
Using St̊almarck’s algorithm to prove
inequalities

Byron Cook and Georges Gonthier

Microsoft Research

Abstract. St̊almarck’s 1-saturation algorithm is an incomplete but fast
method for computing partial equivalence relations over propositional
formulae. Aside from anecdotal evidence, until now little has been known
about what it can prove. In this paper we characterize a set of formulae
with bitvector-inequalities for which 1-saturation is sufficient to prove
unsatisfiability. This result has application to fast predicate abstraction
for software with fixed-width bit-vectors.

1 Introduction

St̊almarck’s n-saturation algorithm [7, 12] is a method for automatically finding
consequences of propositional logic formulae. The complexity of n-saturation is
O(g2n+1), where g is the number of nodes in the graph representing the formula.
In practice, when n ≤ 2, St̊almarck’s algorithm is fast but incomplete. The
limited forms of saturation (where n ≤ 2) can be used in situations when com-
pleteness is not required. Alternatively, if completeness is required, it can be used
as a method of pruning the search space traversed with complete techniques—as
was done in [1]. The advantage to this approach is the fact that St̊almarck’s algo-
rithm can infer many consequences simultaneously. The disadvantage, given that
the limited forms of saturation are not complete, is that little is known about
the category of formulae for which they are sufficient to prove unsatisfiability.

The goal of this paper is to address the question of what 1-saturation can
prove with respect to an important class of formulae that often arise during
model checking: transitive arguments using arithmetic relations such as ≤, < and
= over Boolean vectors. Informally stated, we show that St̊almarck’s algorithm
can prove the unsatisfiability of unsatisfiable formulae containing inequalities
on vectors of Boolean variables, such as . . . w ≤ x ∧ . . . ∧ x ≤ y ∧ . . . ∧ y ≤
z ∧ . . . ∧ ¬(w ≤ z) ∧ . . ., or . . . w = x ∧ . . . ∧ x < y ∧ . . . ∧ y ≤ z ∧ . . . ∧ z ≤
w ∧ . . ., etc. The aspect that makes proving this difficult is the fact that the
outcome of saturation greatly depends on how ≤, <, and = are represented in
the propostional formulae.

1.1 Application

The motivation for this paper is rooted in our search for fast proof methods
for propositional reasoning within the Slam software model checker for C pro-

grams1. We would like to find fast approximative methods that are guaranteed
to be able to prove at least a certain limited class of properties.

Slam currently treats program variables as unbounded integers, and treats
bitwise operations as uninterpreted functions. In reality C programs are primar-
ily written over fixed-width types, and often use bitwise operators in non-trivial
ways. In order to switch Slam’s semantics from arbitrary-length to the more
accurate fixed-width types we must adapt our methods used to improve the
performance of Slam’s implementation of predicate abstraction [6, 10].

The key step behind predicate abstraction is the computation of coverings.
A covering C of a formula f is a set of monomials drawn from a set of predicates
P such that for all m ∈ C, m ⇒ f . In principle the covering can be computed by
enumerating over candidate monomials and calling an automatic theorem prover
(such as Cogent [4] or Zapato [3]) with arithmetic support to determine which
monomials imply f .

The strongest covering can be computed using enumeration over all 3|P |

possible monomials. However, as described in [9, 10], a faster approach is to use
incomplete symbolic decision procedures that quickly compute an approximation
of the needed coverings. Later, if the approximation is not strong enough, we
use a technique described in [2] to lazily refine the quality of the abstraction.

St̊almarck’s algorithm is a candidate method for computing these appoxima-
tive coverings when a bit-level semantics is used (see [4] for more information on
the encoding of C expressions into propositional logic). But how good will the
approximative coverings be if 1-saturation is used? Since the vast majority of the
formulae involved in this application involve ≤, <, and =, it is important that
our initial incomplete abstraction method at least finds the connections between
these relations even if it is incomplete over others. This is the question that we
are addressing in this paper.

2 St̊almarck’s algorithm

In this section we provide a formal definition for St̊almarck’s n-saturation algo-
rithm and a sound but incomplete validity procedure based on 1-saturation. We
also prove a number of basic properties about the algorithm.

Finite Boolean vectors are sequences whose elements can be > (true), ⊥
(false), propositional variables, and negated propositional variables. Fig. 1 de-
fines the set of all finite Boolean vectors, S. We use subscripts to indicate in-
dexing into vectors. For example, if x is a Boolean vector, then x5 represents
the element at the 5th position of x. Vectors are addressed starting at 1. We use
superscripts to differentiate between vectors. For example, x1 and x2 should be
considered different vectors. They could, of course, have equivalent values.

A partial equivalence relation (PER) over a set S is a relation that is transi-
tive and symmetric. A PER may not necessarily be defined for all arguments in
S, but it is reflexive for those in which it is. A finite PER (or FPER) is defined
only for a finite subset of S.
1 Slam is the basis of Microsoft’s Static Driver Verifier product [11].

B ::= > | ⊥
V ::= . . . | p | q | r | . . .
E ::= B | V | ¬V
S ::= 〈E1, . . . , En〉

Fig. 1. Grammar defining Finite Boolean vectors

St̊almarck’s algorithm is defined in terms of finite PERs over the type E
(from Fig. 1). For simplicity we will fix the set of variables for which PERs that
we consider are defined. We define =, < and ≤ on finite PERs in the standard
way using when the PER is treated as a set of pairs. We say that a PER R is
unsatisfiable iff R(>,⊥):

Unsatisfiable(R) , R(>,⊥)

We assume that redundant ¬ symbols in arguments to equivalence relations are
removed. For example, ¬> is treated as an alternative notation for ⊥ and ¬(¬x)
is considered the same as x.

Let R be a PER. As in [12], we use the notation R(x ≡ y) to represent a union
operation over the equivalence classes in the PER. This operation constructs a
new relation based on R where x and y’s equivalence classes have been merged.
This can be (naively) implemented as:

R(x ≡ y) ,
{E2 if Unsatisfiable(Q)

Q if ¬Unsatisfiable(Q)
where Q , (R ∪ {(x, y), (y, x), (¬x,¬y), (¬y,¬x)})∗

P ∗ is the transitive closure of the relation P . We assume the existence of a base
finite PER called Base that is defined for > and ⊥:

Base = {(>,>), (⊥,⊥)}
We assume that all finite PERs are constructed from Base and a series of ≡
operations. Quantification over finite PERs will be limited to this set.

A meet operation over finite PERs is defined as: Meet(Q,R) , Q ∩R.

Lemma 1. ∀A,B,C. A ≤ B ∧A ≤ C ⇒ A ≤ Meet(B, C)

Lemma 2. ∀R, x, y. R ≤ R(x ≡ y)

Lemma 3. ∀x, y, R. R(x ≡ y)(x, y)

Fig. 2 defines a function called Initial which constructs a finite identity
PER. The type FPER is used to represent finite PERs. The polymorphic type
constructor FSet is used to represent finite sets. We assume that a foreach
statement over a finite set (as found in Fig. 2) always terminates so long as
the loop’s body terminates. Therefore (given that the ≡ operation terminates)
Initial terminates.

FPER Initial (FSet<Formulae> S)

{
FPER R := Base;
foreach x ∈ S { R := R(x≡x); }
return R;

}

Fig. 2. Initial – Constructs a finite identity PER

2.1 Triples

The first step in St̊almarck’s algorithm is to break the input propositional logic
formula into an equisatisfiable directed acyclic graph represented as a set of
triples. A triple is defined by the grammar T ::= E ⇔ (E ⇒ E) | E ⇔ (E ⇔
E). We assume the existence of a function, called Triples, which returns the
representative directed acyclic graph together with a variable representing the
original input. As an example, let ≤n, <n, and =n be defined as:

x ≤n y ,
{> if n = 0

(¬xn ∨ yn) ∧ ((¬xn ⇔ yn) ∨ (x ≤n−1 y)) if n > 0

x <n y ,
{⊥ if n = 0

(¬xn ∨ yn) ∧ ((¬xn ⇔ yn) ∨ (x <n−1 y)) if n > 0

x =n y ,
∧

i∈{1...n} xi ⇔ yi

Let x and y be 1-length Boolean vectors. In this case we assume that Triples
will produce the following output:

Triples(x ≤1 y) = (β1

, (ρ1
1 ⇔ (¬x1 ⇔ y1)) ∧ (ρ1

2 ⇔ (x1 ⇒ y1))
∧ (ρ1

3 ⇔ (¬ρ1
1 ⇒ β2)) ∧ (¬β1 ⇔ (ρ1

2 ⇒ ¬ρ1
3))

∧ (β2 ⇔ >)
)

The variable β1 is equisatisfiable with x ≤1 y when constrained by these triples.
The variables ρ1

1, ρ1
2, ρ1

3 and β1 are assumed to be previously unused. In the case
where the vectors are of length 2, Triples would return:

Triples(x ≤2 y) = (β1

, (ρ2
1 ⇔ (¬x2 ⇔ y2)) ∧ (ρ2

2 ⇔ (x2 ⇒ y2))
∧ (ρ2

3 ⇔ (¬ρ2
1 ⇒ β3)) ∧ (¬β2 ⇔ (ρ2

2 ⇒ ¬ρ1
3))

∧ (ρ1
1 ⇔ (¬x1 ⇔ y1)) ∧ (ρ1

2 ⇔ (x1 ⇒ y1))
∧ (ρ1

3 ⇔ (¬ρ1
1 ⇒ β2)) ∧ (¬β1 ⇔ (ρ1

2 ⇒ ¬ρ1
3))

∧ (β3 ⇔ >)
)

The relation LTE is defined in Fig. 3. This relation takes three inputs (i,
p, and q) and produces an output o. The t is used as a source of intermediate
variables. We can use this relation to characterize the translation of triples over
≤n:

Triples(x ≤n y) = (β1,∧i∈{1...n}{LTE(βi, βi+1, xi, yi, ρ
i)} ∧ βn+1 ⇔ >)

where β and ρ are families of fresh variables. Think of LTE as a basic cell (or
circuit building-block). The β variables are used to establish communication
between other cells. Triples(x ≤n y) has a similar definition:

Triples(x <n y) = (β1,∧i∈{1...n}{LTE(βi, βi+1, xi, yi, ρ
i)} ∧ βn+1 ⇔ ⊥)

LTE(o, i, p, q, t) , (t1 ⇔ (¬p ⇔ q)) GT(o, i, p, q, t) , (t1 ⇔ (p ⇔ q))
∧ (t2 ⇔ (p ⇒ q)) ∧ (¬t2 ⇔ (p ⇒ q))
∧ (t3 ⇔ (¬t1 ⇒ i)) ∧ (¬t3 ⇔ (t1 ⇒ ¬i))
∧ (¬o ⇔ (t2 ⇒ ¬t3)) ∧ (o ⇔ (¬t2 ⇒ t3))

EQ(o, i, p, q, t) , (t1 ⇔ (p ⇔ q)) ∧ (¬o ⇔ (t1 ⇒ ¬i))

Fig. 3. The relations LTE, GT, and EQ

We can negate LTE to produce GT, also defined in Fig. 3. We can use GT
to characterize the translation of triples over the negation of ≤n:

Triples(¬(x ≤n y)) = (β1,∧i∈{1...n}{GT(βi, βi+1, xi, yi, ρ
i)} ∧ βn+1 ⇔ ⊥)

To characterize the =n relation we can use EQ (Fig. 3):

Triples(x =n y) = (β1,∧i∈{1...n}{EQ(βi, βi+1, xi, yi, ρ
i)} ∧ βn+1 ⇔ >)

2.2 0-saturation

The function in Fig. 4, called ZeroSaturate, implements a version of 0-saturation.
Essentially ZeroSaturate iteratively applies the 0-saturation step function
ZeroSaturateStep from Fig. 9 until a fixpoint is reached. Note that Fig. 9
appears later in the paper so that the proofs in Section 3.1 are easier to follow.

Lemma 4. ZeroSaturateStep terminates.

Proof. By the structure of ZeroSaturateStep’s control-flow graph and the
termination assumption about foreach statements over finite sets. ¤

FPER ZeroSaturate(FPER Q,FSet<Formulae> F)

{
FPER newQ := ZeroSaturateStep (Q,F);

if (newQ 6= Q) {
return ZeroSaturate(newQ,F);

} else {
return Q;

}
}

Fig. 4. ZeroSaturate: 0-saturation algorithm.

Lemma 5. ∀R,F. R ≤ ZeroSaturateStep(R, F)

Proof. All paths through ZeroSaturateStep lead to an update of R with ≡
or R itself. Therefore, by Lemma 2, R ≤ ZeroSaturateStep(R, F). ¤

Lemma 6. ZeroSaturate computes a fixpoint.

Proof. The powerset of finite PERs over a fixed set of variables is a finite set. By
Lemma 5, ZeroSaturateStep is order-preserving. Therefore, by the Knaster-
Tarski fixpoint theorem ([5], p.93), ZeroSaturate computes a fixpoint. ¤

Lemma 7. ∀R,F. R ≤ ZeroSaturate(R,F)

Proof. By induction on the structure of ZeroSaturate. Due to Lemma 6
we know that the result of ZeroSaturate is a finite composition of appli-
cations of ZeroSaturateStep. By Lemma 5 and the transitivity of ≤, R ≤
ZeroSaturate(R,F). ¤.

2.3 General n-saturation

St̊almarck’s n-saturation procedure is defined in Fig 5. Based on this procedure,
we also define a validity procedure, called St̊almarckValidity, in Fig. 6. The
function Vars, when applied to a finite PER, returns the variables for which the
PER is defined.

Lemma 8. ∀R,F, n. R ≤ Saturate(n,R, F)

Proof. By induction on n with Lemma 7 in the base case and an argument based
on Lemma 2 and Lemma 1 in the inductive case. ¤

Lemma 9. Saturate computes a fixpoint.

Proof. The powerset of finite PERs over a fixed set of variables is a finite set.
By Lemma 8, Saturate is order-preserving. Therefore, by the Knaster-Tarski
fixpoint theorem, Saturate computes a fixpoint. ¤

1 FPER Saturate(int n,FPER R,FSet<Formulae> F)

2 {
3 if (n<1) { return ZeroSaturate(R,F); }
4 FPER prevR;

5 do {
6 prevR := R;

7 foreach v ∈ Vars(F) {
8 R := SaturateStep(n,v,R,F);
9 }

10 } while (R 6= prevR);

11 return R;

12 }
13
14 FPER SaturateStep(int n,Formulae v,FPER R,FSet<Formulae> F)

15 {
16 assume(n>0);

17 FPER R1 := Saturate(n-1,R(v≡⊥),F)
18 FPER R2 := Saturate(n-1,R(v≡>),F)
19 return Meet(R1,R2);
20 }

Fig. 5. St̊almarck’s Saturate algorithm.

bool St̊almarckValidity(Formulae f)

{
Formulae root;

FSet<Formulae> F;

(root,F) := Triples(¬f);
FPER S := Initial(Vars(F));
FPER Q := Saturate(1,S(root≡>),F);
return Unsatisfiable(Q);

}

Fig. 6. St̊almarckValidity: a validity procedure based on 1-saturation

Lemma 10. ∀R, F, v, n ≥ 0. ZeroSaturate(R, F) ≤ SaturateStep(n, v, R, F)

Proof. By induction on n, the definition of Saturate, and Lemma 1. ¤
We use the following two properties to structure the proof in Section 3.

3 What can 1-saturation prove?

Now that we have defined St̊almarck’s algorithm we are prepared to reason about
what it can prove. Due to Lemma 9 we know that Saturate does terminate and
that there is a finite PER that is a fixpoint of Saturate. We use the symbol ⇔̇
to denote this relation. The reasoning in this section is about the equivalences
contained in ⇔̇.

In this paper we consider formulae of the following form:
∧

E ⇒ ∨
F , where

{R1(x1, x2), . . . ,Rk−1(xk−1, xk)} ⊆ E and Rk(x1, xk) ∈ F . The idea is that the
Ris are instances of ≤, <, etc. We assume that x1 . . . xk are Boolean vectors of
length n. The proof could be easily generalized to cases where the vectors are
of different size—we limit ourselves to n-length vectors to simplify the notation.
We assume that there exists a family of relations (or cells), C, such that for all
j ∈ {1, . . . , k − 1},

Triples(Rj(x, y)) = (βj
1, e ∧i∈{1...n} {Cj,i(βj

i , β
j
i+1, xi, yi, ρ

j,i)} ∧ βj
n+1 ⇔ >)

We assume that Triples(¬(
∧

E ⇒ ∨
F)) is equivalent to Triples(

∧
(E∪¬F)).

If we push the ¬ through F (which is in disjunctive form) the result is another
conjuction. Therefore, for our purposes, it is sufficient to consider the following
conjunction

∧
{R1(x1, x2), . . . ,Rk−1(xk−1, xk),¬Rk(x1, xk)}

and then assume that

Triples(¬Rk(x, y)) = (βk
1 ,∧i∈{1...n}{Ck,i(βk

i , βk
i+1, xi, yi, ρ

k,i)} ∧ βk
n+1 ⇔ ⊥)

Fig. 7 displays an instance of this configuration where n = 3 and k = 4.
We will prove that, when several properties hold of {R1(x1, x2), . . .,Rk−1(xk−1, xk),

¬Rk(x1, xk)} that St̊almarckValidity(
∧

E ⇒ ∨
F) = >. We assume (based

on Lemma 10) that the first iteration of saturation in Fig. 5 will find βi
1 ⇔̇ >

for each i ∈ {1, . . . , k}.
Assumption 1. ∀i ∈ {1, . . . , k}. βi

1 ⇔̇ >.

This is a key assumption: it allows us to ignore the exact structure of the original
formula and relations that are passed to Saturate. In the case of

∧
E ⇒ ∨

F ,
this will be found by 0-saturation. There may be many additional triples and
equivalences, and they may have incrementally been added or discovered—but
all we need to know is that each component in the transitive argument has been
asserted to >.

We structure the proof of St̊almarckValidity(
∧

E ⇒ ∨
F) = > as fol-

lows:

>

?
β1

4

x2
3

�x1
3
-C1,3

?
β1

3

x2
2

�x1
2
-C1,2

?
β1

2

x2
1

�x1
1
-C1,1

?
β1

1

>

>

?
β2

4

x3
3

�-C2,3

?
β2

3

x3
2

�-C2,2

?
β2

2

x3
1

�-C2,1

?
β2

1

>

>

?
β3

4

x4
3

�-C3,3

?
β3

3

x4
2

�-C3,2

?
β3

2

x4
1

�-C3,1

?
β3

1

>

⊥

?
β4

4

x4
3

�x1
3
-C4,3

?
β4

3

x4
2

�x1
2
-C4,2

?
β4

2

x4
1

�x1
1
-C4,1

?
β4

1

>

Fig. 7. An example configuration of triples where n = 3 and k = 4. C1,1 to C4,3

represent cells (see Fig. 3 for examples of cells).

– We define four predicates (PosRgtRipple, PosLftRipple, NegRgtRip-
ple, NegLftRipple) over the signature of the cells (Ci,j) used in each
Ri and then constrain the cells using three of these predicates—the fourth
predicate is not strictly required due to an uninteresting technicality.

– We inductively find a set of equivalences in ⇔̇.
– We then use the equivalences in ⇔̇ to demonstrate Unsatisfiable(⇔̇).

The predicates are defined in Fig. 8. In a later section we prove that they hold
for LTE, GT, EQ, etc.

These predicates are used to represent relationships between the β variables
and x variables. For example, PosRgtRipple(0, C) holds when (by using 0-
saturation over C) we can prove that if both the output β-variable and left-hand
input-variable are true, then the input β-variable and right-hand input-variable
must be true.

Assumption 2. ∀i ∈ {1 . . . k − 1}, j ∈ {1 . . . n}. PosRgtRipple(0, Ci,j)

In Fig. 7 this corresponds to asserting that the cells in the first three columns are
constrained by PosRgtRipple. The next assumption corresponds to asserting
that the cells in the fourth column are constrained by NegRgtRipple.

Assumption 3. ∀j ∈ {1 . . . n}. NegRgtRipple(0, Ck,j)

Assumption 4. ∀i ∈ {1 . . . k − 1}, j ∈ {1 . . . n}. NegLftRipple(0, Ci,j)

Lemma 11.

∀i ∈ {1 . . . k},m ∈ {0 . . . n}. (βi
m+1 ⇔̇ >)∧ (∀j ∈ {1 . . . k}. m > 0 ⇒ xi

m ⇔̇ xj
m)

Ripple(n, T, a, b, c, d, v) , ∀Q. [Q(a,>) ∧Q(c, v)] ⇒ [R(b,>) ∧R(d, v)]
where R = Saturate(n, Q, T)

PosRgtRipple(n, C) , ∀T, a, b, x, y, w.
C(a, b, x, y, w) ⊆ T ⇒ Ripple(n, T, a, b, x, y,>)

PosLftRipple(n, C) , ∀T, a, b, x, y, w.
C(a, b, x, y, w) ⊆ T ⇒ Ripple(n, T, a, b, y, x,>)

NegRgtRipple(n, C) , ∀T, a, b, x, y, w.
C(a, b, x, y, w) ⊆ T ⇒ Ripple(n, T, a, b, x, y,⊥)

NegLftRipple(n, C) , ∀T, a, b, x, y, w.
C(a, b, x, y, w) ⊆ T ⇒ Ripple(n, T, a, b, y, x,⊥)

Fig. 8. The relation Ripple, and several specialized versions of it

Proof. By induction on m.

Base case (m = 0): (∀j ∈ {1 . . . k}. m > 0 ⇒ xi
m ⇔̇ xj

m) is trivially true. By
Assumption 1, βi

m+1 ⇔̇ >. X
Inductive case (m > 0): Assume that we are splitting on the variable x1

m (in
Fig. 5). We prove this lemma by cases.
Case x1

m ≡ ⊥ (line 17 of Fig. 5): By Lemma 7 and Lemma 3, R1(x1
m,⊥).

By the inductive hypothesis, ∀i ∈ {1 . . . k}. R1(βi
m,>). By Assumption 3,

NegRgtRipple(0, Ck,m). Therefore, because Ck,m(βk
m, βk

m+1, x
1
m, xk

m, ρk),
we know that R1(xk

m,⊥). By Assumption 4, NegLftRipple(0, Ci,m) for
i ∈ {1 . . . k−1}. By induction on i and Assumption 4, ∀i ∈ {1, . . . , k}. R1(xi

m,⊥)
and ∀i ∈ {1 . . . k}. R1(βi

m+1,>). By the transitivity of PERs, we know
that ∀i, j. R1(xi

1, x
j
1). X

Case x1
m ≡ > (line 18 of Fig. 5): By Lemma 7 and Lemma 3, R2(x1

m,>).
By the inductive hypothesis, ∀i ∈ {1 . . . k}. R2(βi

m,>). By Assump-
tion 2, PosRgtRipple(0, Ci,m) for i ∈ {1 . . . k − 1}. Therefore, by in-
duction on i and Assumption 2, ∀i ∈ {1, . . . , k}. R2(xi

m,>) and ∀i ∈
{1 . . . k}. R2(βi

m+1,>).. By the transitivity of PERs, ∀i, j. R2(xi
m, xj

m).
X

Because R1(xi
m, xj

m) and R2(xi
m, xj

m), by Lemma 1, xi
m ⇔̇ xj

m. Similarily,
because R1(βi

m+1,>) and R2(βi
m+1,>), βi

m+1 ⇔̇ >. X
¤
Theorem 1. Unsatisfiable(⇔̇)

Proof. As a consequence of Lemma 11, βk
n+1 ⇔̇ >. However, by definition,

Triples(¬Rk(x1, xk)) is

∧i∈{1...n}{Ck,i(βk
i , βk

i+1, x
1
i , x

k
i , ρk,i)} ∧ βk

n+1 ⇔ ⊥)

Therefore, βk
n+1 ⇔̇ ⊥. By the transitivity of ⇔̇,> ⇔̇ ⊥. And therefore, Unsatisfiable(⇔̇).

¤

3.1 Proving conditions about LTE, GT and EQ

FPER ZeroSaturateStep (FPER R,FSet<Formulae> T) {
foreach t ∈ T {
switch(t) {
pattern (X ⇔ (Y ⇒ Z)):

/*Z01*/ if (R(X,⊥) && ¬ R(Y ,>)) { return R(Y ≡ >); }
/*Z02*/ if (R(X,⊥) && ¬ R(Z,⊥)) { return R(Z ≡ ⊥); }
/*Z03*/ if (R(Z,>) && ¬ R(X,>)) { return R(X ≡ >); }
/*Z04*/ if (R(Y ,⊥) && ¬ R(X,>)) { return R(X ≡ >); }
/*Z05*/ if (R(X,Y) && ¬ R(X,>)) { return R(X ≡ >); }
/*Z06*/ if (R(X,¬Z) && ¬ R(X,>)) { return R(X ≡ >); }
/*Z07*/ if (R(Y ,Z) && ¬ R(X,>)) { return R(X ≡ >); }
/*Z08*/ if (R(Y ,¬Z) && ¬ R(X,Z)) { return R(X ≡ Z); }
/*Z09*/ if (R(Y ,>) && ¬ R(X,Z)) { return R(X ≡ Z); }
/*Z10*/ if (R(Z,⊥) && ¬ R(X,¬Y)) { return R(X ≡ ¬Y); }

break;

pattern (X ⇔ (Y ⇔ Z)):
/*Z11*/ if (R(X,Y) && ¬ R(Z,>)) { return R(Z ≡ >); }
/*Z12*/ if (R(Y ,Z) && ¬ R(X,>)) { return R(X ≡ >); }
/*Z13*/ if (R(X,Z) && ¬ R(Y ,>)) { return R(Y ≡ >); }
/*Z14*/ if (R(X,¬Y) && ¬ R(Z,⊥)) { return R(Z ≡ ⊥); }
/*Z15*/ if (R(Y ,¬Z) && ¬ R(X,⊥)) { return R(X ≡ ⊥); }
/*Z16*/ if (R(X,¬Z) && ¬ R(Y ,⊥)) { return R(Y ≡ ⊥); }
/*Z17*/ if (R(X,>) && ¬ R(Y ,Z)) { return R(Y ≡ Z); }
/*Z18*/ if (R(X,⊥) && ¬ R(Y ,¬Z)) { return R(Y ≡ ¬Z); }
/*Z19*/ if (R(Y ,>) && ¬ R(X,Z)) { return R(X ≡ Z); }
/*Z20*/ if (R(Y ,⊥) && ¬ R(X,¬Z)) { return R(X ≡ ¬Z); }
/*Z21*/ if (R(Z,>) && ¬ R(X,Y)) { return R(X ≡ Y); }
/*Z22*/ if (R(Z,⊥) && ¬ R(X,¬Y)) { return R(X ≡ ¬Y); }

break;

}
}
return R;

}

Fig. 9. ZeroSaturateStep – Function used in ZeroSaturate

We now use Theorem 1 to show that St̊almarckValidity can reliably prove
transitive arguments using =n, <n, and ≤n from Section 2.1. By Theorem 1, if
we prove the relations PosRgtRipple, PosLftRipple, etc for LTE, GT, and

EQ then we know that St̊almarckValidity can prove transitive arguments
of the form

∧
E ⇒ ∨

F , where E and F contain terms with ≤n, <n, and =n

applied to vectors of Boolean variables.
During the following proofs we are implicitly using Lemmas 6 and 7. That

is, we assume throughout these proofs that Q ≤ R.

Lemma 12. PosRgtRipple(0, LTE) and NegLftRipple(0, LTE)

Proof. Recall the definition of LTE from Fig. 3:

LTE(o, i, p, q, t) , (t1 ⇔ (¬p ⇔ q))
∧ (t2 ⇔ (p ⇒ q))
∧ (t3 ⇔ (¬t1 ⇒ i))
∧ (¬o ⇔ (t2 ⇒ ¬t3))

We can assume Q(o,>) ∧ R = ZeroSaturate(Q,T) ∧ LTE(o, i, p, q, t) ⊆ T
and we must prove the following three conditions Q(p,>) ⇒ R(q,>), Q(q,⊥) ⇒
R(p,⊥), and R(p, q) ⇒ R(i,>). By R(o,>), R(¬o,⊥). By Case Z01 in Fig. 9,
R(t2,>). By Case Z02 in Fig. 9, R(¬t3,⊥), hence R(t3,>).

– Assume Q(p,>). By Case Z09 in Fig. 9, R(t2, q). Because R(t2,>), by tran-
sitivity, R(q,>). X

– Assume Q(q,⊥). By Case Z10 in Fig. 9, R(p,¬t2). Therefore, R(¬p, t2).
Because R(t2,>), R(¬p,>). Hence, R(p,⊥). X

– Assume R(p, q). by Case Z15 in Fig. 9, R(t1,⊥). Therefore, by Case Z09 in
Fig. 9, R(t3, i). Because R(t3,>), by transitivity of PERs, R(i,>). X

¤

Lemma 13. PosLftRipple(0, GT) and NegRgtRipple(0, GT)

Proof. Recall the definition of GT from Fig. 3:

GT(o, i, p, q, t) , (t1 ⇔ (p ⇔ q))
∧ (¬t2 ⇔ (p ⇒ q))
∧ (¬t3 ⇔ (t1 ⇒ ¬i))
∧ (o ⇔ (¬t2 ⇒ t3))

We can assume Q(o,>) ∧ R = ZeroSaturate(Q,T) ∧ GT(o, i, p, q, t) ⊆ T
and we must prove that Q(q,>) ⇒ R(p,>), Q(p,⊥) ⇒ R(q,⊥), and R(p, q) ⇒
R(i,>).

– Assume Q(q,>). By Case Z03 in Fig. 9, R(¬t2,>). Therefore, by Case Z09
in Fig. 9 R(o, t3). Because Q(o,>), by transitivity of PERs, R(t3,>). Hence,
R(¬t3,⊥). By Case Z01 in Fig. 9, R(t1,>). By Case Z17 in Fig. 9, R(p, q).
Because R(q,>), Q(p,>). X

– Assume Q(p,⊥). By Case Z04 in Fig. 9, R(¬t2,>). Using the same argument
as above, R(p, q). Because R(p,⊥), by transitivity, R(q,⊥),

– Assume R(p, q). By Case Z07 in Fig. 9, R(¬t2,>). Therefore, by Case Z09
in Fig. 9, R(o, t3). By transitivity, R(t3,>). That is, R(¬t3,⊥). By Case Z02
in Fig. 9, R(¬i,⊥). Therefore, R(i,>). X

¤

Lemma 14. PosRgtRipple(0, EQ), PosLftRipple(0, EQ), NegRgtRipple(0, EQ),
and NegLftRipple(0, EQ).

Proof. Recall the definition of EQ from Fig. 3.

EQ(o, i, p, q, t) , (t1 ⇔ (p ⇔ q)) ∧ (¬o ⇔ (t1 ⇒ ¬i))

We can assume Q(o,>) ∧R = ZeroSaturate(Q,T) ∧EQ(o, i, p, q, t) ⊆ T and
we must prove that Q(p,>) ⇒ R(q,>), Q(q,⊥) ⇒ R(p,⊥), Q(p,⊥) ⇒ R(q,⊥),
Q(q,>) ⇒ R(p,>), and R(p, q) ⇒ R(i,>). By R(o,>), R(¬o,⊥). By Case Z01
in Fig. 9, R(t1,>). By Case Z17 in Fig. 9, R(p, q). The first 4 cases are true by
transitivity of PERs. The 5th case is true by Case Z02 in Fig. 9. ¤

Alternative implementations There are many other ways to implement ≤,
<, and =. For example, we could define ≤ in terms of < and =:

x ≤n y , x <n y ∨ x =n y

In this case, we can find a LTE′—displayed in Fig. 10—such that

(β1
3 ,∧i∈{1...n}{LTE′(βi, βi+1, xi, yi, ρ

i)} ∧ βn+1 ⇔ 〈⊥,>〉 ∧ β1
3 ⇔ (β1

1 ∨ β1
2))

We have proven the same result as Theorem 1 for this implementation. Unfor-
tunately we had to modify the proof and Ripple predicate sufficiently that we
are not able to include this proof here.

LTE′(o, i, p, q, t) , LTE(o1, ii, p, q, t′) ∧ EQ(o2, i2, p, q, t′′)

Fig. 10. LTE′: an alternative to LTE. Assume that t′ and t′′ are vectors with
fresh variables. Note that the ∧ is only asserting the triples in LT and EQ and
not asserting that the answer is < and =. LTE′’s first and second parameters are
Boolean vectors of size 2.

Another possibility is displayed in Fig. 11. This is based on an implementation
where the unneccesary ⇔ has been removed:

x ≤n y ,
{> if n = 0

(¬xn ∨ yn) ∧ ((¬xn ∧ yn) ∨ (x ≤n−1 y)) if n > 0

LTE′′(o, i, p, q, t) , (t1 ⇔ (q ⇒ p))
∧ (t2 ⇔ (p ⇒ q))
∧ (t3 ⇔ (t1 ⇒ i))
∧ (¬o ⇔ (t2 ⇒ ¬t3))

Fig. 11. LTE′′: an alternative to LTE Assume that t′ and t′′ are vectors with fresh
variables.

Lemma 15. PosRgtRipple(0, LTE′′) and NegLftRipple(0, LTE′′)

Proof. We can assume Q(o,>)∧R = ZeroSaturate(Q,T)∧LTE′′(o, i, p, q, t) ⊆
T and we must prove the following three conditions Q(p,>) ⇒ R(q,>), Q(q,⊥) ⇒
R(p,⊥), and R(p, q) ⇒ R(i,>) (assuming that either R(p,>) or R(q,⊥)). By
Q(o,>), Q(¬o,⊥). By Case Z01 in Fig. 9, R(t2,>). By Case Z02 in Fig. 9,
R(t3,>). The first two conditions are proved by the same argument used in
Lemma 12. As for the final condition: if R(p,>) then, by Case Z03 in Fig. 9,
R(t1,>). If R(q,⊥) then, by Case Z04 in Fig. 9, R(t1,>). Since (in either case)
R(t1,>), by Case Z09 in Fig. 9, R(t3, i). Because R(t3,>), by transitivity of
PERs, R(i,>). ¤

4 Conclusion

St̊almarck’s 1-saturation is a fast but incomplete method of computing finite
partial equivalence relations over propositional logic formulae. It can be used
in situations when completeness is not required or as a method of pruning the
search space traversed by more complete techniques such as backtracking.

We have proved that, under several implementations of inequalities for finite
vectors, 1-saturation can be used to compute transitive arguments. This pro-
vides some intuition as to what St̊almarck’s algorithm can prove. Notably, we
now know that a limited form of 2-saturation can be used to compute a useful
approximation of transitive closure over relations such as ≤ that is representable
by equivalences in the triples. This is precisely what Slam needs.

This paper could be a starting point for future efforts of the same kind. There
are other incomplete SAT-based techniques—such as recursive learning [8]—
that play a role that is similar to St̊almarck’s algorithm. We would also like
to prove more results about St̊almarck’s algorithm (or a similar procedure),
such that we could get a complete characterization of its relative completeness
over propositional logic extended with linear arithmetic and uninterpreted func-
tions. As these proofs are quite tedious (especially the proofs about the relations
PosRgtRipple, etc)—we would like to automate them in a mechanical theorem
prover.

Acknowledgements Koen Classen, John Harrison, and Mary Sheeran have
made helpful comments regarding this work.

References

1. G. Andersson, P. Bjesse, B. Cook, and Z. Hanna. A proof engine approach to
solving combinational design automation problems. In 2002 Design Automation
Conference, 2002.

2. T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations in software
predicate abstraction. In TACAS 04: Tools and Algorithms for Construction and
Analysis of Systems. Springer-Verlag, 2004.

3. T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic theorem proving
for predicate abstraction refinement. In CAV 04: International Conference on
Computer-Aided Verification, 2004.

4. B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem proving for
program verification. In To appear at CAV 05: Conference on Computer Aided
Verification, 2005.

5. B. A. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, 1990.

6. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV
97: Conference on Computer Aided Verification, 1997.

7. J. Harrison. St̊almarck’s method as a HOL derived rule. In TPHOLs 96: Interna-
tional Conference on Theorem Proving in Higher Order Logics, 1996.

8. W. Kunz and P. K. K. Recursive learning: An attractive alternative to the decision
tree for test generation in digital circuits. In ITC’92: International Test Conference,
1992.

9. S. K. Lahiri, T. Ball, and B. Cook. Predicate abstraction via symbolic decision
procedures. In To appear at CAV 05: Conference on Computer Aided Verification,
2005.

10. S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate ab-
straction. In CAV 03: International Conference on Computer-Aided Verification,
pages 141–153, 2003.

11. Microsoft Corporation. Static Driver Verifier. Available at
www.microsoft.com/whdc/devtools/tools/SDV.mspx.

12. M. Sheeran and G. St̊almarck. A tutorial on St̊almarck’s proof procedure for
propositional logic. Formal Methods in System Design, 16(1), January 2000.

