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Abstract. Termination proving has traditionally been based on the
search for (possibly lexicographic) ranking functions. In recent years,
however, the discovery of termination proof techniques based on Ram-
sey’s theorem have led to new automation strategies, e.g. size-change, or
iterative reductions from termination to safety. In this paper we revisit
the decision to use Ramsey-based termination arguments in the iterative
approach. We describe a new iterative termination proving procedure
that instead searches for lexicographic termination arguments. Using ex-
perimental evidence we show that this new method leads to dramatic
speedups.

1 Introduction

The traditional method of proving program termination (e.g. from Turing [25]) is
to find a single monolithic ranking function that demonstrates progress towards
a bound during each transition of the system. Often, in this setting, we must use
lexicographic arguments (i.e. ranking functions with range more complex than
the natural numbers), as simple linear ranking functions are not powerful enough
even in some trivial cases. Recent tools (e.g. [3], [8], [14], [15], etc) have moved
away from single ranking functions and towards termination arguments based
on Ramsey’s theorem (e.g. [7], [9], [11], [22], etc). The advantage of these new
approaches is that we do not need to find lexicographic termination arguments,
which are perceived to be difficult to find for large programs. Instead, in these
new frameworks, we typically need only to find a set of simple linear ranking
functions. The important distinction here is that lexicographic ordering does not
matter, thus making the finding of termination arguments much easier.

The difficulty with these new termination methods is establishing validity of
the termination argument in hand: in the Ramsey-based setting a valid termi-
nation argument typically must hold for the transitive closure of the program’s
transitions, rather than only for individual transitions. Thus, the proof of a
termination argument’s validity is much harder. In size-change [15] or variance
analysis [3] the result is imprecision: the tools are fast but can only prove a
limited set of programs due to inaccuracies in the underlying abstractions that
facilitate reasoning about the transitive closure. In iterative-based approaches
(e.g. [8], [14]) the result is lost performance and scalability, as symbolic model



checking tools are ultimately used to reason about the program transition rela-
tion’s transitive closure—something generally accepted as difficult.

In this paper we revisit the use of the Ramsey-based termination argu-
ments used in the iterative-based approach to termination proving used in tools
such as ARMC [23], Terminator [8], and the termination proving module of
CProver [6, 14]: rather than iteratively finding Ramsey-based termination ar-
guments, we instead aim to iteratively find traditional lexicographic termination
arguments. The advantage of this approach is that the validity checking step in
the iterative process is much easier. The difficulty is that, outside of termination
proving for rewrite systems, scalable methods for finding lexicographic ranking
functions for whole programs are previously unknown.

We describe such a method. In our approach we keep information from all
past failed proof attempts and use it to iteratively strengthen a lexicographic
termination argument. Using experimental evidence we demonstrate dramatic
performance improvements made possible by the new approach.

Related work. In this work we draw inspiration from the AProVE termina-
tion proving tool for rewrite systems [12], which proves termination of whole
programs using what are effectively lexicographic arguments. The difficulty with
AProVE, however, is that it has limited support for the discovery of supporting
invariants. In our procedure we get the best of both worlds: lexicographic termi-
nation arguments are used, and invariants are found on demand via a reduction
to tools for proving safety properties.

In our tool, during each iterative step of the proof search, we make use of
constraint-based ranking function synthesis techniques from Bradley, Manna,
and Sipma [4]. The difference here is that we iteratively enrich the termination
argument using successful calls to a constraint-based tool on slices of the pro-
gram, whereas constraint-based ranking function synthesis tools (e.g. [4], [5],
[21], etc) were originally applied to entire programs.

Kroening et al. [14] optimize Ramsey-based iterative termination arguments
using transitivity: attempts are made to strengthen a Ramsey-based termination
argument such that it becomes a transitive relation, thus facilitating faster rea-
soning about the termination argument’s validity. Note that in some simple cases
the transitive and lexicographic arguments for a program can be similar, though
lexicographic arguments are more strictly defined. The difference in our work
is that we make use of all past failed termination proofs to find lexicographic
termination arguments. Our choice results in increased time spent looking for
termination arguments, but less time spent proving their validity.

Here we are addressing the performance of the iterative approach to termi-
nation proving, not techniques such as size-change or variance analysis. Fogarty
and Vardi’s experiments [10] indicate that Ramsey-based termination arguments
are superior to lexicographic-based arguments in size-change.

Limitations. We are focusing primarily on arithmetic programs (e.g. programs
that do not use the heap). In some cases we have soundly abstracted C pro-
grams with heap to arithmetic programs (e.g. using a technique due to Magill et



1 while x>0 and y>0 do

2 if * then

3 x := x - 1;

4 else

5 x = *;

6 y = y - 1;

7 fi

8 done

Fig. 1. Example terminating program. The symbol * is used to represent non-
deterministic choice.

1 assume (x>0 and y>0);

3 x := x - 1;

(Cycle 1)

1 assume (x>0 and y>0);

5 x := *;

6 y := y - 1;

(Cycle 2)

Fig. 2. Two cycles in the program in Fig. 1

al. [16]); in other cases, as is standard in many tools (e.g. SLAM [2]), we essen-
tially ignored the heap. Techniques that more accurately and efficiently reason
about mixtures of heap and arithmetic are an area of open interest. Addition-
ally, later in the paper we discuss some curious cases where linear lexicographic
termination arguments alone are not powerful enough to prove termination, but
linear Ramsey-based ones are. For these rare cases we describe some ad hoc
strategies that facilitate the use of linear lexicographic termination arguments.
In principle, however, if these approaches do not work, we would need to default
to Ramsey-based arguments.

2 Example

Consider the example program in Fig. 1. When attempting to prove termination
of this example the Terminator tool would, during its iterative process, end
up examining two cycles in the program, as seen in Fig. 2. We know that the
first cycle cannot be executed forever because x always decreases and is bound
by 0. The second cycle also cannot be executed forever, as y always decreases
and is bound by 0.

But what of paths that consist of a mixture of Cycle 1 and Cycle 2? To prove
termination of any such path, we must verify that over any finite sequence (of
any length) consisting of Cycle 1 and Cycle 2, at least one of x or y decreases and
is bound by 0. If oldx and oldy are the values of x and y at the some previous
position of the sequence, we must verify that at the end of the sequence:

(x < oldx and 0 ≤ oldx) or (y < oldy and 0 ≤ oldy).



::::::
copied

:::
:=

::::
0;

while x>0 and y>0 do

::
if

::::::::::
copied=1

:::::
then

:::::::::::::::
assert((x<oldx

::::
and

:::::::::
0≤oldx)

:::
or

::::::::
(y<oldy

::::
and

:::::::::::
0≤oldy));

::::
else

::::
if

::
*

:::::
then

:::::::
copied

:::
:=

:::
1;

:::::
oldx

:::
:=

:::
x;

:::::
oldy

:::
:=

:::
y;

::
fi

if * then

x := x - 1;

else

x := *;

y := y - 1;

fi

done

Fig. 3. Termination argument validity check for the program in Fig. 1, with Ramsey-
based termination argument (x < oldx and 0 ≤ oldx) or (y < oldy and 0 ≤ oldy).
The instrumented code used by Terminator’s validity check is underlined.

Following Podelski & Rybalchenko’s transition invariants [22], if we can find a
finite set of ranking functions such that over any sub-sequence of transitions
from one reachable program state to another, (i.e. over any pair of states in
the transitive closure of the program’s transitions), at least one of the ranking
functions decreases and is bound by 0, then we have proved termination. We refer
to this type of termination argument as a Ramsey-based termination argument.

To prove the validity of the termination argument discussed above, Ter-
minator would then use a known program transformation [8] to produce the
program in Fig. 3. The assert command in this program fails iff the Ramsey-
based termination argument is not valid. Model checking techniques for safety
(e.g. SLAM [2], Blast [13], CProver [6], Impact [18], Whale [1], etc) can
then be used to prove/disprove the assert. The problem with this strategy is
that the safety proof is unnecessarily tricky: we need to prove that, after the
copied := 1 statement, each time the assert statement is reached it cannot
fail. The safety prover is then effectively forced to find and prove an inductive
transition invariant [22] that implies that the termination argument holds for ev-
ery iteration of the loop after the assignment copied := 1. Experimentally we
find that the performance of this strategy suffers dramatically as the complexity
of the loop body increases. For simple programs (e.g. device drivers) with few
nested loops, this approach suffices, but for more complex programs, problems
arise.

In this paper we instead propose to use more sophisticated constraint tech-
niques to find the lexicographic termination argument that, in this case, orders
the ranking function y before x. In our notation from before we might express



copied := 0;

while x>0 and y>0 do

if copied=1 then

assert((x<oldx and 0≤oldx
:::
and

::::::::
y≤oldy) or (y<oldy and 0≤oldy));

::::::::
exit();

else if * then

copied := 1;

oldx := x;

oldy := y;

fi

if * then

x := x - 1;

else

x := *;

y := y - 1;

fi

done

Fig. 4. Termination argument validity check for lexicographic termination argument.
The differences from Fig. 3 are underlined.

this argument as:

(x < oldx and 0 ≤ oldx and y ≤ oldy
:::::::::::::

) or (y < oldy and 0 ≤ oldy).

Here, we require that either y decreases towards a bound, or x decreases towards
a bound and y does not increase. To prove the validity of this termination ar-
gument we need only prove that this condition holds over any one cycle, rather
than over any sequence of cycles. Therefore we call on a safety prover to prove
that the assert found in Fig. 4 cannot fail.

The advantage of the problem in Fig. 4 over that in Fig. 3 is the call to
exit(): we need only prove that the first call to the assert cannot fail, as only
one call is possible. In many cases this change results in an enormous overall
performance advantage, as no inductive transition invariant is required. The
difficulty here is that we must use more powerful constraint-solving techniques
to find the lexicographic termination argument. Experimentally we find that the
increased time spent up-front looking for a stronger termination argument pays
off in the end.

3 Procedure

In this section we describe our new lexicographic-based iterative termination
proving procedure.

Programs, locations, paths. As usual (e.g. [17]) we assume that programs are
represented as graphs with locations and edges labeled with transition relations.



`0
assume(x > 0);

τ1 : assume(y > 0);
x := x− 1;

assume(x > 0);
τ2 : assume(y > 0);

y := y− 1;
x := ∗;

Fig. 5. Graph-based representation of the program from Fig. 1

Here we represent the transitions between edges as commands with assignment
or assume statements (from Nelson [20]). For example, the program in Fig. 1
would be represented as the graph in Fig. 5. In formulae describing sets of
states we can specify locations in the program’s graph using the variable pc,
which ranges over program locations `0, `1, etc. A path is a feasible sequence of
transitions between states. A cycle is a path whose start and end states have
the same program location `, and that does not visit ` in between. We map from
commands to relations on states in the usual way, e.g. [[x := x + 1]] = {(s, t) |
t(x) = s(x)+1∧∀v ∈ Vars\{x}, t(v) = s(v)}. We map sequences of transitions
to relations using relational composition, e.g. [[〈τ1, τ2, τ3〉]] = [[τ1]]; [[τ2]]; [[τ3]].

Termination arguments. A ranking function is a map from the state-space of
the program to a well-ordered set. Ranking functions are used to measure the
progress of the terminating process. A linear ranking function is of the form
r1x1 + · · ·+ rmxm + rm+1 where x1, x2, . . . , xm are the program variables. Our
linear ranking functions range over the well-ordered set of the natural numbers
with the relation ≤. Given a ranking function f , we define its ranking relation
as

Tf = {(s, t) | f(s) > f(t) ∧ f(s) ≥ 0}

i.e. all pairs of states over which f decreases and is bound by 0. Transitions
in the ranking relation contribute to the progress of f . Similarly, we define a
ranking function’s unaffecting relation as

Uf = {(s, t) | f(s) ≥ f(t)}

i.e. all pairs of states over which f is not increased. Transitions in the unaffecting
relation do not impede the progress of f . Given a binary relation ρ over the state-
space, we say that a ranking function f is unaffected by ρ if ρ ⊆ Uf .

We now consider Π = 〈ρ1, ρ2, . . . , ρn〉, a finite sequence of n binary relations
over the state-space, representing n cycles that are found during our iterative
procedure. We define a linear lexicographic ranking function (LLRF) for Π as
a finite sequence of n linear ranking functions 〈f1, f2, . . . , fn〉 such that ∀i ∈
{1, 2, . . . , n}: a) ρi ⊆ Tfi , and b) ∀j < i, ρi ⊆ Ufj . That is, fi decreases and
is bound by 0 over ρi, and f1, f2, . . . , fi−1 are all unaffected by ρi. Given a
lexicographic ranking function, we can define the lexicographic ranking relation
L as all pairs of states that, for some i ∈ {1, 2, . . . , n}, are contained within Uf1∩
Uf2 ∩· · ·∩Ufi−1

∩Tfi . Clearly
⋃
Π ⊆ L. Note that for any lexicographic ranking

function, its lexicographic ranking relation is well-founded by construction. This



input: program P

T := ∅, empty termination argument
Π := 〈〉, empty sequence of relations
Unused := 〈〉, empty sequence of (Π,T ) pairs

repeat

if ∃ cycle π in P s.t. [[π]] 6⊆ T then
let n = length(Π) = length〈ρ1, ρ2, . . . , ρn〉
Successes := ∅, empty set of (Π,T ) pairs

for i = 1 to n+ 1 do
let Πi = 〈ρ1, ρ2, . . . , ρi−1, [[π]], ρi, . . . , ρn〉
if ∃ a LLRF Fi for Πi

let Li = the lexicographic ranking relation for Fi

Successes := {(Πi, Li)} ∪ Successes

if |Successes| ≥ 1
randomly choose one (Πi, Li) ∈ Successes and remove it
Π := Πi

T := Li ⊇
⋃
Π

Unused := (sequence of Successes) ⊕ Unused
else

if |Unused| ≥ 1 then
(Π,T ) := head(Unused)
Unused := Unused\{(Π,T )}

else
report “Unknown”

else
report “Success”

end.

Fig. 6. Lexicographic-based iterative termination procedure. ⊕ denotes concatenation
of finite sequences.

is the reason why we need only verify that each individual transition obeys
the lexicographic termination argument, rather than the transitive closure. In
this paper termination arguments will take the form of lexicographic ranking
relations.

Termination procedure. Our iterative lexicographic-based termination proving
procedure is found in Fig. 6. We begin with an empty termination argument, T .
We search for a witness (a cycle π) to the failure of the validity of this argument.
Our implementation of the search for a witness is an adaptation on the reduction
to safety proving from Cook, Podelski, and Rybalchenko [8].

Our procedure then goes on to keep and use all of the witnesses (Π) to the
failure of T . If there are none, we have proved termination. Otherwise if we find
a witness, we add it to Π in the form of a relation. Each time a relation is added,
a new LLRF is synthesized for Π. Each new termination argument T contains



1 while x>0 and y>0 and d>0 do

2 if * then

3 x := x - 1;

4 d := *;

5 else

6 x = *;

7 y = y - 1;

8 d = d - 1;

9 fi

10 done

1 while x>0 and y>0 and z>0 do

2 if * then

3 x := x-1;

4 else if * then

5 y := y-1;

6 z := *;

7 else

8 z := z-1;

9 x := *;

10 fi

11 done

(a) (b)

Fig. 7. Example terminating programs.

⋃
Π, so we continue to add to Π until (hopefully) T is a valid termination

argument for the program P . It is therefore useful to think of Π rather than T
as representing the progress of the algorithm.

Once we have a sequence of relations Π = 〈ρ1, ρ2, . . . , ρn〉, the LLRF for
Π is synthesized by finding a linear ranking function fi for each relation ρi
in Π. We additionally attempt to satisfy the Unaffected constraints: That is,
∀i ∈ {1, 2, . . . , n}, we require that ρi does not increase any of f1, f2, . . . , fi−1.
We have then constructed a linear lexicographic ranking function 〈f1, f2, . . . , fn〉
for Π. Previously known constraint-based techniques using Farkas’ Lemma (e.g.
[4],[5],[21]) are used to find the sequence of functions satisfying the above.

Note that for each new Π, we synthesize the LLRF anew, which allows each
individual ranking function f for a particular relation ρ to change from one
iteration to the next. This is necessary, as permanently designating a ranking
function to each relation can lead to a failure to find a solution that does in fact
exist. As an example, consider the loop in Fig. 7(a), which is the same as Fig. 1
except it features a decoy variable d. The lexicographic termination argument
〈y, x〉 we found earlier for Fig. 1 is clearly valid for this loop too. We examine two
cycles: Lines 1,3,4, which induces ρ1 = Jx > 0∧y > 0∧d > 0∧x′ = x−1∧y′ = yK;
and Lines 1,6,7,8, which induces ρ2 = Jx > 0 ∧ y > 0 ∧ d > 0 ∧ y′ = y − 1 ∧ d′ =
d− 1K.

Suppose we find ρ2 first, and choose f2 = d as its ranking function. Suppose
we then find ρ1. We need a LLRF for either 〈ρ1, ρ2〉 or for 〈ρ2, ρ1〉. If we require
that f2 = d from the previous iteration, then this means we must find f1 a linear
ranking function for ρ1 such that one of the two following options holds:

a) 〈f1, d〉 is a LLRF for 〈ρ1, ρ2〉. So we need f1 to be unaffected by ρ2.
b) 〈d, f1〉 is a LLRF for 〈ρ2, ρ1〉. So we need f2 = d to be unaffected by ρ1.

Clearly b) is unsatisfiable because d isn’t unaffected by ρ1. a) is also unsat-
isfiable because to be a linear ranking function for ρ1, f1 must be of the form



rxx+ryy+c with rx > 0, and therefore f1 isn’t unaffected by ρ2. Therefore if we
require the ranking function for ρ2 to stay the same throughout the execution
of our procedure, we may find no solutions, due to an earlier unlucky choice
of ranking function. However, if we allow f2 to be changed from d, we will be
able to find our solution 〈f2, f1〉 = 〈y, x〉, which is a valid lexicographic ranking
function for 〈ρ2, ρ1〉, and for the whole loop.

Fortunately, synthesizing LLRFs for a small (and fixed order) Π is cheap, so
the re-synthesis of the LLRFs has little effect on performance. This statement
is not without a caveat: incremental approaches to safety proving in practice
allow us to resume the validity checking from where we left off in the previous
iteration, thus major changes to the ranking function can make for additional
work in the safety prover. As a further optimization we could imagine using the
interpolants found in the safety prover to help guide the search for even better
termination arguments.

Choosing the lexicographic ordering. As mentioned previously, the relations in
Π must be put in some lexicographic order 〈ρ1, ρ2 . . . ρn〉 for a lexicographic
ranking function to be found. As shown in Fig. 6, this is done by insertion —
the relation that has just been found is inserted into the previous lexicographic
ordering. This means that after the nth relation is found, there are n places it can
be inserted, i.e. n choices of ordering to consider. For each of the n orderings, we
attempt to find a LLRF. If there are one or more orderings that yield solutions,
we choose at random an ordering and its corresponding lexicographic ranking
relation to form our new Π and T respectively.

The advantage of this method is that should we find that a certain ordering
yields no solutions, we do not investigate it further. That is, if there does not
exist a LLRF for some ordering Π, then there does not exist a LLRF for any
ordering obtained by inserting relations into Π, and we do not investigate any
such orderings. The disadvantage of this method is that it can be too selective,
leading us to a dead end. We demonstrate this possibility in Fig. 7(b), then
present our solution. We investigate three cycles: Lines 1,3, which induces ρ1 =
Jx > 0∧ y > 0∧ z > 0∧ x′ = x− 1∧ y′ = y ∧ z′ = zK; Lines 1,5,6, which induces
ρ2 = Jx > 0 ∧ y > 0 ∧ z > 0 ∧ y′ = y − 1 ∧ x′ = xK; and Lines 1,8,9, which
induces ρ3 = Jx > 0 ∧ y > 0 ∧ z > 0 ∧ z′ = z − 1 ∧ y′ = yK. Suppose that during
our procedure, the first two relations we find are ρ1 and ρ2. They have ranking
functions f1 = x and f2 = y respectively. Note that ρ1 does not increase y and
ρ2 does not increase x, so we may choose either 〈ρ1, ρ2〉 or 〈ρ2, ρ1〉 with LLRF
〈x, y〉 or 〈y, x〉 respectively.

– Suppose we choose 〈ρ2, ρ1〉 with LLRF 〈y, x〉. Next we find ρ3, and see that
inserting it to form the new ordering 〈ρ2, ρ3, ρ1〉 yields a LLRF 〈f2, f3, f1〉 =
〈y, z, x〉. This is a valid lexicographic ranking function for the whole loop,
and so we have proved termination.

– Suppose we choose 〈ρ1, ρ2〉 with LLRF 〈x, y〉. Next we find ρ3, but there
does not exist a LLRF for any one of 〈ρ3, ρ1, ρ2〉 or 〈ρ1, ρ3, ρ2〉 or 〈ρ1, ρ2, ρ3〉,
so we have reached a dead end.



This example demonstrates that by investigating only the orderings obtained
by inserting the new relation into the previous ordering, we may be unable to
find an existing solution due to an earlier choice of ordering. Of course, we could
investigate all possible permutations of the n relations to avoid this problem,
but that strategy becomes infeasible once n becomes large [5], as on the nth

iteration we would need to investigate n! cases rather than n.
In our solution (i.e. Fig. 6), in the event of more than one feasible ordering,

we choose one randomly and keep the others in Unused, so that if a dead end is
later reached, we may backtrack to the last random choice made, and investigate
an alternative ordering. Cases such as the above that require the backtracking
failsafe are uncommon. The insertion strategy with backtracking is fast because
we only attempt to find n lexicographic ranking functions on the nth iteration.
The approach is robust because we will eventually investigate all lexicographic
ranking functions we found, if necessary.

4 Towards finding the right ranking function

In many cases, there is more than one choice of Π that admits a LLRF, and
for each Π, there may be more than one possible LLRF. Such cases give us the
opportunity to consider which choices might be better than others, i.e. which
termination argument is likely to be faster to validate using existing safety prov-
ing techniques. Note that in our setting the sequence Π affords us a great deal of
information when trying to determine which argument to choose. In this section
we describe several heuristics that we have found useful. We close this section
with a discussion of some cases where no (linear) lexicographic termination ar-
gument exists, but linear Ramsey-based arguments can be found.

Shorter lexicographic ranking functions. Checking the validity of a lexicographic
ranking function (as demonstrated in Fig. 4) becomes more difficult as the lex-
icographic ranking function becomes longer. This is because for a lexicographic
ranking function of length n, we are checking, for each transition, whether any
one of n conjunctive formulae hold.

We implemented an optimization that chooses a LLRF that uses the fewest
unique ranking functions as possible. Then, if we have some of the fi equal,
we may eliminate the repeated ranking functions by keeping just the first oc-
currence of each unique ranking function. The resulting LLRF is shorter, and
its lexicographic ranking relation contains

⋃
Π, so it forms our new termina-

tion argument. In one example from our experimental evaluation we found that
proving termination was possible in 27s with this optimization turned on, and
157s without.

Unaffecting lexicographic ranking functions. Recall that a lexicographic ranking
function 〈f1, f2, . . . , fn〉 for Π = 〈ρ1, ρ2, . . . , ρn〉 must satisfy the Unaffecting
constraints: every ρi must satisfy ρi ⊆ Ufj∀j < i. However we do not require
ρi ⊆ Ufj for any j > i.



Intuitively, when attempting to prove the validity of a termination argument
(which, ultimately, happens via the search for an inductive argument in the safety
prover), it seems that checking the validity of a lexicographic ranking function
is easier when the relations interfere minimally with the other relations’ ranking
functions, i.e. increase them as little as possible. That is, we wish to satisfy as
many of the extra Unaffecting constraints {ρi ⊆ Ufj | j > i} as possible. This
motivates the following definition.

Given a lexicographic ranking function 〈f1, f2, . . . , fn〉 for Π =
〈ρ1, ρ2, . . . , ρn〉, its Unaffecting Score U is

U =
∑

1≤i<j≤n

1Ufj
(ρi)

where the indicator function 1Uf
(ρ) equals 1 if ρ ⊆ Uf and 0 otherwise. In other

words, U is the number of extra unaffecting constraints satisfied. Note that we

always have 0 ≤ U ≤ n(n−1)
2 , and requiring U = 0 is equivalent to the usual

lexicographic ranking function constraints.
We implemented a constraint-based optimization that chooses a LLRF with

highest possible Unaffecting Score. In our experiments the example mentioned
above (that required 157s without optimizations) was proved terminating in 82s
with this optimization turned on.

When linear lexicographic ranking relations are not enough. Existence of a lin-
ear Ramsey-based termination argument for a loop does not imply existence
of a linear lexicographic termination argument for the same loop. We illustrate
two simple but typical examples. See Fig. 8. For both examples we present a
simple solution that alters the problem slightly, allowing us to continue to use
lexicographic techniques to prove termination. Note that both of these simple
workarounds are not new—variations upon these themes have been used in pre-
vious tools (e.g. AProVE [12]). Our intention here is to illustrate the type of
problems that arise when moving from Ramsey-based to lexicographic termina-
tion arguments.

In Fig. 8(a), the variable x starts as any integer, then increases or decreases
(as appropriate) until it equals 0, upon which the loop terminates. A valid
Ramsey-based termination argument for the loop is:

(x < oldx and 0 ≤ oldx) or (-x < -oldx and 0 ≤ -oldx).

However there does not exist a LLRF for the loop. Neither 〈x,−x〉 nor 〈−x, x〉 is
valid, as every transition decreases one of the functions and increases the other.
A solution to this problem is shown in Fig. 9(a). The variable c is introduced to
record which of the two options was taken upon entry to the loop the first time
through. In our procedure we instrument such variables into the representation
of the program. Then, in the case where we cannot find a LLRF — and before
resorting to a Ramsey-based termination argument — we would attempt to
build the following lexicographic termination argument that case splits on c:



while x<>0 do

if x>0 then

x := x-1;

else

x := x+1;

fi

done

assume(m>0);

while x<>m do

if x>m then

x := 0;

else

x := x+1;

fi

done

(a) (b)

Fig. 8. Example programs where Ramsey-based linear termination arguments exist,
but linear lexicographic termination arguments do not.

〈f1〉 = 〈x〉 for c=1 and 〈f2〉 = 〈−x〉 for c=2. The relation would be encoded as

(c = 1 and x < oldx and 0 ≤ oldx) or (c = 2 and −x < −oldx and 0 ≤ −oldx).

This extension aims to deal with cases where there is a split-case at the beginning
of the loop, necessitating seemingly conflicting ranking functions that prohibit
construction of a lexicographic ranking function, but the loop is nonetheless
terminating because the two cases are largely separate.

In Fig. 8(b), m and x start as any integers with m positive. If x is greater than
m, x is set to zero. x is now less than m, so x increases until it equals m, upon
which the loop terminates. A valid Ramsey-based termination argument for the
loop is:

(x < oldx and 0 ≤ oldx) or (m-x < oldm-oldx and 0 ≤ oldm-oldx).

However there does not exist a LLRF for the loop. Neither 〈x,m− x〉 nor 〈m−
x, x〉 is valid, as every transition decreases one of the functions and increases
the other. A simple solution to this problem is shown in Fig. 9(b). The variable
iters records how many iterations of the loop have occurred. We then attempt
to prove termination lexicographically by only checking transitions for which
iters ≥ 1, then iters ≥ 2, iters ≥ 3, etc. up to some finite limit at which
point we give up. (Our failure to find a LLRF by the usual procedure means that
we have already failed to prove termination for iters ≥ 0). When examining
the path found we can easily discover if the prefix of the cycle contributes to
well-foundedness using an extra constraint check. In our example, we need only
attempt to prove for iters ≥ 1 (shown in Fig. 8(b)) to find that the lexicographic
ranking function 〈f2〉 = 〈m− x〉 is valid. This extension aims to deal with loops
which include an initialization procedure that occurs over the first few iterations
(if at all), necessitating ranking functions that conflict with those needed for the
main termination argument. It allows us to construct lexicographic termination
arguments that do not need to take into account the first few iterations of the
loop.



copied := 0;

:
c
::
:=

:::
0;

while x<>0 do
if copied=1 then

::::::
assert(

::::
(c=1

::::
and

:::::
x<oldx

::::
and

:::::::
0≤oldx)

:
or

:::
(c=2

::::
and

:::::::
-x<-oldx

:::
and

::::::::
0≤-oldx)

:
);

exit();
else if * then

copied := 1;
oldx := x;

fi
if x>0 then

:
if
::::
c=0

::::
then

:::::
c:=1;

x := x-1;
else

:
if
::::
c=0

::::
then

:::::
c:=2;

x := x+1;
fi

done

copied := 0;

::::
iters

::
:=
:::
0;

assume(m>0);
while x<>m do

if
::::
iters

::
≥
::
1
::::
then

if copied=1 then
assert(m-x<oldm-oldx and 0≤oldm-oldx);
exit();

else if * then
copied := 1;
oldx := x;
oldm := m;

fi
fi
if x>m then

x := 0;
else

x := x+1;
fi

::::
iters

:::
:=

:::::::
iters+1;

done

(a) (b)

Fig. 9. Modified validity check transformations for programs in Fig. 8. The modifica-
tions to the standard validity check are underlined.

5 Experimental evaluation

To evaluate our approach we have implemented the algorithm from Fig. 6 as an
option in the T2 termination proving tool1. The underlying safety prover used
to check termination argument validity in T2 is a re-implementation of Im-
pact [18]. We then applied the tool to a set of 390 termination proving bench-
marks, drawn from a variety of applications (e.g. device drivers, the Apache
webserver, Postgres SQL server, integer approximations of numerical programs
from a book on numerical recipes [24], integer approximations of benchmarks
from LLBMC [19], etc). Note that, as we mentioned earlier, in some cases we
have soundly abstracted C programs with data-structures to pure arithmetic
programs using a technique due to Magill et al. [16]. In other cases we have
ignored the heap. We have used the same input files for all experiments and
configurations, thus the treatment of heap is orthogonal to the investigation
here.

To see the difference between Ramsey-based and lexicographic-based iterative
termination proving, we compared our new procedure to T2’s re-implementation
of the original Terminator procedure (which includes an integration of the
optimization from Kroening et. al [14]). We ran the two variants of T2 on the
390 termination benchmarks, with a timeout of 300s. See Fig. 10 for the results
(in logarithmic scale). Here we have excluded 266 cases where both tools were
able to prove/disprove termination in under 3 seconds, as well as 42 cases where

1 A source-code based release of this tool together with benchmarks is scheduled for
release in 2013.
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Fig. 10. Results of experimental evaluation comparing the lexicographic-based iter-
ative termination prover from Fig. 6 to a re-implementation of Terminator [8]. In
total 390 termination benchmarks were used, with a timeout of 300s. Depicted here
are the 82 cases in which radical differences in performance are seen (there are 42 cases
where both tools timeout, and 266 easily solved cases) The lexicographic approach re-
sulted in 26 fewer timeouts (i.e. the Ramsey-based termination procedure timed out on
68 benchmarks). The dotted line indicates equal performance of both methods. Note
that on a log-log plot, results lying on a line parallel to the dotted line represent one
method performing at a rate proportional to the other. Results were computed using
an Intel 2.80Ghz processor running Windows 7. A source-code release of the tool and
benchmarks is scheduled for 2013.

both tools timed out. The remaining 82 cases are shown in the figure. The most
dramatic aspect of the results is the decrease in timeouts: 26.

6 Conclusion

In this paper we have reconsidered the form of termination argument used in
iterative-based termination proving [8]: rather than iteratively finding Ramsey-
based termination arguments, we have instead developed a method that itera-
tively finds traditional lexicographic termination arguments. This approach has
some disadvantages (i.e. more complex ranking function synthesis) and advan-
tages (i.e. easier termination argument validity checking). Overall the experi-
mental evidence indicates that the advantages outweigh the disadvantages.
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