 3W2/8

e One loss per cycle (as window reaches W)
— loss rate: p = 8/3W?
— W = sqrt(8/3p)

35

Throughput, Loss, and RTT Model

o W = sqgrt(8/3p) = (4/3) x sqrt(3/2p)
e Recall:
— Bandwidth: B = (3W/4 x packet size) / RTT

e B = packet size / (RTT x sqgrt(2p/3))
e Consequences:

— Increased loss quickly reduces throughput

— At same bottleneck, flow with longer RTT
achieves less throughput than flow with
shorter RTT!

36

Outline

e Packet header format

e Connection establishment

e Data transmission

e Retransmit timeouts

o RTT estimator

e AIMD Congestion control

e Throughput, loss, and RTT equation
e Connection teardown

e Protocol state machine

37

TCP: Connection Teardown

Data may flow
bidirectionally

Each side independently
decides when to close _
connection time

In each direction, FIN
answered by ACK

Must reliably terminate 2)
connection for both sides

— During TIME_WAIT state at
first side to send FIN, ACK
valid FINs that arrive

Must avoid mixing data
from old connection with
new one

enter

— During TIME_WAIT state, TIME WAIT
disallow all new connections state
for 2 x max segment lifetime 38

A B

N

4
I~
(o)
/]
~

A
ES
I
* o \2
~N (@]
2 \=
2 \W
n O\
o\

TCP: Protocol State Machine

Active Open or Active Unspecified Passive Open or
Open with Data [Fully Specified Passive Open
Initialize SV; CLOSED Initialize SV
Send SYN
Close Close
Clear SV Clear SV

SYN SENT LISTEN

SYN RECEIVED

Send SYN, Send SYN,

ACK ACK
Receive ACK \
Receive SYN, ACK of SYN \
Send ACK N
Receive FIN, ACK of SYN
\
\
Close Receive FIN \
Send FIN Send ACK \

FIN WAIT CLOSE WAIT

Receive Receive FIN Close
ACK of FIN Receive FIN. ACK Send ACK Send FIN
Send ACK
FIN WAIT2 CLOSING LAST ACK
Receive Receive
Receive FIN ACK of FIN ACK of FIN

Send ACK

TIME WAIT [~ et CLOSED

39

Summary: TCP and Congestion Control

e Connection establishment and teardown
— Robustness against delayed packets crucial

e Round-trip time estimation
— EWMAs estimate both RTT mean and deviation

e Congestion detection at sender

— Timeout: retransmit timer expires, half window, slow
start from one packet

— Fast Retransmit: three duplicate ACKs, half window,
no slow start

e Search for optimal sending window size
— Additive increase, multiplicative decrease (AIMD)
— AIMD converges to high utilization, fair sharing

40

