UCL CS 3007 Brad Karp

Individual Coursework j5:
Implementing a UNIX Shell

Due date: 6:05 PM GMT, 23rd March 2018

Value: 6% of marks for module

Introduction

The design of the UNIX[| system call APIs for creating and controlling processes and plumbing
together their inputs and outputs is one of the gems of modern software systems architecture.
To help you become fluent in using this powerful set of mechanisms in C, in this assignment you
will use fork (), exec (), and several other interesting system calls to build a command shell,
or shell for short. A shell reads commands on its standard input and executes them. Modern
UNIXes include multiple shells (and developers over the years have created still more shells with
different syntaxes and features).

In your shell, you will implement simple commands, background commands, conditional
commands (i.e., using the && and | | operators), I/O redirection, and pipes. You will also imple-
ment command interruption (i.e., with Ctrl-C). Your shell will implement a subset of the bash
shell’s syntax, as defined at:

http://www.gnu.org/software/bash/manual/bashref.html

and will be generally compatible with bash for the features they share. You may find a tutorial
on how to use the UNIX shell useful preparation for CWs; one such tutorial is available at:

http://www.linuxcommand.org/lc3_learning_the_shell.php

This coursework must be done in a UNIX programming environment. We recommend that
all 3007 students develop in the 3007 Linux virtual machine (VM) provided for use in this class,
available at:

http://www.cs.ucl.ac.uk/staff/B.Karp/3007/s2018/cw.html

If you happen to have another UNIX machine at your disposal (including a Mac OS machine),
you may find that you can develop your solution to CW5 in that environment, but the only
development environment the 3007 staff can support is the 3007 VM. We’ve had difficulties
with outdated software on the UCL CS lab machines and CSRW remote desktop, so do not
recommend you use them for CWs.

Chapter 8 of CS:APP/3e covers processes and the UNIX system calls that control them; this is
vital background for this coursework. Section 8.4 in particular describes the system calls for
creating and controlling processes, and Section 8.5 describes signals, which are important in
handling software exceptions that arise while managing the processes your shell starts (e.g.,
when a process dies, when a user hits Ctrl-C on the shell’s console to interrupt a process,
etc.). Chapter 1o of CS:APP/3e covers UNIX I/O system calls, such as those needed to handle
redirection of input and output for processes your shell starts; Sections 1o.1-10.4 describe

*Throughout this handout, by “UNIX” we include all modern variants of UNIX, including the open-source Linux
variant.

http://www.gnu.org/software/bash/manual/bashref.html
http://www.linuxcommand.org/lc3_learning_the_shell.php
http://www.cs.ucl.ac.uk/staff/B.Karp/3007/s2018/cw.html

opening, reading from, and writing to files, and Section 10.9 describes redirection of I/O.
Note that CS:APP/3e doesn’t describe the pipe () system call. We will discuss pipe () in
lecture (and of course the UNIX/Linux man pages for pipe () and all other system calls are
an invaluable reference).

Tasks

The shell functionality you will implement in CW s includes:
e execution of simple commands;
e execution of background commands;
e execution of command lists;
e execution of conditional statements;
e execution of command pipelines;
e reaping of zombie processes;
e execution of I/O redirection;
e support for interrupting commands from the console;
e support for the cd command (to change directory).

You will complete the above tasks in nine stages described in detail below. We provide tests
with the initial code for CW 5 for all the above functionality. Details on how grades are computed
from tests passed and failed appear later in this handout.

You will also find considerable guidance on how to go about implementing the functionality
for each stage of the coursework in this document. Read this handout in its entirety carefully
before you begin!

As ever, it is important to get started early. You will need time to work your way through
implementing all nine stages of the coursework, including time for debugging. You will
almost certainly need the entire two weeks allotted to complete CWs.

Getting Started

We will use GitHub for CW5 in much the same manner as for CW2 through CW4. To obtain a
copy of the initial code for CW s, please visit the following URL:

https://classroom.github.com/a/gQfIlt2o

If you’d like a refresher on using git with your own local repository and syncing it to GitHub,
please refer to the CW2 handout.

All your code for your solution to CW 5 must go in the sh3007.c and sh3007.h files. The
grading server will only consider code in these two files (and will use the baseline versions of
all other files in the code we initially provide you).

https://classroom.github.com/a/qQfIlt2o

Each time you push updated code to your GitHub repository for CW s, our automatic grading
server will pull a copy of your code, run our automated tests on your code, and place a grade
reportin a file report .md in your GitHub repository. Your mark on CW s will be that produced
by the automated tests run by our automatic grading server on the latest commit (update) you
make to your GitHub repository before the CW5 deadline. More on these tests below.

Please note that your code’s behavior on the automated tests when run in the 3007 Linux VM
will determine your mark on CW 5, without exception. If you choose to develop in a different
environment, you must ensure that your code passes the automated tests on our automatic
grading server. (We push grade reports to your GitHub repo each time you update your code
to make it easy for you to check this.) The CS 3007 staff cannot “support” development
environments other than the 3007 Linux VM; we cannot diagnose problems you encounter
should your code pass the tests in some other environment, but fail them in the 3007 Linux

VM.

Parsing the Shell’s Grammar

There are two fairly distinct parts to implementing a shell: parsing the command input and then
executing the appropriate commands once they’ve been parsed. Our emphasis in this class is on
the UNIX system call interface and process control, not parsing. So we’ve provided you much of
the code to parse command input (though not quite all).

The parse_shell _token () function we provide returns the next “token” from the com-
mand line, and it differentiates between normal words like “echo” and special control operators
like “; ” or “>”. But in the code we hand out to you initially, eval_line () treats every token
like a normal command word, so “echo foo ; echo bar | wc” would simply print “foo
; echo bar | wc”! Real shells allow users to build up interesting commands from collec-
tions of simpler commands, connected by control operators like && and |. Part of your task is
to complete the parsing phase. You can complete it all at once, but you don’t need toj; see below
for staging hints.

sh3007 command lines follow this grammar. Each command is a “commandline” defined
as follows:

commandline ::= list

| list ";"

| list "&"
list ::= conditional

| list ";" conditional
| list "&" conditional

conditional ::= pipeline

| conditional "&&" pipeline

| conditional "||" pipeline
pipeline ::= command

| pipeline "|" command
command ::= [word or redirection]...
redirection ::= redirectionop filename
redirectionop ::= "<" | "S>" | "2>M

This grammar says, for example, that the command “echo foo && echo bar & echo
baz” is parsed and executed as follows:

{ { echo foo } && { echo bar } } & { echo baz }

That is, the & is “inside” the background command, so “echo foo && echo bar” runs
in the background and “echo baz” runs in the foreground.

A robust shell will detect errors in its input and handle them gracefully, but all the inputs we
give your shell in the CW 5 tests follow the grammar above.

Executing Commands

The bulk of CW 5 is actually implementing the shell —i.e., causing the user’s commands to execute
after they’ve been parsed.

If you’re confused about a shell feature and tutorials and man pages don’t help, experiment!
Tinkering with tools to understand their behavior is a hallmark of the Systems approach. The
bash shell (which is the default on the 3007 VM and on Mac OS) is compatible with your shell.
You may find the following commands particularly useful for testing; find out what they do by
reading their man pages and feel free to be creative in how you combine them:

e echo (print arguments to standard output)
e true (exit with status o)

e false (exit with status 1)

e sleep N (wait for “N” seconds then exit)
e sort (sort the standard input’s lines)

e wc (count the standard input’s lines)

e cat (print one or more files specified as arguments to standard output)

Run your shell by typing . /sh3007 and entering commands at the prompt. Exit your shell
by typing Ctrl-D at the prompt or by going to another window and entering the command
killall sh3007.

The Nine Stages of the Shell

We describe below the nine implementation stages you must complete in CW5: what you need
to implement in each, and hints on how to do so.

We suggest you implement the features of your shell in the order of the numbered stages
below.

Stage 1: Simple Commands

<

Implement support for simple commands like “echo foo” by changing start_command ()
and run_list (). You’ll need to use the following system calls: fork (), execvp (), and
waitpid (). Consult the man pages for details on how to call each of them and what they do.
Also read the function definitions in sh3007 . h.

You may also need to exit a forked copy of the shell (for example, if execvp () fails). To
exit a child process, call the _exit () function. For instance, call _exit (1) or, equivalently,
_exit (EXIT_FAILURE) to exit with status 1.

Your CWs code should never call the normal exit () function. exit () performs cleanup
actions, including changing the configuration of open stdio files, that shouldn’t happen in
child processes (they should only happen in the parent shell). If you call exit () instead of
_exit () from child processes, you may see weird behavior where, for example, the parent
shell re-executes parts of its command input.

Stage 2: Background Commands

Next, implement support to run processes in the background, such as sleep 1 &. A back-
ground process allows the shell to continue accepting new commands without waiting for the
prior command to complete. Implementing background commands will require changes to
eval_line () (to detect control operators) and run_list (), as well as, most likely, to st ruct
command.

Stage 3: Command Lists

Implement support for command lists, which are chains of commands linked by ; and &. The
semicolon runs two commands in sequence —the first command must complete before the second
begins. The ampersand runs two commands in parallel by running the first command in the
background. These operators have equal precedence and associate to the left.

This stage will require changes to run_1ist () and struct command at a minimum.

Hint: How much do you need to change st ruct command to handle the full shell grammar
above? All that’s really required is a simple linked list of st ruct commands. This is possi-
ble because the shell’s execution strategy for commands works sequentially, from left to right
(with an exception for pipelines, as you’ll see in a later stage). You may be tempted to cre-
ate what’s called an expression tree with separate st ruct command, struct pipeline,
struct conditional, and struct command_list types. If that really helps you rea-
son about your design, go for it, but it may be more significantly more effort than it’s worth.

Stage 4: Conditionals

Implement support for conditionals, which are chains of commands linked by && and/or ||.
These operators run two commands, but the second command is run conditionally, based on the
status of the first command. For example:

S true ; echo print # The second command always runs, because ’;
unconditional control operator.

print

$ false ; echo print

print

S true && echo print # With &&, though, the 2nd command runs ONLY if
the first command exits with status 0.

print

$ false && echo print
(prints nothing)

$ true || echo print # With ||, the 2nd command runs ONLY if the first
command DOES NOT exit with status O.
(prints nothing)

$ false || echo print
print

The s«& and | | operators have higher precedence than ; and &, so a command list can
contain many conditionals. && and | | have the same precedence and they associate to the left.
The exit status of a conditional is taken from the last command executed in that conditional. For
example, true || false has status o (the exit status of t rue) and true && false has exit
status 1 (the exit status of false).

Explore how conditionals work in the background. For instance, try this command:

$ sleep 10 && echo foo & echo bar

To support conditionals, you’ll probably find you need to make changes to run_1ist (),
eval_line (), and struct command. You’ll also use the WIFEXITED and WEXITSTATUS
macros defined in man waitpid.

Stage 5: Pipelines

Implement support for pipelines, which are chains of commands linked by |. The pipe operator
| runs two commands in parallel, connecting the standard output of the left command to the
standard input of the right command.

The | operator has higher precedence than && and | |, so a conditional can contain several
pipelines. Unlike conditionals and lists, the commands in the pipeline run in parallel. The shell
starts all the pipeline’s commands, but only waits for the last command in the pipeline to finish.
The exit status of the pipeline is taken from that last command.

To support pipelines, you’ll need to use some further system calls, namely pipe (), dup2 (),
and close (), and you’ll need to make changes to start_command (), run_list (), and
struct command.

Stage 6: Reaping Zombie Processes

Your shell should eventually reap all its zombie processes using waitpid ().

Hint: You must reap all zombies eventually, but you need not to reap them immediately. We
don’t recommend using signal handlers to reap zombies, since a signal handler can interfere
with the waitpid () calls used to wait for foreground processes to complete. A well-placed
waitpid () loop will suffice to reap zombies. Where should it go?

Stage 7: I/0 Redirection

Implement support for I/O redirection, where some of a command’s file descriptors are read
from (for input file descriptors) and/or written to (for output file descriptors) disk files. You must
handle three kinds of redirection:

e < filename: The command’s standard input is taken from filename.
e > filename: The command’s standard output is sent to filename.

e 2> filename: The command’s standard error is sent to £ilename.

For instance, echo foo > x writes foo into the file named x.

The parse_shell token () function returns redirection operators as type TOKEN_REDIRECTION.
You’ll need to change eval_line () to detect redirections and store them in st ruct command.
Each redirection operator must be followed by a filename (a TOKEN_NORMAL token). You’ll also
change run_command () to set up the redirections, using system calls open (), dup2 (), and
close ().

The shell sets up a command’s redirections before executing the command. If a redirection
fails (because the file can’t be opened), the shell doesn’t actually run the command. Instead, the
child process that would normally have run the command prints an error message to standard
error and exits with status 1. Your shell should behave this way, too. For example:

$ echo > /tmp/directorydoesnotexist/foo
/tmp/directorydoesnotexist/foo: No such file or directory
$ echo > /tmp/directorydoesnotexist/foo && echo print
/tmp/directorydoesnotexist/foo: No such file or directory
$ echo > /tmp/directorydoesnotexist/foo || echo print
/tmp/directorydoesnotexist/foo: No such file or directory
print

How to figure out the right error message to display on standard error? Try man strerror.

Hint: Your calls to open () will have different arguments depending on what type of redi-
rection is used. How to figure out what those arguments should be? You can use the man
page or you can simply use the st race command to check the regular shell’s behavior. For
example, try this:

$ strace -o strace.txt -f sh -c¢ "echo foo > output.txt"

The strace output is placed in file st race. t xt. Examine that file’s contents. Which flags
were provided to open () for output.txt? You can repeat this experiment with different
redirection types.

Stage 8: Interruption

Implement support for interruption: pressing Ctrl-C in the shell should kill the currently running
command line, if there is one.

Handling Ctrl-C is an initial step into job control, which encompasses UNIX’s functionality
to help users interact with sets of related processes. Job control can be a complicated affair
involving process groups, controlling terminals, and signals. Luckily, Ctrl-C is not too hard to
handle on its own. You will need to take the following steps:

e All processes in each pipeline must have the same process group (see below).

e Your shell should use the claim foreground () function that we provide to inform the
OS about the currently active foreground pipeline.

o If the user presses Ctrl-C while the shell is executing a foreground pipeline, every process
in that pipeline must receive the STGINT signal. This will kill them.

What are process groups? Job control is designed to create a common-sense mapping between
operating system processes and command-line commands. This gets interesting because processes
spawn new helper processes. If a user kills a command with Ctrl-C, the helper processes should

also die. UNIX’s solution uses process groups, where a process group is a set of processes. The
Ctrl-C key kills all members of the current foreground process group, and not just the current
foreground process.

Each process is a member of exactly one process group. This group is initially inherited from
the process’s parent, but the setpgid () system call can change it:

e setpgid(pid, pgid) sets process pid’s process group to pgid. Process groups use the
same ID space as process IDs, so you’ll often see code like setpgid (pid, pid).

e setpgid (0, 0) means the same thing as setpgid (getpid (), getpid()). This
divorces the current process from its old process group and puts it into the process group
named for itself.

To kill all processes in group pgid, use the system call kill (-pgid, signal_number).

(Note that one process can change another process’s process group. Process isolation restricts
this functionality somewhat, but it’s safe for the shell to change its children’s process groups.)

For interrupt handling, each process in a foreground command pipeline must be part of the
same process group. This will require that you call setpgid () in start_command (). In fact,
you should call it fwice, at two different locations in start_command, to avoid race conditions
(why?).

Once the above has been done, your shell should call claim foreground () before waiting
for a command. This function makes the terminal dispatch Ctrl-C to the process group you
choose. Call claim foreground (pgid) before waiting for the foreground pipeline, and call
claim_foreground (0) once the foreground pipeline is complete. This function manipulates
the terminal so that commands like man ki11 will work inside your shell.

When a user types Ctrl-C into a terminal, the UNIX system automatically sends the STGINT
signal to all members of that terminal’s foreground process group. This will cause any currently
executing commands to exit. (Their waitpid () statuses will have WIFSIGNALED (status)
!= 0 and WTERMSIG (status) == SIGINT.)

Finally, if the shell itself gets a STGINT signal, it should cancel the current command line and
print a new prompt. Implementing this feature will require adding a signal handler.

Hint: We strongly recommend that signal handlers do almost nothing. A signal handler
might be invoked at any moment, including in the middle of a function or library call;
memory might be in an arbitrary intermediate state. Since these states are dangerous,
UNIX restricts signal handler actions. Most standard library calls are disallowed, includ-
ing printf (). (A signal handler that calls print £ () might be observed to work most of
the time—but one time in a million the handler would exhibit unpredictably incorrect be-
havior.) The complete list of library calls allowed in signal handlers can be found in man
7 signal. For this coursework, you can accomplish everything you need with a one-line
signal handler that writes a global variable of type volatile sig.atomic_t (which is a
synonym for volatile int on today’s Linux on x86-64).

Note that Ctrl-C and command lines interact in different ways on different operating systems.
For instance, try typing Ctrl-C while the shell is executing sleep 10 ; echo Sleep failed
(or sleep 10 || echo Sleep failed). The result may vary with the OS: Mac OS prints
Sleep failed, but Linux does not! Your shell implementation for 3007 CWs5 may exhibit either
behavior. But note that if you press Ctrl-C during sleep 10 && echo Sleep succeeded,
the message does not print on any OS, and you must not print the message either.

Stage 9: the cd Command

Implement support for the cd directory command. The cd command is different than other
commands your shell executes; why?

Running the Tests and Submitting

The automated tests for CW 3 are very much intended to help you debug, and to guide your
implementation (in the way the ones in CW2 did): you can see which specific inputs are causing
your shell to behave incorrectly, and change your code accordingly.

There are 83 automated tests in total, divided into groups as follows:

e SIMPLE: simple command execution

e BG: background command execution

e LIST: command list execution

e COND: conditional command execution
e PIPE: command execution with pipes
e ZOMBIE: reaping of zombie processes
e REDIR: I/O redirection execution

e INT: SIGINT (Ctrl-C) processing

e CD: cd command execution

e ADVPIPE: advanced pipe test case

e ADVBGCOND: advanced tests of background conditionals

Use the command make check to run the automated tests in your development environ-
ment. You may also runmake check-X to run specific test X (e.g., where X could be simple2),
or (for example) make check-simple to run all the SIMPLE tests. (You may find it useful to
design your own tests as you debug, as well.)

Each individual test is of equal weight in determining your mark: your mark will be P/83 x
100, where P is the number of tests your code passes.

Once again, we urge you to get started early.

Submitting via GitHub

We will deem the timestamp of your CW 5 submission to be the timestamp on GitHub’s server
of the last commit you make before the submission deadline of 6:05 PM GMT on 23rd March
2018. Your mark will be the mark you receive on the automated tests for that version of your
code. Coursework lateness penalties are described in detail on the 3007 class web site.

If you wish to submit after the deadline, you must take the following steps for your course-
work to be marked:

1. When you wish to receive a mark for a version of your code that you push to GitHub after
the submission deadline, you must begin your commit log message for that commit with the
exact string LATESUBMIT. Our grading system will not mark your late submission unless
you comply with this requirement. We follow this policy so that if a student “accidentally”
pushes a further commit after the deadline, they aren’t penalized for a late submission.

http://www.cs.ucl.ac.uk/staff/B.Karp/3007/s18/admin.html

2. If you wish to claim late days, per the 3007 late days policy (details on the 3007 class
web site), you must post a private message on Piazza to the Instructors within one hour of
pushing the version of your code you wish to submit late to GitHub with a subject line CW5
LATE DAYS and a body stating the number of late days you would like to claim. Please
follow these instructions exactly: note the all capitals, and please use this exact subject line
string.

3. You may make only one late submission (i.e., one GitHub commit with the initial string
LATESUBMIT and one Piazza posting with the subject line CW5 LATE DAYS). If you make
more than one late submission, we will only mark the first one.

Academic Honesty

This coursework is an individual coursework. Every line of code you submit must have been
written by you alone, and must not be a reproduction of the work of others—whether from the
work of students in this (or any other) class from this year or prior years, from the Internet, or
elsewhere (where “elsewhere” includes code written by anyone anywhere).

On CWs, students taking 3007 in the 2017-18 academic year (i.e., doing CW35 in March
2018) are permitted to discuss with one another the definition of a problem posed in the course-
work as well as the design of a solution. Discussions of the coursework with anyone not enrolled
in 3007 in 2017-18 (apart from the teaching staff for 3007) are prohibited.

Students may not show one another any of their code. Nor may students write any code for
one another. Discussions about the design of a solution may refer to system calls and how
they fit into a design, but discussions must stop short of any showing of any student’s code
to another student.

The strict prohibition on showing your code for CW5 to any other student from this year
applies to all students in future years as well. In accordance with academic practice, students
must cite all sources used; thus, if you discuss a problem with another student, you must state in
your solution that you did so, and what the discussion entailed.

ANY use of any online question-and-answer forum (other than the CS 3007 Piazza web site)
to obtain assistance on this coursework is strictly prohibited, constitutes academic dishonesty,
and will be dealt with in the same way as copying of code. The same goes for use of any online
material specifically directed toward solving this coursework.

You are free to read other reference materials found on the Internet (and any other reference
materials), apart from source code that implements a UNIX shell. You may of course use the
code we have given you. Again, all other code you submit must be written by you alone.

Copying of code from student to student or from the Internet is a serious infraction; it will
result in automatic awarding of zero marks to all students involved, and is viewed by the UCL
administration as cheating under the regulations concerning Examination Irregularities (normally
resulting in exclusion from all further examinations at UCL). The course staff use extremely
accurate plagiarism detection software to compare code submitted by all students (as well as
code found on the Internet) and identify instances of copying of code; this software sees through
attempted obfuscations such as renaming of variables and reformatting, and compares the actual
parse trees of the code. Rest assured that it is far more work to modify someone else’s code to
evade the plagiarism detector than to write code for the assignment yourself!

I0

http://www.cs.ucl.ac.uk/staff/B.Karp/3007/s18/admin.html
http://www.cs.ucl.ac.uk/staff/B.Karp/3007/s18/admin.html

Read the Piazza Web Site

You will find it useful to monitor the 3007 Piazza web site during the period between now and
the due date for the coursework. Any announcements (e.g., helpful tips on how to work around
unexpected problems encountered by others) will be posted there. And you may ask questions
there. Please remember that if you wish to ask a question that reveals the design of your solution,
you must mark your post on Piazza as private, so that only the instructors may see it. Questions
about the interpretation of the coursework text, or general questions about C that do not relate
to your solution, however, may be asked publicly—and we encourage you to do so, so that the
whole class benefits from the discussion.

References
CS:APP/3e Chapters 8 and 1o, particularly §8.4-8.5, 10.1-10.4, and 10.9

Acknowledgement

This coursework is derived from one created by Eddie Kohler.

IT

