
UCL CS 0019 Brad Karp

Individual Coursework 2: Debugging Memory Allocator
Due date: 1:05 PM, 31st January 2019

Value: 6% of marks for module

Introduction

C programmers (that would be us) allocate and free memory explicitly. This means we can write
fast code for modern machines, because we have full control over memory. The bad news is that
it’s all too easy to write programs that crash due to memory problems. But wait: as systems
programmers, we can build tools to help us debug memory allocation problems. For instance, in
this coursework, you will transform a simple memory allocator (e.g., implementation of malloc
and friends) into a debugging memory allocator.

Tasks

1. Transform the malloc library we give you into a debugging malloc library that:

• Tracks memory usage;

• Catches common programming errors (e.g., use after free, double free);

• Detects writing off the end of dynamically allocated memory (e.g., writing 65 bytes
into a 64-byte piece of memory);

• Catches less common, somewhat devious, programming errors, as described in the
remainder of this handout.

2. Augment your debugging malloc library with heavy hitter reporting, which tells a program-
mer where most of the dynamically allocated memory is allocated.

While the above tasks may at first sound imposing, they are achievable in not all that much
code. The remainder of this handout provides guidance in how to achieve them (as do the tests
we provide for your implementation). Read this handout in its entirety carefully before you
begin!

It is important to get started early—CW2 is not trivial! You will need the two weeks allotted
to complete it.

Context

C memory allocation uses two basic functions, malloc and free.

void *malloc(size t size)

Allocate size bytes of memory and return a pointer to it. This memory is not initialized
(it can contain anything). Returns NULL if the allocation failed (because size was too big,
or memory is exhausted, or for whatever other reason).

1

void *free(void *ptr)

Free a single block of memory previously allocated by malloc.

The rules of malloc and free are simple: Allocate once, then free once.

• Dynamically allocated memory remains active until explicitly freed with a call to free.

• A successful call to malloc(sz) returns a pointer (ptr) to “new” dynamically allocated
memory. This means that the sz bytes of data starting at address ptr are guaranteed not
to overlap with the program’s code, its global variables, its stack variables, or with any
other active dynamically allocated memory.

• The pointer argument in free(ptr) must either equal NULL or be a pointer to active
dynamically allocated memory. In particular:

– It is not OK to call free(ptr) if ptr points to the program’s code, or into its global
variables, or into the stack.

– It is not OK to call free(ptr) unless ptr was returned by a previous call to
malloc.

– It is not OK to call free(ptr) if ptr is currently inactive (i.e., free(ptr) was
previously called with the same pointer argument, and the ptr memory block was
not reused by another malloc()).

These errors are called invalid frees. The third error is also called a double free.
Some notes on boundary cases:

• malloc(0) may return either NULL or a non-NULL pointer. If ptr = malloc(0) is not
NULL, then ptr does not overlap with any other allocation and can be passed to free().

• free(NULL) is allowed. It does nothing.

• malloc(sz) returns memory whose alignment works for any object. (We’ll discuss align-
ment in class; for a preview, see CS:APP/3e §3.9.3.) On x86-64 machines, this means that
the address value returned by malloc() must be evenly divisible by 16. You should do
this, too.

Two secondary memory allocation functions are also commonly used in C: calloc and
realloc. The calloc function allocates memory and “clears” it so that all bytes in the allo-
cated region contain zeroes. The realloc function can allocate, free, or resize memory depend-
ing on its arguments. These functions work like this:

void *calloc(size_t nmemb, size_t sz) {
void *ptr = malloc(sz * nmemb);
if (ptr != NULL)

memset(ptr, 0, sz * nmemb); // set memory contents to 0
return ptr;

}

void *realloc(void *ptr, size_t sz) {
void *new_ptr = NULL;
if (sz != 0)

new_ptr = malloc(sz);
if (ptr != NULL && new_ptr != NULL) {

2

size_t old_sz = size of memory block allocated at ptr;
if (old_sz < sz)

memcpy(new_ptr, ptr, old_sz);
else

memcpy(new_ptr, ptr, sz);
}
free(ptr);
return new_ptr;

}

(NB: There’s actually a bug in that implementation of calloc! One of our tests would find
it.)

You will work on our replacements for these functions, which are called cs0019 malloc,
cs0019 free, cs0019 calloc, and cs0019 realloc. Our versions of these functions sim-
ply call basic versions, base malloc and base free. Note that the cs0019 functions take
extra arguments that the system versions don’t, namely a filename and a line number. Our header
file, cs0019.h, uses macros so that calls in the test programs supply these arguments automati-
cally. You’ll use filenames and line numbers to track where memory was allocated and to report
where errors occur.

In addition to the debugging allocator, you must design and implement another useful tool,
heavy hitter reports. You will design your solution, implement it, and test it.

Requirements

Your debugging allocator must support the following functionality. The code we hand out con-
tains tests for all this functionality (though we may run further tests when grading). From easier
to harder:

1. Overall statistics—how many allocations/frees, how many bytes have been allocated/freed,
etc.

2. Secondary allocation functions (calloc and realloc) and integer overflow protection.

3. Invalid free detection.

4. Writing past the beginning/end of an allocation.

5. Reporting memory that has been allocated, but not freed.

6. Advanced reports and checking.

7. Heavy hitter reporting.

Further details on what you must implement for each of the above functionalities are provided
below.

Finally, your debugging allocator also must perform acceptably—i.e., it must not inordinately
slow the execution of programs that use it. For this coursework, we define “acceptable” to mean
that the tests we provide (which invoke your debugging malloc) must each run to completion
within 5 seconds. These test programs themselves take just a fraction of a second to run on their
own (not counting time spent in your malloc implementation).

3

Getting Started

All programming for this coursework must be done under Linux. We provide a Linux virtual
machine (VM) image that you can use if you’d like to do development on your own machine.
You also have the option of logging into a set of CS lab Linux machines remotely via ssh, or
using the remote Linux desktop accessible via the UCL CS Remote Worker (CSRW) service. The
VM we provide is the same VM we use to test your code. Your grade will be the score you receive
when we run your code in our own copy of the VM. If you consistently (i.e., for many runs) get
different results on a lab machine than you do when your code is tested by our auto-grader
(which we describe below), please contact the course staff via a Piazza private message. We are
happy to answer student questions about difficulties encountered when doing the coursework in
the VM we provide or on CS lab machines, but we cannot support any other Linux installation.

Getting and Running the VM

To run the Linux VM we provide on your own computer, you will need to first download and
install VirtualBox. You can find links to installer packages for the latest version of VirtualBox
for Windows, Mac OS X, Linux, and Solaris online at:

https://www.virtualbox.org/wiki/Downloads

On that page, download and install the platform package for your computer’s installed OS.
Next, download the VM image by retrieving the two files from:

http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2019/cw1/0019.vbox

and

http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2019/cw1/0019.vdi

Start VirtualBox (on Linux, with the shell command VirtualBox) and open the local copy
of the VM image that you downloaded. A window will open, within which you will find running
a complete Linux OS. The username and password to log in are user and user. The VM
image we provide has all you need to do all the 0019 courseworks, including the C compiler and
development libraries, git, and popular editors (emacs, vim, and nano). Do your work within
the VM: edit your code there, run tests there, and manage your code using git and GitHub there
(more on git below).

Using the CS Lab Machines or CSRW

You can also, if you choose, work on CW2 on the CS lab machines or on the CSRW remote
Linux desktop. Instructions on both these methods for working in a UCL CS Linux environment
are available at:

http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2019/cw.html

The CS lab machines and CSRW service by default offer a somewhat antiquated compiler
that cannot compile CW2 correctly. To gain access to an up-to-date compiler that can build
CW2, issue the following command each time you log in:
scl enable devtoolset-7 bash

4

https://www.virtualbox.org/wiki/Downloads
http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2019/cw1/0019.vbox
http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2019/cw1/0019.vdi
http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2019/cw.html

Managing Your Code with git

For Courseworks 2 and later in CS 0019, you will manage the revisions of your code, including
submitting it to the instructors for testing and grading, using the git source code control system
and GitHub. git is useful for a great many things, from keeping the revision history of your
code to making it easy to share your code on different machines (if you wind up wanting to use
the VM on your own box and also develop on the CS lab machines, for example, you can keep
your multiple working copies in sync via your “master” repository on GitHub). If you’ve not
used git before, you can find a wealth of documentation online; we offer only a bare-bones
introduction below.

git manages a set of source code files you are working on in a repository. You keep a local
copy of the repository on a machine where you are editing your code and testing it, and use git
to keep your local copy synchronized with a “master” copy of the repository on a server. In CS
0019, you will use GitHub to host the master copy of your repository. As you do your work
(adding code, fixing bugs, etc.) it is good practice to update the master copy of your repository
on GitHub with the changes you have made locally. There are two steps to doing so: first, you
commit the changes to indicate that they are ready for shipping to the master repository, and
second, you push your committed changes to the master repository.

To start the coursework, though, you must first retrieve a copy of the files we provide for you
to start from. You can set up your GitHub master repository for your CW2 code by visiting the
following GitHub URL:

https://classroom.github.com/a/NnuG4aH1

You will be prompted for your GitHub username and password, and asked which email
address of students registered for CS 0019 is yours. After you enter this information, you will
have a local working copy of the CW2 repository in a subdirectory with the same name as the
GitHub repository (of the form cw2-dmalloc-[your GitHub username]).

All code you write for CW2 must go in the file cs0019.c. You will receive an initial
version of this file (which you must extend to complete CW2) in your repository when you
create it using the URL above.

As you write your code and improve it (e.g., by fixing bugs, adding functionality, etc.), you
should get in the habit of syncing your changes to the master copy of your CW2 repository on
GitHub. Doing so keeps the history of changes to your code, and so allows you to revert to an
older version if you find that a change causes a regression. It also serves to back up your code
on GitHub’s servers, so you won’t lose work if your local working copy is corrupted or lost. To
bring GitHub up to date with changes to your local working copy, you must first use the git
commit -a command (which will prompt you for a log message describing the reason for your
commit, e.g., “fixed segfault on double free test”), and then the git push command to copy
your changes to GitHub.

Debugging Allocator: Details

Implement the following function:

void cs0019 getstatistics(struct cs0019 statistics *stats)

Fill in the cs0019 statistics structure with overall statistics about memory allocations
so far.

5

https://classroom.github.com/a/NnuG4aH1

The cs0019 statistics structure is defined as follows:

struct cs0019_statistics {
unsigned long long nactive; // number of active allocations [#malloc - #free]
unsigned long long active_size; // number of bytes in active allocations
unsigned long long ntotal; // number of allocations, total
unsigned long long total_size; // number of bytes in allocations, total
unsigned long long nfail; // number of failed allocation attempts
unsigned long long fail_size; // number of bytes in failed allocation attempts
char* heap_min; // smallest address in any region ever allocated
char* heap_max; // largest address in any region ever allocated

};

Most of these statistics are easy to track, and you should tackle them first. You can pass
tests 1–10 without per-allocation metadata. The hard one is active size: to track it, your
free(ptr) implementation must find the number of bytes allocated for ptr.

The easiest, and probably best, way to do this is for your malloc code to allocate more space
than the user requested. The first part of that space is used to store metadata about the allocation,
including the allocated size. This metadata will not be a struct cs0019 statistics; it’ll
be a structure you define yourself. Your malloc will initialize this metadata, and then return
a pointer to the payload, which is the portion of the allocation following the metadata. Your
free code will take the payload pointer as input, and then use address arithmetic to calculate
the pointer to the corresponding metadata. This is possible because the metadata has fixed size.
From that metadata it can read the size of the allocation. See CS:APP/3e Figure 9.35 “Format of
a simple heap block” for an example of this type of layout.

If you don’t like this idea, you could create a list or hash table size for pointer that
mapped pointer values to sizes. Your malloc code would add an entry to this data structure.
Your free code would check this table and then remove the entry.

Other aspects of CW2 will require you to add more information to the metadata.
Run make check to test your work. Test programs test001.c through test012.c test

your overall statistics functionality. Open one of these programs and look at its code. You will
notice some comments at the end of the file, such as these:

//! malloc count: active 0 total 0 fail 0
//! malloc size: active 0 total 0 fail 0

These lines define the expected output for the test. The make check command checks your
actual output against the expected output and reports any discrepancies. (It does so by invoking
compare.pl.)

Secondary allocation functions, integer overflow protection

Your debugging malloc library should support the secondary allocation functions calloc and
realloc. It also must be robust against integer overflow attacks. (See, for example, the
CS:APP/3e Aside “Security vulnerability in the XDR library”, in §2.3, p. 136.)

Our handout code’s cs0019 calloc and cs0019 realloc functions are close to com-
plete, but they don’t quite work. Fix them, and fix any other integer overflow errors you find.

Use test programs test013.c through test016.c to check your work.

Invalid free and double-free detection

cs0019 free(ptr, file, line) should print an error message and then call C’s abort()
function when ptr does not point to active dynamically allocated memory.

Some things to watch out for:

6

• Be careful of calls like free((void *) 0x16), where the ptr argument is not NULL
but it also doesn’t point to heap memory. Your debugging malloc library should not crash
when passed such a pointer. It should print an error message and exit in an orderly way.
Test program test017.c checks this.

• The test programs define the desired error message format. Here’s our error message for
test017:

MEMORY BUG: test017.c:9: invalid free of pointer 0xffffffffffffffe0,
not in heap

• Different error situations require different error messages. See test programs test017.c
through test021.c.

• Your code should print out the file name and line number of the problematic call to
free().

Use test programs test017.c through test027.c to check your work.

Boundary write error detection

A boundary error is when a program reads or writes memory beyond the actual dimensions of
an allocated memory block. An example boundary write error is to write the 11th entry in an
array of size 10:

int *array = (int *) malloc(10 * sizeof(int));
...
for (int i = 0; i <= 10 /* WHOOPS */; ++i) {

array[i] = calculate(i);
}

These kinds of errors are relatively common in practice. (Other errors can happen, such as
writing to totally random locations in memory or writing to memory before the beginning of an
allocated block, rather than after its end; but after-the-end boundary writes seem most common.)

A debugging memory allocator can’t detect boundary read errors, but it can detect many
boundary write errors. Your cs0019 free(ptr, file, line) should print an error mes-
sage and call abort() if it detects that the memory block associated with ptr suffered a bound-
ary write error.

No debugging malloc software can reliably detect all boundary write errors. For example,
consider the below:

int *array = (int *) malloc(10 * sizeof(int));
int secret = array[10]; // save boundary value
array[10] = 1384139431; // boundary write error
array[10] = secret; // restore old value!

// dmalloc can’t tell
// there was an error!

Or this:

int *array = (int *) malloc(10 * sizeof(int));
array[200000] = 0; // a boundary write error, but very far

// from the boundary!

We’re just expecting your code to catch common simple cases. You should definitely catch
the case where the user writes one or more zero bytes directly after the allocated block.

Use test programs test028.c through test030.c to check your work.

7

Memory leak reporting

A memory leak happens when the programmer allocates a block of memory but forgets to free it.
Memory leaks are not as serious as other memory errors, particularly in short-running programs.
They don’t cause a crash directly. (The operating system always reclaims all of a program’s
memory when the program exits.) But in long-running programs, such as your browser, memory
leaks have a serious effect and are important to avoid.

Write a cs0019 printleakreport() function that, when called, prints a report about ev-
ery allocated object in the system. This report should list every object that has been malloc()’ed
but not free()’d. Print the report to standard output (not standard error). A report should
look like this:

LEAK CHECK: test033.c:23: allocated object 0x9b811e0 with size 19
LEAK CHECK: test033.c:21: allocated object 0x9b81170 with size 17
LEAK CHECK: test033.c:20: allocated object 0x9b81140 with size 16
LEAK CHECK: test033.c:19: allocated object 0x9b81110 with size 15
LEAK CHECK: test033.c:18: allocated object 0x9b810e0 with size 14
LEAK CHECK: test033.c:16: allocated object 0x9b81080 with size 12
LEAK CHECK: test033.c:15: allocated object 0x9b81050 with size 11

A programmer would use this leak checker by calling cs0019 printleakreport() before
exiting the program, after cleaning up all the memory they could using free() calls. Any
missing free()s would show up in the leak report.

To implement a leak checker, you’ll need to keep track of every active allocated block of mem-
ory. It’s easiest to do this by adding more information to the block metadata. You will use the
file and line arguments to cs0019 malloc()/cs0019 realloc()/cs0019 calloc().

Note: You may assume that the file argument to these functions has static storage duration.
This means you don’t need to copy the string’s contents into your block metadata—it is safe to
use the string pointer.

Use test programs test031.c through test033.c to check your work.

Advanced reports and checking

Test programs test034.c, test035.c, and test036.c require you to update your reporting
and error detection code to print better information and defend against more diabolically invalid
free()s. You will need to read the test code and understand what is being tested to defend
against it.

Update your invalid free message. After determining that a pointer is invalid, your code
should check whether the pointer is inside a different allocated block. This will use the same
structures you created for the leak checker. If the invalid pointer is inside another block, print
out that block, like so:

MEMORY BUG: test034.c:10: invalid free of pointer 0x833306c, not allocated
test034.c:9: 0x833306c is 100 bytes inside a 2001 byte region allocated here

And make sure your invalid free detector can handle the diabolical situations in the other
tests. Which situations? Check the test code to find out!

Heavy hitter reports

Memory allocation is one of the more expensive things a program can do. It is possible to make
a program run much faster by optimizing how that program uses malloc() and by optimizing
malloc() itself. (Did you know that both Google and Facebook employ malloc specialists?
Google’s tcmalloc is available at http://code.google.com/p/gperftools/, and Face-
book liked jemalloc so much that they hired Jason Evans (https://www.facebook.com/

8

http://code.google.com/p/gperftools/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919

notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/
480222803919).)

But before optimizing a program, we must measure that program’s performance. Program-
mer intuition is frequently wrong: programmers tend to assume the slowest code is either the
code they found most difficult to write or the last thing they worked on. Thus, before opti-
mizing anything, you want to have data to guide your optimization. In this case, it useful to
have a memory allocation profiler—a tool that tracks and reports potential memory allocation
problems.

Your job is to design and implement a particular kind of profiling, heavy hitter reports, for
your memory allocator. This task includes two parts. You will:

1. Track the heaviest users of malloc() by code location (file and line). A “heavy” location
is a location that is responsible for allocating many bytes.

2. Generate a readable report that summarizes this information.

Rule 1: If a program makes many allocations, and a single line of code is responsible for 20%
or more of the total bytes allocated by a program, then your heavy-hitter report should mention
that line of code (possibly among others).

Rule 2: Your design should handle both large numbers of allocations and large numbers of
allocation sites. In particular, you should be able to handle a program that calls malloc() at
10,000 different file-line pairs.

Rule 3: Your report should include some information that helps the user decide which lines
are likely to be the heaviest hitters, including exact or estimated byte counts per allocation site,
and by ranking the output of the sites by total byte counts.

How should you implement this? That’s up to you, but here are some tips.

• Sampling is acceptable. It would be OK, for example, to sample 1/100th of all allocations
and report information for only the sampled allocations. This can cut down the amount of
data you need to store.

– You could sample exactly every nth allocation, but random sampling is usually better,
since it avoids synchronization effects. (For instance, if the program cycled among
4 different allocation sites, then sampling every 20th allocation would miss 75% of
the allocation sites!) For random sampling you’ll need a source of randomness. Use
random() or drand48().

• Clever, yet easy, algorithms developed quite recently can help you catch all heavy hitters
with O(1) space and simple data structures!

– Karp, Shenker, and Papadimitriou, A Simple Algorithm for Finding Frequent Elements
in Streams and Bags, http://www.cs.yale.edu/homes/el327/datamining2011aFiles/
ASimpleAlgorithmForFindingFrequentElementsInStreamsAndBags.pdf.

– Demaine, López-Ortiz, and Munro, Frequency Estimation of Internet Packet Streams
with Limited Space, http://erikdemaine.org/papers/NetworkStats_ESA2002/
paper.pdf. The paper’s context doesn’t matter; the relevant algorithms, “Algorithm
majority” and “Algorithm frequent,” appear on pages 6-7, where they are simply
and concisely presented. (You want frequent, but majority is helpful for under-
standing.)

– You do not need to use these algorithms! But why not take a look? They’re surpris-
ingly simple.

9

https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html
http://www.gnu.org/software/libc/manual/html_node/SVID-Random.html
http://www.cs.yale.edu/homes/el327/datamining2011aFiles/ASimpleAlgorithmForFindingFrequentElementsInStreamsAndBags.pdf
http://www.cs.yale.edu/homes/el327/datamining2011aFiles/ASimpleAlgorithmForFindingFrequentElementsInStreamsAndBags.pdf
http://erikdemaine.org/papers/NetworkStats_ESA2002/paper.pdf
http://erikdemaine.org/papers/NetworkStats_ESA2002/paper.pdf

We provide a test program for you to test heavy hitter reports, hhtest.c. You will find
an empty (stub) function cs0019 printheavyhitterreport() in cs0019.c. main() in
hhtest.c invokes this function just before it exits, to print out the heavy hitter statistics gath-
ered during hhtest’s execution. You must supply the code for cs0019 printheavyhitterreport()
in cs0019.c, as well as code within your malloc() implementation that accumulates these
statistics.

hhtest contains 40 different allocators that allocate regions of different sizes. Its first argu-
ment, the skew, varies the relative probabilities that each allocator is run. Running ./hhtest
0 will call every allocator with equal probability. But allocator #39 (which is at httest.c:169)
allocates twice as much data as any other. So when we run our dirt-simple heavy hitter detector
against ./hhtest 0, it reports:

HEAVY HITTER: hhtest.c:169: 1643786191 bytes (˜50.1%)
HEAVY HITTER: hhtest.c:165: 817311692 bytes (˜25.0%)

N.B. that your detector must follow the above output format. In particular, it must
output hitters in the order of heaviest to lightest, and must include all fields in the above
output, formatted identically.

If we run ./hhtest 1, however, then the first allocator (hhtest.c:13) is called twice as
often as the next allocator, which is called twice as often as the next allocator, and so forth.
There is almost no chance that allocator #39 is called at all. The report for ./hhtest 1 is:

HEAVY HITTER: hhtest.c:13: 499043 bytes (˜50.0%)
HEAVY HITTER: hhtest.c:17: 249136 bytes (˜25.0%)

At some intermediate skews, though, there may be no heavy hitters at all. Our code reports
nothing when run against ./hhtest 0.4.

Negative skews call the large allocators more frequently. ./hhtest -0.4:

HEAVY HITTER: hhtest.c:169: 15862542908 bytes (˜62.1%)
HEAVY HITTER: hhtest.c:165: 6004585020 bytes (˜23.5%)

Try ./hhtest --help to get a full description of hhtest’s arguments. You should test
with many different arguments; for instance, make sure you try different allocation “phases.” A
great software engineer would also create tests of her own; we encourage you to do this!

This idea can be taken quite far. Google, for example, links a heavy-hitter detector with many
important servers. It is possible (within Google) to connect to many servers and generate a graph
of its current heavy hitter allocation sites, including their calling functions and relationships
among functions. Here’s a small example (scroll down the page):

http://goog-perftools.sourceforge.net/doc/heap_profiler.html
and here’s a bigger one:

https://github.com/rsc/benchgraffiti/blob/master/havlak/havlak4a-mallocgc.
png

Evaluation

The breakdown of marks:

• 80% tests of debugging allocator functions (the test programs we hand out, plus others).
If running make check reports *** All tests succeeded! you’ve probably got all
these marks.

10

http://goog-perftools.sourceforge.net/doc/heap_profiler.html
https://github.com/rsc/benchgraffiti/blob/master/havlak/havlak4a-mallocgc.png
https://github.com/rsc/benchgraffiti/blob/master/havlak/havlak4a-mallocgc.png

• 20% tests of heavy-hitter reports, all using hhtest (provided to you in your repository).
There are four tests in the test suite for your heavy-hitter detector. These four tests together
validate that your heavy-hitter detector complies with the three numbered rules above.
The heavy-hitter report test for Rule 2 invokes your debugging malloc() with 10,000
different file-line pairs and verifies that execution completes within 5 seconds. You can run
this test yourself with ./hhtest -l. You can also run the remaining three heavy-hitter
report tests for Rules 1 and 3 yourself; to see the arguments to hhtest for these tests, look
at the end of the grading report from our grading server (see below).

Grading server

Every time you push your updated code to GitHub, our grading server will retrieve a full copy
of your code, build it (inside a VM disconnected from the Internet), run the full suite of tests for
of CW2, and push a report containing the results of the tests back into your CW2 repository on
GitHub. The test results file is named report.md. The results file will contain complete output
for all tests, both for the basic debugging allocator functions (we provide these tests for you to
run yourself, as well), and for the heavy-hitter reports functions (some of which we don’t hand
out to you, as explained above). The results from the grading server are authoritative: it is the
test results on the grading server at the deadline that determine your grade.

Note that in the heavy-hitter report tests for Rules 1 and 3, our grading server compares
the output of our model solution with your code’s output. The test results file our grading
server places in your repository on GitHub will tell you the arguments to hhtest for these
tests, and whether your code generates the correct output for these tests, but it does not include
the output of the model solution. You can run the tests for Rules 1 and 3 yourself on your
own machine, though (by just running ./httest with the appropriate arguments), and if you
examine hhtest.c, you will be able to predict the expected output for these tests!

Once again, we urge you to get started early.

A note on undefined behavior

Debugging allocators have a nuanced relationship with undefined behavior. As we tell you in
class, undefined behavior is a major no-no, because any program that invokes undefined behavior
has no meaning. As far as the C language standard is concerned, once undefined behavior occurs,
a program may do absolutely anything. Many of our tests (such as 17–30) explicitly invoke
undefined behavior, and thus have no meaning. Yet your code must produce specific warnings
for these cases! What gives?

Well, helpful debuggers catch common bugs, and bugs with malloc and free are disturbingly
common. For this reason, debugging allocators take certain undefined behaviors and define
them. For instance, when a debugging allocator is in force, a program like test020.c with a
simple double free has defined behavior, namely crashing with a specific error message.

When writing a debugging allocator, it’s important to understand the properties of the under-
lying allocator. We have provided you with a very simple base memory allocator in basealloc.c.
This allocator has the following properties:

• Memory is allocated with base malloc and freed with base free.

• Memory freed by base free may be returned by a later base malloc.

• But base free never overwrites freed memory or returns freed memory to the operating
system. (This simple constraint makes it much easier to write a debugging allocator with
base malloc/free than with C’s default malloc/free.)

Thus, the following program is well-defined:

11

int main(int argc, char *argv[]) {
int *x = base_malloc(sizeof(int));

*x = 10;
base_free(x);
assert(*x == 10); // will always succeed

}

But double-frees and invalid frees are truly undefined, and the following program still has no
meaning.

int main(int argc, char *argv[]) {
int *x = base_malloc(sizeof(int));
base_free(x);
base_free(x); // ERROR ERROR ERROR

}

Academic Honesty

This coursework is an individual coursework. Every line of code you submit must have been
written by you alone, and must not be a reproduction of the work of others—whether from the
work of students in the class from this year or prior years, from the Internet, or elsewhere (where
“elsewhere” includes code written by anyone anywhere).

Students are permitted to discuss with one another the definition of a problem posed in the
coursework and the general outline of an approach to a solution, but not the details of or code
for a solution. Students are strictly prohibited from showing their solutions to any problem
(in code or prose) to a student from this year or in future years. In accordance with academic
practice, students must cite all sources used; thus, if you discuss a problem with another student,
you must state in your solution that you did so, and what the discussion entailed.

Any use of any online question-and-answer forum (other than the CS 0019 Piazza web site)
to obtain assistance on this coursework is strictly prohibited, constitutes academic dishonesty,
and will be dealt with in the same way as copying of code. The same goes for online material
specifically directed toward solving this coursework.

You are free to read other reference materials found on the Internet (and any other reference
materials). You may of course use the code we have given you. Again, all other code you submit
must be written by you alone.

Copying of code from student to student is a serious infraction; it typically results in award-
ing of zero marks to all students involved, and is viewed by the UCL administration as cheating
under the regulations concerning Plagiarism and Collusion. Penalties can include exclusion from
all further examinations at UCL. The course staff use extremely accurate plagiarism detection
software to compare code submitted by all students and identify instances of copying of code;
this software sees through attempted obfuscations such as renaming of variables and reformat-
ting, and compares the actual parse trees of the code. Rest assured that it is far more work to
modify someone else’s code to evade the plagiarism detector than to write code for the assignment
yourself!

Read the Piazza Web Site

You will find it useful to monitor the 0019 Piazza web site during the period between now and
the due date for the coursework. Any announcements (e.g., helpful tips on how to work around
unexpected problems encountered by others) will be posted there. And you may ask questions
there. Please remember that if you wish to ask a question that reveals the design of your solution,

12

you must mark your post on Piazza as private, so that only the instructors may see it. Questions
about the interpretation of the coursework text, or general questions about C that do not relate
to your solution, however, may be asked publicly—and we encourage you to do so, so that the
whole class benefits from the discussion.

References

Debugging allocators have a long history. dmalloc (http://dmalloc.com/) is one of the
early ones; you can find a list of some others at:

http://en.wikipedia.org/wiki/Memory_debugger.
Modern compilers integrate both optional allocation debugging features and some debugging
features that are on by default. For instance, Mac OS and Linux’s memory allocators can detect
some boundary write errors, double frees, and so forth. Recent clang and gcc -fsanitize=memory
arguments can catch even more problems.

Feel free to look at the code and documentation for other allocators to get ideas, but make
sure you cite them if you do.

Acknowledgment

This coursework is derived from one created by Eddie Kohler.

13

http://dmalloc.com/
http://en.wikipedia.org/wiki/Memory_debugger

