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Abstract

Most symbolic software model checkers use abstraction techniques to reduce the verification of infinite-state programs to that
of decidable classes. Boolean programs [T. Ball, S.K. Rajamani, Bebop: A symbolic model checker for Boolean programs, in:
SPIN 00, in: Lecture Notes in Computer Science, vol. 1885, Springer, 2000, pp. 113–130] are the most popular representation for
these abstractions. Unfortunately, today’s symbolic software model checkers are limited to the analysis of sequential programs due
to the fact that reachability in Boolean programs with unbounded thread creation is undecidable. We address this limitation with a
novel algorithm for over-approximating reachability in Boolean programs with unbounded thread creation. Although the Boolean
programs are not of finite state, the algorithm always reaches a fix-point. The fixed points are detected by projecting the state of
the threads to the globally visible parts, which are finite.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

All of today’s symbolic model checkers for programs use some form of abstraction technique to reduce the
verification of infinite-state programs to that of finite-state programs. The infinity in programs comes from three
sources: unbounded arithmetic, heap-based data-structures, and unbounded thread creation. Numerous abstractions
have been proposed in the literature for the first two forms of infinity, (e.g. [4] and [5,6]). However, to date, no useful
abstraction has been proposed for unbounded thread creation. This is the purpose of this paper.

I This paper is based partially on [B. Cook, D. Kroening, N. Sharygina, Symbolic model checking for asynchronous Boolean programs, in:
SPIN, in: Lecture Notes in Computer Science, vol. 3639, Springer, 2005, pp. 75–90] and [B. Cook, D. Kroening, N. Sharygina, Over-approximating
Boolean programs with unbounded thread creation, in: Proceedings of FMCAD, IEEE, 2006, pp. 53–59].

∗ Corresponding author.
E-mail address: natasha.sharygina@unisi.ch (N. Sharygina).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.07.050

http://www.elsevier.com/locate/tcs
mailto:natasha.sharygina@unisi.ch
http://dx.doi.org/10.1016/j.tcs.2007.07.050


228 B. Cook et al. / Theoretical Computer Science 388 (2007) 227–242

We tackle the problem by proposing an algorithm for over-approximating the reachability of Boolean programs [1]
with unbounded thread creation. Boolean programs are a popular representation for the existing finite-state
abstractions. Thus, using our algorithm, we can imagine a symbolic software model checker that could support
programs with all the three forms of infinity.

As any abstraction procedure does, we lose some precision. That is, our Boolean program checker may now return
counterexamples that are spurious within the abstraction itself. While refinement at the level of the abstraction could
be performed, such a procedure is no longer guaranteed to terminate.

We have found that the spurious counterexamples that could be returned are not a practical problem. Model
checkers that rely on abstractions commonly use automatic abstraction refinement techniques to obtain more precise
abstractions. Counterexample-guided refinement [7] can thus be adapted to remove these false counterexamples as
well as false counterexamples due to heap and arithmetic abstraction. This kind of refinement adds detail to the
abstract model that is not available within the abstraction itself.

The paper is organized as follows. Section 2 defines syntax and semantics of concurrent Boolean programs. The
contribution of this paper is contained in Sections 3 and 4, namely an algorithm for reachability analysis of programs
with unbounded thread creation in Section 3 and their symbolic simulation in Section 4. Experimental results are
discussed in Section 5.

Related work

Formal verification of multi-threaded programs is an area of active research; see [8] for an excellent survey.
The development of static analysis tools for such programs is complicated due to the fact that reachability for
interprocedural programs (that is, for programs that contain both communication and data-flow structures) is
undecidable [9].

Pushdown automata have been used as tools for analyzing sequential programs with (recursive) procedures [10].
The expressive power of pushdown systems is equivalent to that of sequential programs with (possibly recursive)
procedures where all variables have a finite data type. MOPED [11] and BEBOP [1], for example, are BDD-based
symbolic model checkers for this class of language. DIZZY [12] uses symbolic simulation and a propositional
satisfiability solver (SAT) in order to decide the resulting Boolean formulae. The fix-point detection is done by
computing binary decision diagrams (BDDs) representing the set of reachable states. Our work uses a similar
algorithm, but uses quantified Boolean formulae for the fix-point detection. As BEBOP and MOPED, DIZZY does
not support multiple threads.

Several previous efforts have also applied symbolic model checking to Boolean programs with asynchronous
threads. For example, Jain, Clarke and Kroening [13] use the BDD-based model checker NUSMV [14] to verify
concurrent Boolean programs, but with only very limited success.

There has also been work on pushdown automata with multiple stacks, e.g., see [15]. As reachability is undecidable
in this case, the existing implementations are not fully automated.

Unsound approaches have also proved successful in finding bugs in concurrent programs. For example, Qadeer and
Rehof [16] note that many bugs can be found when the analysis is limited to execution traces with only a small set of
context-switches. This analysis supports recursive programs. Our approach complements these techniques because,
while they are unsound, they are able to analyze a larger set of programs.

The class of programs considered in this paper can be viewed as an instance of a parameterized system, i.e.,
a system with a number of identical processes (threads in our case). Many approaches to this problem have been
developed over the years, including the use of symbolic automata-based techniques, network invariants, predicate
abstraction or system symmetry (see an excellent overview in [17]). Methods that are most closely related to our work
are based on abstraction (for example, an extension of Murφ uses abstraction for replicated identical components
[18]). In contrast to our approach, many of these methods are only partially automated, requiring at least some human
ingenuity to construct an invariant or a closure process (for example, the TLPVS tool [19] is based on manual theorem
proving).

Henzinger et al. use predicate abstraction in order to construct environment models from threads [20]. When
combined with a counter abstraction, an unbounded number of threads can be supported. Flanagan and Qadeer
propose to use the idea of thread states in order to obtain environment models for loosely-coupled multi-threaded
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programs [21]. In contrast to their algorithm, we address the spurious behavior introduced by this over-approximation
by (safely) restricting the thread states that have been passed, and by an automatic refinement procedure.

One can also model concurrent Boolean programs as a set of rewriting rules and use rewriting techniques to
prove safety. For example, [22] computes abstractions of program paths using the least solutions of a system of path
language constraints. At this time it is not clear how our work compares to these techniques. One disadvantage of
the term rewriting approach is that it requires translating programs written in general purpose languages into the term
models. There have been no translation tools reported yet.

A number of tools for analysis of multi-threaded Java programs are available. While some of the tools compute
abstract models automatically, most perform only explicit state-space exploration. Representative examples of model
checkers for Java are [23] and JPF [24]. Yahav reports an implementation of a Model Checker for Java with an
unbounded number of threads using three-valued logic [25]. Similar to our approach, an over-approximation is
computed.

The reachability of concurrent programs with a restricted form of recursion is shown to be decidable and was
implemented in ZING [26]. Here, recursive functions are partitioned into atomic transactions, which are only allowed
to modify local variables. ZING, however, suffers from scalability problems, since its approach flattens concurrent
programs to sequential programs to handle recursive procedures. BEACON [27] (an explicit-state model checker for
concurrent Boolean programs) has similar scalability problems. In addition, tools implementing abstraction refinement
produce abstractions that make non-trivial use of non-deterministic choice. For this reason, explicit-state model
checkers perform poorly when used as the reachability procedure within a refinement loop. Kahlon and Gupta
show decidability of reachability properties for a range of restrictions of concurrent pushdown systems, e.g., when
communication is restricted to pairwise locks obtained in a specific discipline [28].

2. Boolean programs

In this section, we first describe how model checking for Boolean programs contributes to the problem of model
checking for arbitrary software programs. We then provide syntax and a semantics of Boolean programs.

2.1. Boolean programs and predicate abstraction

The program that is to be analyzed is typically given in a language such as ANSI-C and is formally modeled by
means of an infinite-state transition system.

Definition 1 (Transition System). A Transition System is a triple (S, S0, R), where S is a (possibly infinite) set of
states, S0 ⊆ S is the set of initial states, R ⊆ S × S is the transition relation.

We denote the transition system (the model) of the program by M . A program state s ∈ S comprises an encoding
of the current program location and a valuation of the program variables. We denote the finite set of program locations
by L .

The goal of abstraction is to compute an abstract model M̂ from the concrete model M such that the size of the
state-space is reduced while the property of interest is preserved. We denote the set of abstract states by Ŝ. A concrete
state is mapped to an abstract state by means of an abstraction function, which we denote by α : S −→ Ŝ. We also
extend the definition of α to sets of states: Given a set S′

⊆ S, we denote {ŝ ∈ Ŝ | ∃s ∈ S′.α(s) = ŝ} by α(S′). The
inverse of α, called the concretization function, maps abstract states back to the corresponding concrete states, and is
denoted by γ :

γ (Ŝ′) := {s ∈ S |α(s) ∈ Ŝ′
} (1)

We restrict the presentation to reachability properties. The goal therefore is to compute an abstraction that preserves
reachability: any program location that is reachable in M must be reachable in M̂ . Existential Abstraction is a form of
abstraction that preserves reachability [29].

Definition 2 (Existential Abstraction). Given an abstraction function α : S −→ Ŝ, a model M̂ = (Ŝ, Ŝ0, R̂) is called
an Existential Abstraction of M = (S, S0, R) iff the following conditions hold:
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identifier : [a − z A − Z ] [a − z A − Z 0 − 9 ]
∗

expr : expr ’∨’ expr | expr ’∧’ expr | expr ’⇒’ expr | ’¬’ expr
| identifier | identifier ’′’ | ’ ? j’ | ’0’ | ’1’

Fig. 1. Grammar for expressions in Boolean programs.

(1) The abstract model can make a transition from an abstract state ŝ to ŝ′ iff there is a transition from s to s′ in the
concrete model and s is abstracted to ŝ and s′ is abstracted to ŝ′:

∀〈ŝ, ŝ′
〉 ∈ (Ŝ × Ŝ).R̂(ŝ, ŝ′) ⇐⇒ (∃s, s′

∈ (S × S).R(s, s′) ∧ α(s) = ŝ ∧ α(s′) = ŝ′). (2)

(2) The set of abstract initial states Ŝ0 is simply the abstraction of the set of concrete initial states:

Ŝ0 = α(S0). (3)

The fact that existential abstraction is a conservative abstraction with respect to reachability properties is formalized
as follows:

Theorem 1. Let M̂ denote an existential abstraction of M, and let φ denote a reachability property. If φ holds on M̂,
it also holds on M:

M̂ |= φ =⇒ M |= φ.

Thus, for an existential abstraction M̂ and any program location l that is not reachable in the abstract model M̂ , we
may safely conclude that it is also unreachable in the concrete model M . Note that the converse does not hold, i.e.,
there may be locations that are reachable in M̂ but not in M .

There are various possible choices for an abstraction function α. Predicate Abstraction is one of the most popular
and widely applied methods for systematic abstraction of programs, and was introduced by Graf and Saı̈di [4]. An
automated procedure to generate predicate abstractions was introduced by Colón and Uribe [30]. Predicate abstraction
abstracts data by only keeping track of certain predicates on the data. The predicates are typically defined by Boolean
expressions over the concrete program variables. Each predicate is then represented by a Boolean variable in the
abstract program, while the original data variables are eliminated. The resulting program is called a Boolean Program.

The only difference between the original program and the Boolean program are the program variables. All other
aspects, in particular the control-flow structure, remain the same. In particular, if the original program is recursive
and concurrent, so is the Boolean program. Due to the smaller state-space of the Boolean program, Model Checking
becomes feasible. Predicate abstraction is promoted by the success of the SLAM project at Microsoft Research [31].
The SLAM tool checks control-flow dominated properties of Windows device drivers.

The predicates can be automatically inferred using Counterexample-guided abstraction refinement [32,33]:
Abstract counterexamples that cannot be replayed in the concrete program serve as a guide for refining the abstract
model. We postpone the discussion of refinement techniques for the abstract model to Section 3.2.

2.2. Syntax

The syntax of the control-flow statements is derived from C. We use the syntax introduced by Ball et al. [1] with
slight modifications. We first discuss the syntax used for expressions, as Boolean programs permit a few non-standard
constructs.

The grammar for expressions is given in BNF in Fig. 1. It permits the usual Boolean operators, and the following
two extensions: 1) non-deterministic choice, and 2) next-state variables. The stars denote non-deterministic choice
symbols. If multiple non-deterministic choices are to be used in one expression, we number them ?1, ?2, . . . .1 If an
identifier is followed by a prime, the identifier is to be evaluated in the next state.

The grammar for Boolean programs is provided in Fig. 2. A Boolean program is a list of declarations and
procedures. Declarations are comma-separated lists of identifiers. Procedures are lists of declarations and labeled
statements, which are statements preceded by an optional label. A statement may be a skip statement, a goto

1 The schoose non-deterministic choice operator implemented by BEBOP and similar tools can be transformed into an expression that uses ?.
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program : (declaration | procedure)+

declaration : ’decl’ identifier (’,’ identifier)∗ ;
procedure : identifier ’(’ identifier∗ ’)’ ’begin’

declaration∗

labeled-statement∗

’end’
labeled-statement : statement | identifier ’:’ statement

statement : ’skip’ ’;’
| ’goto’ identifier ’;’
| ’return’ ’;’
| identifier+ ’:=’ expr+ ’constrain’ expr ’;’
| ’lock’ identifier ’;’
| ’unlock’ identifier ’;’
| ’assume’ ’(’ expr ’)’ ’;’
| identifier ’(’ expr∗ ’)’ ’;’
| ’start thread’ identifier ’;’
| ’end thread’ ’;’

Fig. 2. Grammar for Boolean programs.

statement, a return statement, an assignment, an if statement, a procedure call, or a start thread or end thread
statement. Tools that analyze Boolean programs permit syntactic sugar such as while loops, which may be replaced
by corresponding goto statements. We assume that identifier conflicts related to scoping are resolved by means of
renaming.

2.3. Formal semantics

2.3.1. States and expressions
We extend the semantics of Boolean Programs [1] to permit unbounded thread creation. Let Vg denote the set of

global variables. For the sake of simplicity, we assume that all threads have the same set of local variables Vl and
the same program code, i.e., there is only one set of program locations L . We denote the program by P , and the
instruction at location l ∈ L by P(l). A program with threads that have different codes can easily be transformed into
a program with identical threads. We denote the set of variables by V = Vg

.
∪ Vl . We assume that a subset L ⊆ Vl

of the local variables is used exclusively as specially designated lock variables.2 We write L for the set of program
locations. For now, we assume that function calls are inlined. We extend our algorithm to support unbounded recursion
in Section 4.3.

Definition 3 (Explicit State). An explicit state η of a Boolean program is a triple 〈n, pc,Ω〉, where n ∈ N is the
number of threads, pc : {1, . . . , n} 7→ L is the vector of program locations, Ω : ({1, . . . , n} × Vl) ∪ Vg 7→ B is the
valuation of the program variables. We denote the set of explicit states by Ŝ.

We denote the projection of a state η to the number of running threads in that state by η.n, the projection from a state
to the values of the program counters by η.pc, and so on. The value of the program counter of thread t ∈ {1, . . . , n} is
denoted by η.pc(t), the value of the local variable v ∈ Vl of thread t is denoted by η.Ω(t, v).

Definition 4 (Thread State). The pair 〈PC,Ω〉 with PC ∈ L and Ω : V −→ B is called a thread state. It is a valuation
of the program counter, the local variables of a particular thread, and the globally shared variables. We use S̃ to denote
the set of thread states.

Thus, the thread state is the set of values that are visible to a thread. Note that the thread states are drawn from a
finite set, whereas the set of explicit states is infinite.

2 We use local variables instead of global variables for locking in order to be able to identify the individual thread that holds a lock.
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Definition 5 (µt ). The thread state projection function µt : Ŝ −→ S̃ takes a state η of the full state-space and maps
it to the state that is visible to thread t ∈ {1, . . . , η.n}.

µt (η).PC := η.pc(t)

µt (η).Ω(v) :=

{
η.Ω(v) : v ∈ Vg
η.Ω(t, v) : v ∈ Vl .

As the syntax for expressions permits a few non-standard constructs, we formally define their meaning. Besides
Boolean operators and identifiers, expressions may contain next-state identifiers (primed identifiers), which refer to a
second thread state of the same thread (and thus, to a second valuation of the variables). They may also contain non-
deterministic choice denoted by the ? symbols. We define three different evaluation functions, depending on which of
these constructs are permitted in the context of the expression.

Definition 6 (Meaning of Expressions). Let Ω and Ω ′ denote a valuation of the variables V , and let ι denote a
valuation of the ? symbols. Given an expression e, we use Je , Ω , Ω ′ , ιK to denote the evaluation of e. Let e, e1,
and e2 denote expressions, and v ∈ V be a variable. Formally, Je , Ω , Ω ′ , ιK is defined recursively as follows:

Je1 ∨ e2 , Ω , Ω ′ , ιK := Je1 , Ω , Ω ′ , ιK ∨ Je2 , Ω , Ω ′ , ιK
J¬e , Ω , Ω ′ , ιK := ¬Je , Ω , Ω ′ , ιK
Jv , Ω , Ω ′ , ιK := Ω(v)
Jv′ , Ω , Ω ′ , ιK := Ω ′(v)

J? j , Ω , Ω ′ , ιK := ι j .

We may write Je , Ω , ιK for Je , Ω , Ω ′ , ιK if e contains no primed variables. We may write Je , ΩK for Je , Ω , ιK
if e contains neither ? symbols nor primed variables.

For any function f : D → R and any d ∈ D, r ∈ R, we define f [d/r ] : D → R as follows:

f [d/r ](x) =

{
r : d = x
f (x) : otherwise.

As a shorthand, for any η̃ ∈ S̃, ζ̃ ∈ S̃ we write η̃ G
= ζ̃ iff the values of the global, i.e., shared variables in η̃ and ζ̃ are

equal, i.e., ∀g ∈ Vg.η̃.Ω(g) = ζ̃ .Ω(g). Similarly, we write η̃ L
= ζ̃ iff the values of the local variables in η̃ and ζ̃ are

equal.

2.3.2. Execution semantics
We provide operational semantics for Boolean programs, i.e., we define the sequences of states that constitute

valid executions of a given program. We first define semantics for the sequential program, and later on extend it to the
concurrent case.

We use η̃ −→ ζ̃ to denote the fact that a transition from thread state η̃ to thread state ζ̃ is valid. The relation
η̃ −→ ζ̃ is defined by a case-split on the instruction η̃.PC.

The rules for each instruction are shown in Table 1. The semantics of the skip, goto, constrained assignment, and
start thread statements are straightforward:

• The skip statement increments the program counter of the thread. The values of the variables do not change.
• The goto θ1, . . . , θk statement changes the program counter to one of the program locations θ1, . . . , θk that are

given as argument. The choice is arbitrary, i.e., non-deterministic. The values of the variables do not change.
• The constrained assignment statement x1, . . . , xk := e1, . . . , ek constrain e changes the program counter like
skip. It also updates the values of the variables using the expressions e1, . . . , ek . The expressions are evaluated in
state η̃. The expressions may contain choice variables ι1, . . . , ιm . These variables allow a non-deterministic choice
on data, and are quantified existentially.

The transition also has an additional user-provided constraint e. The constraint e is a predicate in terms of the
current state η̃ and the next state ζ̃ . It is evaluated in both states accordingly, where the next-state variables are
primed. If there is no choice for ι that satisfies the constraint, state η̃ has no successor states.
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Table 1
Conditions on the explicit thread state transition η̃ −→ ζ̃ for various statements, where θ, θi ∈ L , e is an expression and l ∈ L

P(PC) = skip

〈PC,Ω〉 −→ 〈PC + 1,Ω〉
(4)

P(PC) = goto θ1, . . . , θk
〈PC,Ω〉 −→ 〈θi ,Ω〉

i ∈ {1, . . . , k} (5)

P(PC) = x1, . . . , xk:=e1, . . . , ek constrain e,

Ω ′
= Ω [x1/Je1 , Ω , ιK] . . . [xk/Jek , Ω , ιK],

Je , Ω , Ω ′ , ιK
〈PC,Ω〉 −→ 〈PC + 1,Ω ′

〉
(6)

P(PC) = start thread θ
〈PC,Ω〉 −→ 〈PC + 1,Ω〉

P(PC) = start thread θ
〈PC,Ω〉 −→ 〈θ,Ω〉

(7)

P(PC) = lock l, Ω(l) = false
〈PC,Ω〉 −→ 〈PC + 1,Ω [l/true]〉

(8)

P(PC) = unlock l, Ω(l) = true
〈PC,Ω〉 −→ 〈PC + 1,Ω [l/false]〉

(9)

• A state in which the start thread instruction is executed has two successors: in one successor, the PC is
incremented, and in the other successor, the PC is set to the program location θ given as argument. The values
of the variables do not change.

Note that lock and unlock are special cases of a constrained assignment. The end thread instruction can be
read as an infinite loop. The assume statement is a special case of a constrained assignment, and the rule is therefore
omitted.

We write `(η̃) ⊆ L := {l ∈ L | η̃.Ω(l)} for the set of locks that are held in state η̃.
We now define the semantics of the concurrent program. Let Ŝ0

⊆ Ŝ denote the set of initial states, which consists
of the state that has a single thread, the PC points to the entry point of the main function, and all variables are zero.

Ŝ0
= {〈1, λt.main, λv ∈ ({1} × Vl) ∪ Vg. 0〉}. (10)

Assume that the scheduler picks a thread t ∈ {1, . . . , η.n} to execute in state η. We use η −→t ζ to denote the fact
that a transition from state η is made to ζ by executing one statement of thread t . The statement that is executed is
P(η.pc(t)). The relation η −→t ζ is defined by a case-split on this instruction.

The formal rules are given in Table 2. For all instructions but start thread, we require that

• the number of threads does not change, i.e., ζ.n = η.n,
• thread t makes a transition, i.e., µt (η) −→ µt (ζ ),
• and the values of local variables and the program counters of the other threads j 6= t remain unchanged, i.e.,

µ j (η)
L
= µ j (ζ ) and ζ.pc( j) = η.pc( j),

• locks are held exclusively, i.e., `(µu(ζ )) ∩ `(µv(ζ )) = ∅ for all u 6= v.

If P(η.pc(t)) is start thread θ , we require that

• the number of threads increases by one, i.e., ζ.n = η.n + 1,
• the program counter of the new thread is θ , and the program counter of thread t is η.pc(t)+ 1, i.e., ζ.pc(ζ.n) = θ

and ζ.pc(t) = η.pc(t)+ 1,
• thread t makes a transition into both changed states, i.e., µt (η) −→ µt (ζ ) and µt (η) −→ µζ.n(ζ ), and

• the values of the local variables of the other threads j 6= t and j 6= ζ.n remain unchanged, i.e., µ j (η)
L
= µ j (ζ )

and ζ.pc( j) = η.pc( j).
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Table 2
Conditions on the explicit thread state transition η −→ ζ

P(η.pc(t)) 6= start thread,

µt (η) −→ µt (ζ ), η.n = ζ.n,

∀ j 6= t. µ j (η)
L
= µ j (ζ ) ∧ ζ.pc( j) = η.pc( j),

∀u 6= v. l(µu(ζ )) ∩ l(µv(ζ )) = ∅

η −→ ζ
(11)

P(η.pc(t)) = start thread θ,

µt (η) −→ µt (ζ ), µt (η) −→ µζ.n(ζ ), ζ.n = η.n + 1,

ζ.pc(ζ.n) = θ, ζ.pc(t) = η.pc(t)+ 1,

∀ j 6= t ∧ j 6= ζ.n. µ j (η)
L
= µ j (ζ ) ∧ ζ.pc( j) = η.pc( j)

η −→ ζ
(12)

Syntactic sugar such as if or while can be easily transformed using goto and assume, as described in [2].
Finally, we write η −→ ζ if there exists a thread t ∈ {1, . . . , η.n} such that η −→t ζ . In this case, we say that

there is a transition from η to ζ , or that ζ is reachable from η with one transition. Let Ŝi
⊆ Ŝ with i ∈ N denote the set

of states reachable in i or less transitions, i.e., Ŝi
:= Ŝi−1

∪ {ζ | ∃η ∈ Ŝi−1.η −→ ζ }. The set of all reachable states is
Ŝ∞. The property we check is reachability of states with particular program locations. The set of these ‘bad’ locations
is denoted by B ⊂ L . Assertions can be re-written into this form, by introducing a designated error location, where
the program branches to if the assertion fails.

3. Over-approximation and refinement

3.1. Over-approximating Ŝ∞

Finite-state model checking algorithms are based on fix-point detection, that is, the model checker compares the
new set of states computed using the transition relation with the states explored so far. The algorithm iterates until no
new states are discovered.

This basic idea can be applied to programs with unbounded thread creation as well. For example, SPIN [34]
permits dynamic creation of new threads by means of Promela’s run statement. However, SPIN assumes that the
program only creates a finite number of threads. If the thread creation is not actually bounded, the state enumeration
of SPIN may not terminate.

We propose an algorithm that does not restrict thread creation to a finite number, i.e., we permit an infinite set Ŝ∞

while still guaranteeing termination [3]. The classical fix-point detection algorithm is not readily applicable for this
case.

Definition 7 (µ∗). Let µ∗(η) denote the set of the thread states µt (η) for all threads t . Let Ŝ′
⊆ Ŝ be a set of states

of the Boolean program. The thread-visible states are the states in Ŝ′ projected to the thread states of all threads.

µ∗(η) := {µt (η) : t ∈ {1, . . . , η.n} }

µ∗(Ŝ′) :=
⋃
η∈Ŝ′

µ∗(η).

The set of thread states reachable with at most i transitions is denoted by S̃i
:= µ∗(Ŝi ) ⊆ S̃. We propose to compute

an over-approximation of S̃∞. This is sufficient to detect violations of reachability properties that are expressed in
terms of the thread visible state,3 e.g., assertions.

Definition 8 ( ). Let Ã ⊆ S̃ denote a set of thread states, and ζ̃ ∈ S̃ denote a thread state. Let Ã  ζ̃ hold iff any
of the following two conditions holds:
(1) there is η̃ ∈ Ã such that there is a transition from η̃ to ζ̃ , i.e., η̃ −→ ζ̃ ,

3 Note that the property still may depend on the behavior of multiple threads, due to the communication between the threads.
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(2) or there exists η̃ ∈ Ã and another transition out of Ã from states with disjoint sets of locks that changes the global

state of η̃ to that of ζ̃ . Formally, we require ζ̃ .PC = η̃.PC , and ζ̃ L
= η̃ and there exist η̃′

∈ Ã and ζ̃ ′
∈ S̃ such

that

(a) η̃′
−→ ζ̃ ′ with η̃′

G
6= ζ̃ ′, and

(b) η̃′ G
= η̃, and

(c) ζ̃ ′ G
= ζ̃ , and

(d) `(η̃) ∩ `(η̃′) = ∅ and `(η̃) ∩ `(ζ̃ ′) = ∅.
This case captures the communication between two threads.

We write η̃ ζ̃ instead of the more cumbersome {η̃} ζ̃ . Note that η̃ ζ̃ implies Ã ζ̃ for any Ã with η̃ ∈ Ã.
Let T̃ 0

:= µ∗(Ŝ0) denote the set of initial thread states, and T̃ i for i ∈ N be defined recursively as follows:

T̃ i
:= T̃ i−1

∪ {ζ̃ | T̃ i−1  ζ̃ }.

The following claim holds by construction of .

Theorem 2. For all i ∈ N0, the set T̃ i is an over-approximation of the set of reachable thread states S̃i .

Proof. The claim is shown by induction on i . For i = 0, the claim is trivial.
We show that T̃ i

⊇ S̃i for the step from i − 1 to i as follows. Let ζ̃ ∈ S̃i . By definition of S̃i , there is a full state
ζ ∈ Ŝi and u ∈ {1, . . . , ζ.n} such that ζ̃ = µu(ζ ). Furthermore, there exists η ∈ Ŝi−1 and t ∈ {1, . . . , η.n} such that
η −→t ζ . Let η̃ be a shorthand for µu(η). Using the induction hypothesis, we can conclude that µ∗(η) ⊆ T̃ i−1, and
in particular, η̃ ∈ T̃ i−1.

If u = t , we have η̃ −→ ζ̃ , which implies η̃  ζ̃ (case 1 of Definition 8), and thus ζ̃ ∈ T̃ i , which concludes the
claim.

If u 6= t , we make a case-split on the instruction P(η.pc(t)), which is executed in the transition from η to ζ
(Table 1):

• If P(η.pc(t)) is skip, goto, or assume, only the PC of thread t changes, and thus, ζ̃ = η̃, which implies ζ̃ ∈ T̃ i−1,
and thus, ζ̃ ∈ T̃ i .

• If P(η.pc(t)) is start thread and u 6= ζ.n (i.e., u is not the newly created thread), we also have ζ̃ = η̃, which
concludes the claim. If u = ζ.n, we have µt (η) −→ ζ̃ , which concludes the claim.

• If P(η.pc(t)) is x1, . . . , xk := e1, . . . , ek constrain e, let k = 1 without loss of generality. If x1 ∈ Vl , only data
local to thread t is modified, and the claim is shown as in case of skip.

If x1 ∈ Vg , let v := ζ̃ .Ω(x1) denote the value that is assigned to x1 by thread t . The new thread state ζ̃ is equal

to η̃ up to the assignment to x1, i.e., ζ̃ .PC = η̃.PC and ζ̃ .Ω = η̃.Ω [x1/v]. Also, µt (η)
G
= η̃, and threads t and u

hold a disjoint set of locks in state η. We therefore have η̃ ζ̃ using case 2 of Definition 8.
• The statements lock and unlock are special cases of constrained assignments. �

As the sequence T̃ 0, T̃ 1, . . . is monotonic and is taken from a finite set (the set of thread states, Definition 4), it has
a fixed-point, and thus, T̃ ∞ is easily computable. The theorem above therefore gives rise to an algorithm (Fig. 3). If
the algorithm terminates with “Property holds”, the property is guaranteed to hold on the Boolean program. However,
if an error state is found, there is no guarantee that the state is actually reachable. A counterexample trace can be
computed by recording the one or two states that are used to compute a new thread state.

In order to illustrate the benefit of condition (2d) in Definition 8, consider the Boolean program in Fig. 4(a), and
assume a definition of without condition (2d). Let − denote this relation. Suppose we initialize g and l with 0
and start an unbounded number of threads that execute the function f(). The set of reachable thread states is shown
in Fig. 4(b). The lock protects the global variable, and thus, the assertion in L2 holds.

We denote a state by (PC, g, l). However, because of {(L5, 0, 1),(L2, 0, 1)} − (L2, 0, 0) −→ (L3, 0, 0) and {(L3,
0, 0),(L2, 0, 0)} (L2, 1, 0), the set T̃ ∞ contains a state that violates the assertion, and we obtain a spurious error
trace.
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// Input: Boolean Program P with locations L ,
// set of bad locations B ⊂ L
UNBOUNDEDTHREADAPPROXIMATION(P, b)

1 T̃ :=µ∗(Ŝ0); // Initial States
2 while (true)
3 if (∃η̃ ∈ T̃ .η̃.PC ∈ B) return “Error state found”;
4 F̃ :={ζ̃ ∈ S̃ | T̃  ζ̃ };
5 if (F̃ ⊆ T̃ ) return “Property holds”;
6 T̃ :=T̃ ∪ F̃ ;
7 end

Fig. 3. High level description of the approximation algorithm for reachability in Boolean programs with unbounded threads.

decl g, l;

void f() begin
L1: lock l;
L2: assert(!g);
L3: g:=1;
L4: g:=0;
L5: unlock l;
L6: skip;

end

PC Ω(g) Ω(l)
L1 0 0
L2 0 1
L3 0 1
L4 1 1
L5 0 1

(a) (b)
Fig. 4. Boolean Program with critical section.

Remark 1. As an additional optimization, we keep track of whether a thread state was generated before or after a
start thread command. Thread states that are generated before the execution of any start thread command
need not participate in case 2 of Definition 8. This optimization results in fewer spurious error traces, as the set of
states of the program reachable up to the first start tread command is no longer over-approximated. This case is
omitted from the proof.

3.2. Refinement

If the procedure above concludes that no state with an error location is reachable, this also holds on the original
program, and we can conclude that the property holds (Theorem 1).

The procedure above may also terminate by discovering a thread state that has a PC that corresponds to an error
location, i.e., a location in the set of ‘bad’ locations B. In this case, we compute an abstract counterexample.

Definition 9 (Abstract Counterexample). An abstract counterexample is a sequence of explicit states ŝ0, . . . , ŝn with
ŝi ∈ Ŝ, ŝi −→ ŝi+1, and ŝn .pc(t) ∈ B for some t .

The abstract counterexample is computed by tracking the thread states that are used to infer a new thread state.
Recall the definition of the relation (Definition 8). In the first case, the predecessor of any state ζ̃ with Ã −→ ζ̃ is
well-defined, and recorded appropriately. In the second case, there are two thread states that are used to infer ζ̃ . We
record the transition that corresponds to the second pair of states.

The abstract counterexample is passed to the abstraction refinement procedure that generated the Boolean program.
The next step is to simulate it on the original model. An abstract trace is feasible in M iff the following formula is
satisfiable:

s0 ∈ S ∧

n∧
i=0

α(si ) = ŝi ∧

n−1∧
i=0

R(si , si+1). (13)
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A satisfying assignment to this formula contains a valuation of s0, . . . , sn , which is a counterexample for M |= ϕ.
In practice, as any concrete counterexample suffices, a weaker criterion is typically checked, which disregards the
data:

s0 ∈ S ∧

n∧
i=0

si .pc = ŝi .pc ∧

n−1∧
i=0

R(si , si+1). (14)

If the formula is satisfiable, the counterexample is reported, and the algorithm terminates. If not so, the counterexample
is spurious, and refinement has to be performed.

Such a simulation corresponds to an incremental series of SAT instances, and is commonly performed by
program analysis tools that implement abstraction refinement, e.g., SLAM and BLAST. In the previous work, spurious
counterexamples are always due to lack of precision of the abstract model. Two cases are distinguished: spurious
transitions and spurious prefixes.

(1) A spurious transition is an abstract transition with ŝi −→ ŝi+1 but there exists no pair si , si+1 with R(si , si+1)

and α(si ) = ŝi , α(si+1) = ŝi+1. Such counterexamples are removed by strengthening assignment statements by
means of the constrain construct.

(2) A spurious prefix is a prefix of an abstract counterexample without spurious transitions that does not satisfy
Eq. (14).

The drawback of the over-approximation we perform to verify M̂ is that it may produce additional spurious
counterexamples that do not fall into either category. These counterexamples are characterized by the fact that there
is an abstract transition from ŝi to ŝi+1 with ŝi 6−→ ŝi+1, i.e., the trace does not fulfill the conditions of Definition 9.
This case can only be caused by an application of the second case in Definition 8.

In this case, we refine the abstract model M̂ as in the case of a spurious prefix: we add additional predicates by
either forward-simulating using strongest postconditions or backward-simulating using weakest preconditions. The
additional predicate correspond to new variables, which split the states that were falsely merged, and thus, eliminate
the spurious counterexample.

4. Symbolic simulation

In this section we describe how we represent a set of states symbolically using formulae, and then how to transform
Boolean programs into such formulae.

4.1. Symbolic state representation

Definition 10. A symbolic formula is defined using the following syntax rules:

(1) The Boolean constants true and false are formulae.
(2) The non-deterministic choice identifiers ?1, ?2, . . . are formulae.
(3) If f1 and f2 are formulae, then f1 ∧ f2, f1 ∨ f2, and ¬ f1 are formulae.

The set of such formulae is denoted by F .

A symbolic formula may be evaluated to multiple values due to the choice identifiers. As an example, the pair of
formulae 〈?1, ?2 ∧ ¬?1〉 may be evaluated to 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, but not to 〈1, 1〉. Given a particular valuation ι for
the non-deterministic choices ?i , we denote the value of a symbolic formula f as J f Kι, i.e., ι |= f ⇐⇒ J f Kι = true.

We use these symbolic formulae in order to represent sets of explicit thread states:

Definition 11. A symbolic thread state σ̃ is a triple 〈PC, ω, γ 〉, with PC ∈ L , ω : V 7→ F , and γ ∈ F .

The first component of a symbolic thread state σ̃ , namely PC, is identical to the first component of an explicit
thread state (Definition 4). The second component, called ω, is a mapping from the set of variables into the set of
formulae. It denotes the symbolic valuation of the state variables. The last component, called γ , is a formula that
represents the guard of the state symbolically, i.e., a constraint over the variables. Note that the program counter is
represented explicitly, while the program variables are represented symbolically.
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Table 3
Conditions on the symbolic thread state transition σ̃ −→ ζ̃ with σ̃ = (PC, ω, γ ) and ζ̃ = (PC′, ω′, γ ′), for various statements P(PC), where
θi ∈ L , e is an expression and l ∈ L

P(σ̃ .PC) ω γ

skip ω′
= ω γ ′

= γ

goto θ1, . . . , θk ω′
= ω γ ′

= γ

assume e ω′
= ω γ ′

= (γ ∧ Je , σ̃ K)
x1, . . . , xk := e1, . . . , ek

constrain e

∃ι. Ω ′
= Ω [x1/Je1 , σ̃ , ζ̃ K]
. . . [xk/Jek , σ̃ , ζ̃ K]

γ ′
= (γ ∧ Je , σ̃ , ζ̃ K)

We can define the symbolic evaluation Je , σ̃ , τ̃K of an expression e in the symbolic thread state σ̃ and a next state
τ̃ in analogy to the definition for explicit states. The set of explicit-thread states represented by a symbolic thread state
σ̃ are those states η̃ ∈ S̃ that satisfy the following conditions:

• They have matching PCs: η̃.PC = σ̃ .PC.
• There exists a valuation ι of the choice variables that satisfies the guard γ and assigns values to the variables that

match the values given by η̃.Ω .

∃ι.ι |= γ ∧ ∀v ∈ V .Jv , η̃K = Jv , σ̃ Kι. (15)

Note that the set of explicit states corresponding to a symbolic state is defined using a predicate in the parameter
ι. Therefore, we have a parametric representation of the state-space. Parametric representations of sets of states have
been used in formal verification before, e.g., in [35–37], but mostly in the context of hardware verification.

4.2. Symbolic execution

In analogy to the explicit-state model described in Section 2, we use σ̃ → ζ̃ to denote the fact that a transition
is made from state σ̃ to ζ̃ by executing one statement of thread t . Again, the statement that is executed is P(σ̃ .PC).
The definition of the relation σ̃ → ζ̃ is done using a case-split on this instruction. The conditions for each statement
are shown in Table 3. The column describing the constraints on the program counters PC and PC′ is identical to the
column in Table 1, and therefore is not repeated here. We explain the symbolic execution of each statement as follows:

• The definitions of the skip and goto statements follow the definitions for the explicit-state case. The formulae for
the guards are not changed by these statements.

• In the symbolic case, the assume e statement does not have the precondition that e is true. Instead, the condition e
is instantiated in the state σ̃ . This results in a symbolic formula. The symbolic formula is conjoined with the guard
γ , forming the formula γ ′.

• In the symbolic case, a constrained assignment statement x1, . . . , xk := e1, . . . , ek constrain e updates the
values of the variables using the expressions e1, . . . , ek . The expressions are evaluated in state σ̃ . It is no longer
necessary to enumerate the possible values of the non-deterministic choice variables ι, as ω(v) is now a formula,
and not a Boolean value. Thus, the fresh choice variables become part of the formula. Also, the additional constraint
e is added to the guard, in analogy to an assume statement.

The fixed-point loop using symbolic thread states is identical to the loop for the explicit representation shown in
Fig. 3. The only non-trivial part is the detection of the saturation condition, which corresponds to a QBF (quantified
Boolean formula) instance.

We also implement partial order reduction. In the context of the algorithm in Fig. 3, this corresponds to
strengthening  such that modifications to global variables are only applied to thread states ζ̃ that have a program
counter ζ̃ .PC that points to an instruction that either (1) reads one of the global variables that are modified or (2)
writes a global variable.
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void f() begin

. . .

p1,p2:=e1,e2;

ψ:=0;

start thread ϕ

ψ:=0 constrain ψ;

. . .

end

ϕ: f();
ψ:=1;
end thread

Fig. 5. Over-approximating a recursive call f (e1, e2) with thread creation.

4.3. Recursive functions

Reachability for programs with recursion and concurrency (even with only two threads) is undecidable [9]. In order
to model recursive programs we further extend the idea of conservative over-approximation.

Let f denote the function that is called, and let p1, . . . , pk ∈ Vl denote the parameters of the function. The
expression ei is passed as argument of the call for pi .

• As first step, an assignment p1, . . . , pk := e1, . . . , ek is performed.
• For synchronization upon return of the function, we introduce a new global variable ψ . An assignment statement

is inserted before the function call that sets ψ to zero.
• The function call is replaced by a start thread ϕ command, where ϕ is a program location in which f is called.
• After the start thread θ command, the statement ψ := 0 constrainψ is inserted. It sets ψ to false, but waits

for ψ to become true before doing so.
• When f returns (using return), it sets ψ to true. The return values are passed by means of global variables.

The approximation of a recursive call f (e1, e2) using thread creation is illustrated in Fig. 5.
This reduction is similar to an encoding of recursion commonly done in SPIN that uses a new channel for

synchronization. In contrast to this reduction used for SPIN, we use a finite set of global variables for synchronization
(one call per site), and therefore loose precision. The termination of the second recursion may synchronize with the
call site of the first recursion and so on.

5. Experimental results

We have implemented the technique described in this paper in a tool called BOPPO, which is available on-line.4

For the purpose of experimentation we have integrated BOPPO as the Boolean program checker for SATABS [38,39]
and used the prototype to verify safety properties of programs with (possibly unbounded) while loops that contain
thread creating statements, e.g., the pthread create() command. We compared the results of this integration to the
only existing model checker that supports all the features needed in these examples.

The experiments have been performed on an Intel Xeon Processor with 2.8 GHz running Linux. The results are
summarized in Table 4. We use MiniSAT as our SAT-solver, and Quantor as QBF solver for the fixed-point detection.
The run-time results are reported for our tool with symbolic partial order reduction. We also report the number of
symbolic thread states that are explored, i.e., |T̃ |. Note that one symbolic thread state typically corresponds to many
explicit thread states, in particular if non-determinism is used heavily. On all experiments with non-trivial run-time,
the run-time is dominated by the QBF solver.

We focus on the evaluation of the scalability of the implementation. We have two classes of benchmarks: artificial
ones to measure scalability (ART series), and benchmarks extracted from the Apache httpd web-server package (AP
series). The ART-PC-n series benchmarks are scaled in the number of program locations. Each benchmark generates
an unbounded number of threads (using an infinite loop containing start thread). Each thread then executes n
non-deterministic assignments to global variables. The QBF instances generated for the fixed-point detection contain
a number of quantified variables that is linear in n. The ART-V-n series benchmarks are parameterized in the number

4 Available for download at http://www.verify.ethz.ch/boppo/.

http://www.verify.ethz.ch/boppo/
http://www.verify.ethz.ch/boppo/
http://www.verify.ethz.ch/boppo/
http://www.verify.ethz.ch/boppo/
http://www.verify.ethz.ch/boppo/
http://www.verify.ethz.ch/boppo/
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Table 4
Summary of results: A star denotes that the 1gig spaceout
threshold was exceeded

SATABS/BOPPO Zing Spin
Benchmark Time (s) #σ̃ Time Time
ART-PC-10 <0.1 21 ? ?

ART-PC-20 <0.1 31 ? ?

ART-PC-100 0.2 111 ? ?

ART-PC-1000 8.3 1011 ? ?

ART-V-10 0.1 29 ? ?

ART-V-20 0.3 49 ? ?

ART-V-100 5.3 209 ? ?

ART-V-1000 3508.1 2009 ? ?

AP1 242.7 8009 ? ?

AP2 269.5 10766 ? ?

AP3 288.9 11422 ? ?

AP4 155.1 5453 ? ?

AP5 1130.9 43812 ? ?

The columns under #σ̃ contain the number of symbolic
thread states.

of variables, where n denotes the number of global (and thus, also thread-visible) variables. The number of variables
in the QBF instances grows quadratically in n.

The APn series of benchmarks is extracted from an ANSI-C program using SATABS. While the original program
generates a finite number of threads using the POSIX pthread create command, the abstraction of the program
generates an unbounded number of threads. The POSIX pthread mutex lock and unlock functions are mapped to
lock and unlock in the Boolean programs. The various benchmarks correspond to different properties of the same
program.

Apache (like most other programs) does not use locking during initialization, i.e., before it starts the worker threads.
The algorithm as described above results in states with inconsistent global predicates, which produce a large number
of spurious counterexamples. For this benchmark, we therefore extend the algorithm to distinguish two different types
of thread states using a flag as suggested in Remark 1 above. The flag is false in the initial state, and is set to true upon
execution of start thread. Case 2 of Definition 8 is changed such that global data is only passed between thread
states that have the same value of the flag. After the initialization phase, most writes to global data are protected by
means of locks, which prevents spurious error traces.

On the artificial examples, the regular refinement using weakest preconditions (WPs) works finely to eliminate the
spurious counterexamples, as it adds more Boolean variables, which makes the states different (and only states with
equal values of the global variables participate in case 2 of Definition 5).

As the table highlights, our SATABS/BOPPO integration is the first software model checker to realistically support
programs with unbounded thread creation. On these examples both ZING and SPIN spaceout due to the large amounts
of non-deterministically initialized data used to model the environment. SATABS/BOPPO is able to support this form
of infiniteness due to its support for abstraction together with its symbolic model checking engine.

Direct comparison. The experiments described above, of course, do not compare BOPPO directly to competing tools.
Note that, even if thread creation is bounded in the original unabstracted program, SATABS’s abstraction procedure is
likely to produce abstractions in which thread creation is not bounded. For this reason both ZING and SPIN timed-out
on all of the abstractions produced by SATABS.

6. Conclusion

Symbolic model checkers that implement abstraction refinement have proven tremendously useful for sequential
programs. For shared-memory concurrent software they have been essentially useless. This is due to the fact that
reachability on the abstraction of a concurrent program is undecidable. Existing approaches use algorithms that
surrender completeness, and thus, the refinement loop may get stuck even on simplistic abstract models.
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This paper introduces a new algorithm for checking abstractions of software (Boolean programs) that
supports arbitrary thread creation while guaranteeing termination. This algorithm can potentially return spurious
counterexamples, but it is always able to produce one. The existing refinement techniques can be used to refine
abstract models with such counterexamples.
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