
Zapato: Automatic theorem proving for
predicate abstraction refinement

Thomas Ball†, Byron Cook†, Shuvendu K. Lahiri?, and Lintao Zhang†

† Microsoft Corporation ? Carnegie-Mellon University

Abstract. Counterexample-driven abstraction refinement is an auto-
matic process that produces abstract models of finite and infinite-state
systems. When this process is applied to software, an automatic the-
orem prover for quantifier-free first-order logic helps to determine the
feasibility of program paths and to refine the abstraction. In this paper
we report on a fast, lightweight, and automatic theorem prover called
Zapato which we have built specifically to solve the queries produced
during the abstraction refinement process.

1 Introduction
Slam is a symbolic software model checker for the C language which combines
predicate abstraction together with counter-example guided abstraction refine-
ment. Slam’s overall performance critically depends on the automatic theorem
prover that is used during the refinement process. Two of Slam’s modules,
Newton [1] and Constrain [2], generate many theorem proving queries dur-
ing their analysis1. As an example, when Slam was used to check 30 properties
of the Microsoft Windows Parallel Port device driver, Newton and Constrain
called the prover 487,716 times. On average, these queries contained 19 unique
atoms and 40 instances of Boolean operators per query. In the worst case, one
query contained 658 unique atoms. Another query contained 96,691 instances of
the Boolean operators. For the scalability of Slam it is paramount that these
queries are solved in less than a half a second in the average case.

In this paper we briefly describe Slam’s theorem prover — called Zapato.
Zapato’s overall architecture is similar to Verifun [5]. However, rather than
using the Simplex or Fourier & Motzkin arithmetic decision procedures, Zapato
uses an algorithm due to Harvey & Stuckey [6] for solving constraint problems
over sets of unit two-variable per inequality integer terms.

2 Lazy theorem proving based on propositional logic SAT
Zapato takes a query in quantifier-free first-order logic (FOL) and returns valid
if it can prove the query to be true. In the case that it cannot prove the query
true, it returns invalid. Note that invalid does not actually mean that the
query is not valid—only that Zapato could not prove it valid. Zapato operates
1 C2bp [3] can also be configured to use the theorem prover described in this paper.

However, by default, C2bp actually uses a special purpose symbolic theorem prover
called FastF which is similar to the work of Lahiri, Bryant & Cook [4] but optimized
for speed and not precision.



by negating the FOL query passed to it and then trying to prove unsatisfiability.
Zapato creates a propositional logic (PL) abstraction of the negated query in
which each FOL term is replaced by a fresh representative propositional variable.
A mapping between terms and propositional variables is maintained throughout
the execution of the algorithm.

An incremental PL SAT-solver is used to determine if the propositional ab-
straction is satisfiable. In the case that it is unsatisfiable, the query is determined
to be valid. In the case that the abstraction is satisfiable, the model found is
converted to FOL (via a reverse application of the mapping) and passed to a
FOL SAT-solver for conjuncts. This model is often partial—meaning that vari-
ables which can be of either Boolean value in the model are typically eliminated
by the SAT-solver in a post-backtracking analysis. Since these values are not
important in the model they can be ignored when determining the satisfiability
of the model in FOL.

If the input FOL conjunct solver determines that the found model is satis-
fiable, then the original query is determined to be invalid. In the case that the
set of conjuncts are unsatisfiable, the core reason that the model is unsatisfi-
able is determined. This core reason is a subset of the original conjuncts and is
found by visiting the leaves of the proof tree constructed by the FOL conjunct
solver. The core reason is then converted to PL using the mapping and inserted
into the PL SAT-solver’s database of learned clauses. A third possible output
from the conjunct solver is a set of case-splits which appear as pairs of conflict
causes. This case is due to the way some axioms are instantiated. The loop is
repeated until the PL SAT-solver returns unsatisfiable or the FOL solver returns
satisfiable.

Zapato’s FOL conjunct solver uses Nelson & Oppen’s method of combining
decision procedures with equality sharing. Currently we are using this tech-
nique to combine congruence closure for uninterpreted functions with Harvey
& Stuckey’s decision procedure. Each of the procedures must produce the rea-
soning behind their decisions in order to allow for the construction of proofs.
Zapato’s FOL solver also implements several axioms that express facts about
C expressions with pointers by searching the set of input conjuncts and adding
additional conjuncts.

2.1 Harvey & Stuckey’s Decision Procedure

Harvey & Stuckey’s procedure is a complete algorithm with polynomial time
complexity that can be used to solve conjuncted integer constraints. In this
procedure each input constraint is expected to be of the form ax + by ≤ d
where x and y are variables, d is an integer and a and b must be elements of
the set {−1, 0, 1}. Harvey & Stuckey call this subset the unit two-variable per
inequality (UTVPI) constraints. Note that Zapato uses homogenization and
term rewriting to remove terms that contain both arithmetic and uninterpreted
function symbols. Zapato also rewrites arithmetic terms into canonical form.
For example, x < y is converted into 1x + (−1)y ≤ −1.



The algorithm is based on iterative transitive closure: as each conjunct is
added into the system, all possible consequences of the input are computed.
Several strengthening transition rules on the state of the set of known facts
are applied at each conjunct introduction to produce the complete closure. In
the case that the conjuncts are unsatisfiable, a conjunct and its negation will
eventually exist in the set of facts. In the case that no contradiction is found,
the constraints must be satisfiable.

An interesting aspect to note about Harvey & Stuckey’s algorithm is that it
can be used to prove the unsatisfiability of sets of constraints which may include
non-UTVPI terms. For example, it can prove the unsatisfiability of

n > k′ + n′ ∧ x < y′ ∧ v + 5 < l ∧ y′ < z ∧ ¬(x < z) ∧ k < v + z

In these cases we can simply prune away the conjuncts that are not UTVPI
terms because the non-UTVPI constraints (such as k < v + z) may not factor
into the reason for unsatisfiability. The above expression is unsatisfiable because
the following is unsatisfiable: x < y′ ∧ y′ < z ∧¬(x < z). This allows us to solve
many queries that may appear at first to be non-UTVPI.

The logic supported by Zapato dictates that Slam’s predicates are always
UTVPI constraints with the possibility of uninterpreted function symbols. This
is due to the fact that Slam’s Newton module only adds new predicates in
the case that validity is proved by the theorem prover. At first this may sound
disastrously limiting. However, it is not. Both Newton and Constrain can
refine the abstraction if they can find any spurious transitions in the path that
they are examining. Paths are often spurious for multiple reasons. So long as
at least one of those reasons can be proved valid using Zapato, the refinement
algorithm will make progress. In the worst case, Zapato’s limited arithmetic
support could cause Slam to report a false bug. In the 10 months that we have
been using UTVPI in Zapato we have only seen this occur once while model
checking real device drivers.

The completeness of Harvey & Stuckey’s procedure allows us to prove the
validity of queries other automatic provers struggle with. Consider, for example,
the validity of x < 3 ∧ x > 1 ⇒ x = 2. Because Verifun uses a decision
procedure for the real numbers the only way that this can be proved is through
the use of special purpose heuristics or with additional axioms.

3 Experimental results

To evaluate the effectiveness of Zapato we used Slam to check 82 safety proper-
ties of 28 Windows OS device drivers and recorded statistics about the theorem
prover queries. In total, Slam passed 1,748,580 queries to Zapato. Note that
Slam caches the interface to the prover. These 1,748,580 queries are the cases in
which a pre-computed result could not be found in the cache. Of these queries,
148,509 were proved valid by Zapato. Zapato resolved the remaining queries
as invalid. 607,251 queries caused Zapato, at least on one occasion, to invoke
Harvey & Stuckey’s decision procedure on a set of conjuncts with a non-UTVPI
term. Of those 607,251 queries, Zapato was still able to prove 62,163 valid.



To compare Harvey & Stuckey’s algorithm versus a more traditional arith-
metic decision procedure we also compared the functional result of Zapato to
Simplify on the benchmark queries. Simplify was able to prove 248 queries
valid that Zapato could not. Zapato proved 560 queries valid that Simplify
could not. Because the provers support different logics, a performance compari-
son is difficult to analyze. But generally, as also reported by Flanagan et al. [5],
the new lazy PL SAT-based approach is faster. In the case of the hardest invalid
query from the benchmarks, Zapato’s runtime was 8 seconds while Simplify’s
was 10 seconds. Both Simplify and Zapato were able to prove the hardest valid
query in 3 seconds.

4 Conclusions
Zapato’s architecture is based on the prover Verifun. What makes Zapato
unique is that it does not use Fourier & Motzkin or Simplex as its decision proce-
dure for arithmetic. Instead, it uses a decision procedure proposed by Harvey &
Stuckey which has better worst-case asymptotic complexity and a completeness
result for a useful subset of arithmetic terms over the integers. The expres-
siveness of this subset appears to be sufficient for the verification of Windows
device drivers using Slam. We are currently integrating the Simplex decision
procedure into Zapato, which we envision could be optionally combined with
Harvey & Stuckey’s algorithm in applications where full integer linear arithmetic
is required.

Acknowledgements
The authors would like to thank Cormac Flanagan, Rajeev Joshi, Sava Krstic,
Rustan Leino, Ken McMillan, and Sriram Rajamani for their suggestions related
to this work.

References

1. Ball, T., Rajamani, S.K.: Generating abstract explanations of spurious counterex-
amples in C programs. Technical Report MSR-TR-2002-09, Microsoft Research
(2002)

2. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software
predicate abstraction. In: TACAS 04: Tools and Algorithms for Construction and
Analysis of Systems, Springer-Verlag (2004)

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: PLDI 01: Programming Language Design and Imple-
mentation, ACM (2001) 203–213

4. Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction.
In: CAV 03: International Conference on Computer-Aided Verification. (2003) 141–
153

5. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof
explication. In: CAV 03: International Conference on Computer-Aided Verification.
(2003) 355–367

6. Harvey, W., Stuckey, P.: A unit two variable per inequality integer constraint solver
for constraint logic programming. In: Australian Computer Science Conference
(Australian Computer Science Communications). (1997) 102–111


