
Thorough Static Analysis of Device Drivers

Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg,
Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner

Microsoft Corporation

ABSTRACT

Bugs in kernel-level device drivers cause 85% of the system
crashes in the Windows XP operating system [44]. One of
the sources of these errors is the complexity of the Windows
driver API itself: programmers must master a complex set
of rules about how to use the driver API in order to create
drivers that are good clients of the kernel. We have built
a static analysis engine that finds API usage errors in C
programs. The Static Driver Verifier tool (SDV) uses this
engine to find kernel API usage errors in a driver. SDV
includes models of the OS and the environment of the device
driver, and over sixty API usage rules. SDV is intended to
be used by driver developers “out of the box.” Thus, it has
stringent requirements: (1) complete automation with no
input from the user; (2) a low rate of false errors. We discuss
the techniques used in SDV to meet these requirements, and
empirical results from running SDV on over one hundred
Windows device drivers.

Categories and Subject Descriptors

D.2.4 [Software]: Software Engineering—Program Verifi-
cation; D.4.5 [Software]: Operating Systems—Reliability

General Terms

Reliability, Verification

Keywords

Software model checking, formal verification

1. INTRODUCTION
Writing a robust device driver requires a great deal of

expertise and precise understanding of how drivers are sup-
posed to interact with the operating system or kernel. Test-
ing a device driver is just as tricky. There are two main dif-
ficulties that typically limit the testability of device drivers:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’06, April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-0/06/0004 ...$5.00.

Observability: It is difficult to determine when something
goes wrong in the interaction between a driver and the
kernel. In the Windows operating system there are a
large number of kernel-level APIs, which gives rise to
many ways in which a driver can misuse these APIs.
Such errors rarely lead to immediate failures. Instead,
the system is left in an inconsistent state, resulting in
a crash or improper behavior at a later time. It would
be useful to detect the driver error at the point where
the root cause of the error happens.

Controllability/Coverage: Drivers that work correctly un-
der normal circumstances can have subtle errors that
appear only under rare and exceptional situations. Such
cases can be hard to purposefully exercise. As a re-
sult, traditional testing techniques usually fail to pro-
vide high coverage through the driver’s set of execution
paths.

What makes these problems particularly important is the
fact that, at least in the Windows operating system, device
drivers are the defacto mechanism for efficiently adding ba-
sic functionality into the operating system. In Linux, kernel
modules provide a similar facility. Software for virus protec-
tion, virtual machine emulation, performance monitoring,
and HTTP are all typically implemented, in part, as Win-
dows kernel-level device drivers.

For this reason a surprising number of developers across
the world are, in effect, Windows kernel developers. In order
for a kernel to execute correctly on a machine, the developers
of the drivers and kernel modules installed on that machine
must have all written their code to obey the kernel-level API
usage rules. Furthermore, features such as plug-and-play,
power management and asynchronous I/O all substantially
enhance yet complicate the Windows driver model—making
them a common source of driver errors.

We present a tool called SDV that uses static analysis
to enhance both the observability and coverage of device
driver testing. Increased observability is obtained by stat-
ing and checking rules about the proper use of kernel APIs.
Increased coverage is provided by a combination of two tech-
niques: (1) a hostile model of the driver’s execution envi-
ronment tests the driver in many stressful scenarios, such
as operating system calls continually failing; (2) an analysis
engine—called Slam1—based on model checking and sym-
bolic execution that simulates all possible behaviors of the

1We will refer to Slam as SDV’s analysis engine throughout
the remainder of the article

EuroSys 2006 73

code. This analysis engine seeks to find all ways that a de-
vice driver can disobey a set of API usage rules. Violations
that are found by the analysis engine are then presented as
source-level error paths through the driver code.

The Driver Abstraction Challenge. It is SDV’s goal to
check that device drivers make proper use of the driver API.
It is not SDV’s goal to check that device drivers perform
any useful function with respect to their intended feature.
Our hypothesis is that the amount of state that needs to be
tracked in order to make an accurate determination about
whether or not a driver obeys an API usage rule is relatively
small compared to the entire state of the driver. The chal-
lenge is to automatically separate the relevant state from
the irrelevant state.

SDV automatically abstracts the C code of a device driver
to a simpler form. We call this alternative program an ab-
straction of the original because it does not lose errors: any
API usage rule violation that appears in the original code
also appears in the abstraction. This abstraction then can
be checked efficiently against the API usage rule, which can
be encoded as a state machine.

The program abstraction is expressed as a Boolean pro-
gram, which has all the control-flow constructs of C (includ-
ing procedures and procedure calls) but only Boolean vari-
ables. These variables track the state of relevant Boolean ex-
pressions in the C program. SDV automatically constructs
a Boolean program from a C program and a set of pred-
icates (Boolean expressions) to be observed. SDV uses a
symbolic model checking algorithm based on binary deci-
sion diagrams [11] to check if a Boolean program obeys an
API usage rule.

To give a rough example, consider a driver with 100,000
lines of source code and complicated data structures. Sup-
pose the API usage rule being checked is intended to verify
that a particular spin lock is properly used. To check this
rule, SDV constructs a Boolean program where at each line
of the program it keeps track of the state of the spin lock
(via one Boolean variable), which can either be in the locked
or unlocked state. Thus, the Boolean program can have on
the order of 200,000 states (100,000 lines, with two states
per line), which is well within the limits of symbolic model
checking.

However, if this abstraction process were to yield too
many false errors, SDV would be ineffective. When SDV
finds an error path in the Boolean program, it checks that
same path in the original C program to determine if it is
a true error path. If necessary, rather than report false er-
ror paths to the user, SDV refines the Boolean program
(through the addition of new predicates) to eliminate false
error paths. This three step process of abstraction, model
checking and refinement is repeated until a feasible error
path is found or a proof of correctness is found.

1.1 Results and Overview
This paper makes the following contributions:

• It presents a static analysis tool that is able to find
all errors that a device driver (C program) may con-
tain with respect to a well-defined set of API usage
rules. SDV’s analysis has the effect of searching all
code paths. It uses abstraction to make the analysis
tractable and iterative refinement to greatly reduce the
number of false errors reported. This analysis process

distinguishes SDV from other dataflow analysis tools
that do not perform refinement and, as a result, may
report many false errors.

• It presents our experience with developing an environ-
ment model to stress the driver under analysis and a
set of rules that specify what it means for a driver to
be a good client of the Windows Driver Model (WDM)
API. The rules and models have been tuned over sev-
eral years, resulting in an automatic tool that works
“out of the box” on the developer’s desktop and has a
low rate of false errors.

• It presents the results of running SDV on 126 WDM
drivers with over 60 rules and on 20 KDMF drivers
(KDMF is a new driver API for kernel-level Windows
drivers) with over 40 rules. These results show that the
tool finds multiple errors in almost every driver. We
have investigated a number of error reports produced
by SDV together with the developers of these drivers.
We have found that 75%-80% of the errors that we
have investigated were acknowledged as real errors in
the drivers by the developers. In practice we found
that all of the false errors that are reported are due to
inaccuracies either in the rules or in the environment
model. We continually refine both the rules and the
environment model when we notice such false errors.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Sections 3 through 5 present
the core components of SDV: Section 3 presents the rules,
Section 4 discusses SDV’s environment models and Section 5
presents the architecture and workings of SDV’s analysis
engine using an example. Section 6 illustrates a real error
found by SDV on a Windows parallel port driver. Section 7
presents the results of running SDV on over one hundred
Windows device drivers. Section 8 discusses some of the
limitations of the SDV tool and how it can be improved.
Section 9 concludes the paper.

2. RELATED WORK
The testing and verification of systems code is mature re-

search area in which many advances have been made over
the years. For example, run-time testing tools that instru-
ment checks into a binary or OS system calls have been
successfully used together with test cases. Purify, for ex-
ample, performs this analysis in order to find array bounds
violations and errors related to the reading and freeing of
memory. Another example is Driver Verifier (DV) which
examines the actions of a Windows driver during execution.
DV is able to find many of the most frequently occurring
errors in a driver—and these errors can be extremely deep.

The drawback of concrete execution tools is they only find
errors which can be demonstrated during execution on the
particular machines in which the driver is being tested, and
only under the scenarios that are explicitly tried. This lim-
its the coverage of the analysis. In contrast, SDV uses tech-
niques such as model checking and symbolic execution to
systematically get high coverage.

Another approach is that of driver isolation, where the
driver writer is not given as much responsibility for the sys-
tem’s stability. Current research in this area focuses on find-
ing the right balance between system performance and sta-
bility. Drivers can sometimes be executed in user-space, or

74 EuroSys 2006

state {
enum { Unlocked=0, Locked=1 }
state = Unlocked;

}

KeAcquireSpinLock.return {
if (state == Locked)

error();
else

state = Locked;
}

KeReleaseSpinLock.return {
if (!(state == Locked))

error();
else

state = Unlocked;
}

enum { Unlocked=0, Locked=1 }
state = Unlocked;

void KeAcquireSpinLock_return() {
if (state == Locked)
error();

else
state = Locked;

}

void KeReleaseSpinLock_return() {
if (!(state == Locked))
error();

else
state = Unlocked;

}

bool b1 = false;

void KeAcquireSpinLock_return() {
if (b1)

error();
else

b1 = true;
}

void KeReleaseSpinLock_return() {
if (!b1)

error();
else

b1 = false;
}

(a) (b) (c)

Figure 1: (a) An API usage rule for spin locks, (b) its compilation into C code and (c) its corresponding
Boolean program.

the operating system can sometimes provide a virtual execu-
tion environment that appears to be kernel-space, but offers
more protection to the system from driver faults. Examples
of this approach include Nooks [44] and Xen [32]. Tools
like CCured [41] can also be used to provide a limited form
of isolation.

Detecting errors at compile time also is an active area of
current research. Tools in this area are based on theorem
proving, type systems, program analysis, model checking,
and combinations of these techniques.

Tools based on theorem proving, such as ESC [40] and
ESC/java [31] compile a program to a verification condi-
tion and use a theorem prover to prove the verification con-
dition. These tools typically require a user to annotate pre-
conditions and post-conditions on functions, and in certain
cases loop invariants on loops. By powering up type sys-
tems, we can encode certain kinds of errors as type errors,
and use the type checker to detect these errors. Examples of
such systems include the vault language [27] and the cqual
type-system. The esp tool checks C code against state ma-
chine properties [26] using interprocedural dataflow analysis.
The mops tool [14] uses push-down model checking essen-
tially on a reduced interprocedural control-flow graph of the
program to check for security errors on large systems. Ab-
stract interpretation [23] is a generic framework for studying
all such analyses. Instantiation of the framework requires a
specific abstract domain to be chosen by the designers of the
tool. Since the abstraction is conservative, all these tools are
prone to reporting false errors. In specific domains such as
numerically intensive programs, the abstract interpreter can
be tuned to reduce false errors to manageable limits [24].

In addition to the above tools, heuristic static analysis
tools that do not attempt to cover all paths, have also demon-
strated significant value. The PREfix [12] and PREfast
tools [39] perform heuristic analysis that does not cover all of
the execution paths, but has reportedly found many errors
in source code within Microsoft. Tools from the Meta Com-
pilation project at Stanford use heuristic analyses [29, 15,
33] as well, and they have successfully found many errors in
Linux. The false errors produced by these tools can be man-

aged after the analysis using techniques such as statistical
ranking.

SDV’s analysis engine, called Slam [1-9,37], implements
automatic iterative refinement based on error paths. This
idea first appeared in [36], and more recently in [16]. Both
efforts deal with finite state systems. In addition to Slam,
other tools have been built to check safety properties of C
programs using iterative refinement, notably Blast [35] and
Magic [13]. In the published literature, these tools have
been applied to some device drivers, but on a small scale.
In principle, SDV could use any of these model checkers as
its analysis engine. The contribution of SDV is the combi-
nation of its C analysis engine together with the large and
polished set of rules and environment models that are spe-
cific to Windows drivers. The contribution of this paper is
in the application of techniques from Slam and Blast at
an industrial scale.

3. API USAGE RULES
SDV’s analysis engine checks temporal safety properties

of sequential C programs. Roughly stated, temporal safety
properties are those properties whose violation is witnessed
by a finite execution path (see [38] for a formal definition).
A simple example of a safety property is that a lock should
be alternatingly acquired and released. We encode tempo-
ral safety properties in a C-like language that allows the
definition of a safety automaton [43, 45]. The automaton
monitors the execution behavior of a program at the level
of function calls and returns. The automaton can read (but
not modify) the state of the C program that is visible at the
function call/return interface, maintain a history, and signal
when a bad state occurs.

An API usage rule describes a state machine and has two
components: (1) a static set of state variables, described as
a C structure, and (2) a set of events and state transitions
on the events. The state variables can be of any C type,
including integers and pointers. Figure 1(a) shows a rule
describing the proper usage of spin locks. There is one state
variable locked that is initialized to 0. There are two events
on which state transitions happen —returns of calls to the

EuroSys 2006 75

state {
enum {Unlocked, Locked} state = Unlocked;

} watch KeAcquireSpinLock.$1;

KeAcquireSpinLock.return [guard $1] {
if (state == Locked) {

error;
} else {

state = Locked;
}

}

KeReleaseSpinLock.return [guard $1] {
if (state == Unlocked) {

error;
} else {

state = Unlocked;
}

}

Figure 2: Locking rule with watch and guard annota-
tions.

functions KeAcquireSpinLock and KeReleaseSpinLock. Er-
roneous sequences of calls to these functions results in the
execution of the error statement.

In fact, Figure 1 shows a simplified version of the real spin
lock rule. Figure 2 shows a more complete version of this
rule, which ensures that the analysis engine doesn’t get con-
fused by calls to KeAcquireSpinLock and KeReleaseSpinLock

that acquire and release locks on different objects. The rule
exhibits two additional elements: watch points and guards.
The watch annotation to the state structure instructs SDV
to track the state machine for each unique pointer value
that can arise as the first parameter of KeAcquireSpinLock.
(That is, the effect of the watch statement is to track the
state machine for each particular pointer value that can flow
into the first parameter of KeAcquireSpinLock). The guard

annotation on the events identifies which parameter corre-
sponds to the pointer value being “watched”. Combined
together, the effect of these two annotations is to instruct
SDV to check the locking rule on each unique pointer value
in isolation.

SDV comes with over 60 API usage rules (properties),
ranging from simple locking properties (such as given above)
to complex properties dealing with completion routines, plug-
and-play, and power management. Figure 3 summarizes
some of these rules. For example, the rule markingqueuedirps
checks that drivers mark an I/O request packet as pend-
ing (using IoMarkIrpPending) before queuing it. Another
rule, pnpsurpriseremove, checks that drivers do not call
IoDetachDevice or IoDeleteDevice when processing a plug-
and-play I/O request packet with type surprise removal.

These rules are a product of more than three years of ef-
fort. Each rule was developed from a suggestion in the doc-
umentation on Windows device drivers, and then rewritten
and refined based on candidate violations found in device
driver code when using SDV. While the rules were difficult
to define and refine, the cost of their development is now
being amortized over the value of the errors that are found
in each new driver.

4. OS ENVIRONMENT MODEL

NTSTATUS
IoAllocateAdapterChannel(

ADAPTER_OBJECT * AdapterObject,
DEVICE_OBJECT * DeviceObject,
ULONG NumberOfMapRegisters,
DRIVER_CONTROL * ExecutionRoutine,
void * Context
)

{
ULONG choice = SdvMakeChoice();
if (choice==0) {

return STATUS_SUCCESS;
} else {

return STATUS_INSUFFICIENT_RESOURCES;
}

}

Figure 4: SDV’s model of the kernel routine
IoAllocateAdapterChannel.

A device driver operates in the complex environment of
the operating system and other drivers in the driver stack.
Of course, for SDV to be usable it must analyze the source
code of a driver without access to the source code of Win-
dows or other drivers. For this reason SDV provides a model
for the environment in which the driver is executing. This
environment model is in the form of a C program and has
two parts. The harness code simulates the operating system
initializing and invoking the device driver (in various ways).
The stub code provides the semantics for the kernel APIs
that the driver might call.

The SDV environment model is quite hostile to the de-
vice driver under analysis. The harness probes the driver in
many different ways and the stubs simulate the kernel be-
having in both successful and failing modes. A key way we
make the environment model hostile to the driver is through
the introduction of non-deterministic behavior into the har-
ness and stubs. This non-determinism simulates the ker-
nel behaving in many unexpected ways, which is important
for probing error paths in the driver. It is exactly these
paths that are hard to cover with testing. The combina-
tion of non-determinism (in the model) with static analysis
and symbolic execution (in the analysis engine) achieves the
effect of covering all paths in the driver.

Figure 4 shows SDV’s stub that overapproximates the
meaning of the function function IoAllocateAdapterChannel.
This stub encodes the possibilities that the procedure could
return either a success or failure status. The analysis con-
siders both possibilities at every call to this function. Both
possibilities are considered due to SDV’s special treatment
of SdvMakeChoice. Each call to SdvMakeChoice returns a
fresh symbolic (unknown) integer and assigns it into the
variable choice. As a result, IoAllocateAdapterChannel

will non-deterministically either return STATUS SUCCESS or
STATUS INSUFFICIENT RESOURCES, depending on the value of
choice.

As mentioned before, the harness is the piece of C code
that mimics the operating system initializing and invoking a
driver. SDV associates one of two harnesses with each API
usage rule. SDV’s simple harness simulates the effect of all
of the following possible events:

• calling any of the driver’s dispatch routines

• calling the driver’s StartIo routine

76 EuroSys 2006

Rule Summary

adddevice Checks that a driver’s AddDevice routine
calls certain key APIs.

cancelspinlock Checks that cancel spinlocks are locked and
unlocked in strict alternation.

criticalregions Checks for certian common problems when
using critical regions.

danglingdeviceobjref
Checks that the driver calls
ObDereferenceObject after calling
IoGetAttachedDeviceReference.

doublecompletion Checks that drivers do not complete an I/O
request packet twice with IoCompleteRequest.

exclusiveresourceaccess Checks for common problems with exclusive
resource access.

forwardedatbadirql
Checks that I/O request packets that are
forwarded to other drivers at the wrong
interrupt request level

irpprocessingcomplete Checks that dispatch routines completely
process I/O request packets.

irql*
Many rules checking that functions are
called at correct levels of interrupt request
level.

lowerdriverreturn
Checks that, if a driver calls another driver
that is lower in the stack, then the dispatch
routine returns the same status that was
returned by the lower driver.

markingqueuedirps Checks that drivers mark I/O request
packets as pending while queuing them.

markirppending Checks that returns of STATUS PENDING and
IoMarkIrpPending are correlated.

Rule Summary

pendedcompletedrequest
Checks that drivers do not return
STATUS PENDING if IoCompleteRequest has been
called.

pnpirpcompletion
Checks that plug-and-play I/O request
packets are passed on to the lower driver in
the stack if one exists.

pnpsamedeviceobject Checks that IoAttachDeviceToDeviceStack is
called with an appropriate device object.

pnpsurpriseremove Ensure that drivers do not detach or delete
on IRP MN SURPRISE REMOVAL I/O request packets.

queuedspinlock Checks that queued spinlocks are locked
and unlocked in strict alternation.

spinlock Checks that spinlocks are locked and
unlocked in strict alternation.

spinlocksafe Checks for specific deadlock cases with
spinlocks

startiocancel Checks for cancellation races.

startiorecursion Checks for potential recursion in StartIo
routines.

targetrelationneedsref
Checks that dispatch routine call
ObReferenceObject on pointers returned by an-
other dispatch routine from a TargetRelation

plug-and-play I/O request packet.

wmicomplete
Checks that dispatch routines do not return
without completing a WMI I/O request
packet.

wmiforward
Checks that dispatch routines do not re-
turn without forwarding WMI I/O request
packets with disposition IrpForward.

Figure 3: Summaries of some of the API usage rules included with SDV.

• executing any deferred procedure calls

• executing any interrupt service routines

The routines are given symbolic inputs and arbitrary initial
states. In other words, SDV is effectively asking: does an
API usage rule hold for any of the available dispatch routines
when called on any input request?; does a rule hold for all
interrupt service routines if they are called from any state?;
etc. If a driver passes a rule using this harness, the result is
quite strong; it is valid regardless of the state of the system
before or after the execution.

However, for some rules the correctness of a driver will
depend on an event occurring in the driver’s DriverEntry

or AddDevice routines, or even the plug-and-play dispatch
routine when invoked on an I/O request packet with type
IRP MN START DEVICE. In these cases SDV uses a more com-
plicated harness which executes the driver symbolically with
respect to the following events:

• The driver’s DriverEntry routine, which initializes the
driver’s data structures, and then

• the driver’s AddDevice routine, which adds the device
and driver to their respective stacks, and then

• the driver’s plug-and-play dispatch routine with an
IRP MN START DEVICE I/O request packet (to start the
device), and then

• any dispatch routine, or deferred procedure call, or
interrupt service routine, or the driver’s StartIo func-
tion, and then

• the driver’s plug-and-play dispatch routine with an
IRP MN REMOVE DEVICE I/O request packet (to simu-
late the device being removed from the computer) ,
and finally

• the driver’s Unload routine, which the operating sys-
tem would call after a device remove event.

This harness leads to fewer false errors being reported but
results in increased analysis times.

5. ANALYSIS ENGINE
Figure 5 shows the architecture of SDV’s analysis en-

gine. SDV uses a technique called counterexample-guided
abstraction refinement to automatically search for an ab-
stract model of the original program which is sufficiently
precise in order to prove the program’s correctness with re-
spect to an API usage rule or find a true error. The key idea
is to find the C program state that is relevant to the rule
being checked, and to discard the rest. The details of this
process were published by the authors in previous papers.
Here, we give just the briefest overview of the technique, by
application to a small code example.

Figure 6(a) presents a sample of (simplified) C code from
a PCI device driver that processes I/O request packets. We
apply SDV to check if the code in Figure 6(a) obeys the
locking API usage rule of Figure 1(a).

SDV first compiles the API usage rule into a set of C
procedures (see Figure 1(b)), one for each event named in
the API usage rule. SDV also performs a pointer analy-
sis [25] on the program, which builds a graph representing
a static overapproximation of the possible pointer alaising
relationships between expressions occuring in the program.
Function pointers are compiled away using explicit calls to
the functions that appear in the aliasing graph. This graph
is kept around, as it is used throughout SDV’s analysis.

For each procedure p mentioned in the API usage rule,
SDV finds all calls to procedure p in the code and instru-
ments the code to call the appropriate procedure of Fig-

EuroSys 2006 77

same trace seen before?

true bug?

yes

bug found?

yesno

yes

no

no (with refinement

information for

abstraction)

no

yesapplies?

Rule

failure

Abstraction

applicable

Buggy trace

found!

Instrument

Environment

model

check

Driver passes

code

Driver source

API usage

rule

Rule is not

Abstract

Check

Refine

Figure 5: SDV’s analysis engine’s architecture

ure 1(b). Figure 6(b) shows the instrumented version of the
code from Figure 6(a). Note that calls to the appropriate
functions (from Figure 1(b)) are introduced at labels A, B,
and C in Figure 6(b).

This serves to convert the API usage checking problem
into a reachability problem: the function error() is called
by the composite program (driver + rule + environment)
if and only if the device driver violates the API usage rule.
SDV’s task is then to check that error() is not reachable in
the composite program. If, during the instrumentation step,
we discover that no event that triggers a call to error()

can be instrumented, then we report that the rule is not
applicable to the driver.

Otherwise, SDV passes the instrumented program to the
abstraction module, called Abstract. Abstract automat-
ically constructs a Boolean program abstraction of the orig-
inal program with respect to a finite set of predicates. The
set of initial predicates are those appearing in the C code of
the API usage rule. In our example, this set of predicates
consists of the single predicate (state==Locked) (as the
other predicate is simply the negation of this predicate).

First, let’s consider the translation of the C code in Fig-
ure 1(b) to the Boolean program code in Figure 1(c). Be-
cause state is a global variable and we wish to track the
state of the predicate (state==Locked), Abstract intro-
duces a global Boolean variable b1 to track this predicate.
The variable is initialized to false because the variable state
is initialize to Unlocked. The translation of the other state-
ments is straightforward, as the state variable already is
acting as a Boolean variable. (We will see a more compli-
cated example of abstraction soon.) The predicates (state

==Locked) and !(state==Locked) are translated to (b1)

and (!b1), as expected.
Now, let’s consider the translation of the C code of Fig-

ure 6(b) to the Boolean program code of Figure 6(c). Note
that many of the assignment statements in the example C
procedure are abstracted to empty statements in the Boolean
program. The Abstract tool uses the points-to analysis to

determine whether or not an assignment statement through
a pointer dereference can affect the predicate (state ==

Locked). The points-to analysis of the C program shows
that no location in the example procedure can alias the
address of the global state variable. Therefore, none of
the assignment statements in the example procedure can
affect the value of the predicate (state==Locked). Fur-
thermore: a side-effect analysis shows that none of the pro-
cedures, with the exception of KeAcquireSpinLock return

and KeReleaseSpinLock return, can modify the variable
state, so calls to these procedures are eliminated.

Finally, because none of the conditionals in the example

are related to the state variable, they are replaced with calls
to the SdvMakeChoice function (which non-deterministically
returns an integer value). As a result of this abstraction of
conditionals, the Boolean program will have more behaviors
(feasible execution paths) than the original C program.

Once a Boolean program is constructed, SDV’s Check
module exhaustively explores all possible states of the Boolean
program and checks whether the model can ever reach the
error procedure. In the Boolean program of Figure 6(c),
there are many execution paths leading to the error pro-
cedure. Check outputs a shortest error path which ex-
ecutes the function KeAcquireSpinLock return twice in a
row without an intervening call to KeReleaseSpinLock return.
This is possible because all the conditions in the procedure
example have been abstracted to call SdvMakeChoice.

Because the C program and the Boolean program abstrac-
tions have identical control-flow graphs, the error path in
the Boolean program also is a path of the C program. Now,
this path may or may not be a feasible execution path of
the original program. The Refine module takes a C pro-
gram and a potential error path as an input. It then uses
verification condition generation to determine if the path is
feasible. The answer may be “yes” or “no” or “don’t know”
(since this problem is undecidable, in general). If the answer
is “yes” or “don’t know” then SDV displays the path in the
original driver code using a GUI that is similar to a visual

78 EuroSys 2006

void example() {
do {
KeAcquireSpinLock();

nPacketsOld = nPackets;
req = devExt->WLHV;
if(req && req->status){

devExt->WLHV = req->Next;
KeReleaseSpinLock();

irp = req->irp;
if(req->status > 0){

irp->IoS.Status = SUCCESS;
irp->IoS.Info = req->Status;

} else {
irp->IoS.Status = FAIL;
irp->IoS.Info = req->Status;

}
SmartDevFreeBlock(req);
IoCompleteRequest(irp);
nPackets++;

}
} while(nPackets!=nPacketsOld);
KeReleaseSpinLock();

}

void example() {
do {
KeAcquireSpinLock();

A: KeAcquireSpinLock_return();
nPacketsOld = nPackets;
req = devExt->WLHV;
if(req && req->status){
devExt->WLHV = req->Next;
KeReleaseSpinLock();

B: KeReleaseSpinLock_return();
irp = req->irp;
if(req->status > 0){

irp->IoS.Status = SUCCESS;
irp->IoS.Info = req->Status;

} else {
irp->IoS.Status = FAIL;
irp->IoS.Info = req->Status;

}
SmartDevFreeBlock(req);
IoCompleteRequest(irp);
nPackets++;

}
} while(nPackets!=nPacketsOld);
KeReleaseSpinLock();

C: KeReleaseSpinLock_return();
}

void example() {
do {
;

A: KeAcquireSpinLock_return();
;
;
if (SdvMakeChoice()) then
;
;

B: KeReleaseSpinLock_return();
;
if (SdvMakeChoice()) {

;
;

} else {
;
;

}
;
;
;

}
while (SdvMakeChoice());
;

C: KeReleaseSpinLock_return();
}

(a) (b) (c)

Figure 6: (a) A sample of device driver code P , (b) instrumented code P ′ that checks proper use of spin
locks, and (c) initial Boolean program.

debugger.
Consider the (unique) execution path through the code in

Figure 6(a) that executes KeAcquireSpinLock twice without
executing an intervening call to KeReleaseSpinLock. Re-
fine detects that the path is infeasible in the original pro-
gram and generates the predicate (nPackets!=npacketsOld)
as the explanation for the infeasibility. This is because the
assignment of nPacketsOld to nPackets in the path makes
the predicate (nPackets!=npacketsOld) false. Since the
path does not contain the assignment statement nPackets++
(since the path avoids the call to KeReleaseSpinLock in-
side the loop), the predicate still will be false at the end
of the loop. However, in order to reach the second call to
KeAcquireSpinLock, the path requires the predicate (nPackets
!= npacketsOld) to be true. This contradiction is easily de-
tected using symbolic analysis.

Now, Abstract constructs the second Boolean program
(see Figure 7), which has a new Boolean variable b2 to track
the state of the predicate (nPackets!=npacketsOld). The
conditional of the do-while is refined from SdvMakeChoice()

to (b2) and two assignment statements now appear in the
Boolean program. The first assignment statement is b2=false
which captures the effect of the statement nPacketsOld =

nPackets on the predicate of interest. The increment state-
ment nPackets++ translates to the statement

b2=!b2?true:SdvMakeChoice()

which captures the fact that if nPacketsOld!=nPackets is
false before the assignment statement nPackets++ then the
predicate nPacketsOld!=nPackets must be true afterwards.

Executing the Check module on the refined Boolean pro-
gram establishes that it cannot execute the error function.
That is, all false error paths have been eliminated and no

true error paths have been found. Put another way, SDV
has established that the lock is held at the end of the do-
while loop if and only if nPacketsOld==nPackets. So, if the
lock is held then the loop terminates and KeReleaseSpinLock

is called. Otherwise, the lock is not held and the loop iter-
ates, calling KeAcquireSpinLock once more.

6. ANEXAMPLEERRORFROMTHEWIN-

DOWS PARALLEL PORT DRIVER
The previous section showed how SDV can validate that

a piece of code obeys an API usage rule. This section shows
a real error in a shipping Windows device driver that was
not found until SDV was applied to the driver. The paral-
lel port device driver used in Windows XP is a variation of
a device driver that was originally developed for Windows
NT (on which Windows XP is based). This device driver is
available as a sample in the Windows device driver develop-
ment kit (DDK). It consists of 24536 lines of C code. The
error was introduced when the device driver was updated to
support plug-and-play. The error survived code reviews and
extensive testing and was not found until SDV was applied
to the driver.

The error was found when checking a SDV rule called
doublecompletion which ensures that device driver dispatch
routines do not call the kernel-level API IoCompleteRequest
more than once on the same I/O request packet pointer. The
meaning of IoCompleteRequest is akin to free in C. This
function frees up the space pointed to by a pointer to a re-
quest packet. This space may be re-allocated and passed
to another thread in the system. For this reason, calling
IoCompleteRequest again on the same parameter I/O re-
quest packet can have disastrous consequences to the sys-

EuroSys 2006 79

void example() {
do {
;

A: KeAcquireSpinLock_return();
b2 = false;
;
if (SdvMakeChoice()) then

;
;

B: KeReleaseSpinLock_return();
;
if (SdvMakeChoice()) {
;
;

} else {
;
;

}
;
;
b2 = !b2 ? true : SdvMakeChoice();

}
} while (b2);
;

C: KeReleaseSpinLock_return();
}

Figure 7: The refined Boolean program.

state { bool CompletionAlreadyCalled = 0; }

IoCompleteRequest.entry

{

if (SdvHarnessIrp==$1) {

if (CompletionAlreadyCalled) { error(); }

else { CompletionAlreadyCalled = 1; }

}

}

Figure 8: SDV rule checking for multiple calls to
IoCompleteRequest on request packets passed to dis-
patch routines. This is a simplified version of the
doublecompletion in SDV distribution.

tem’s stability.
Figure 8 displays a simplified version of the rule. This rule

is then checked over each dispatch routine found in the de-
vice driver, where the first parameter to the dispatch routine
is a global variable defined in the harness as SdvHarnessIrp.
The rule defines one event: the calling of the kernel func-
tion IoCompleteRequest. During SDV’s analysis, if it is
exploring a path through which there are calls to the func-
tion IoCompleteRequest, then the code presented with this
event in Figure 8 will be executed.

In order to demonstrate this example error we have in-
cluded the relevant code from the driver in Figures 9, 10,
and 11. The key steps in the path found by SDV are as
follows:

• The environment (the OS, or possibly another driver)
calls the parallel port device driver’s close dispatch
routine, which is called PptDispatchClose (Fig.9, at
line 134). The variable Irp is a pointer to the I/O re-
quest packet on which the driver should not repeatedly

133 NTSTATUS
134 PptDispatchClose(PDEVICE_OBJECT DevObj,PIRP Irp) {
135 PFDO_EXTENSION fdx = DevObj->DeviceExtension;
136 P5TraceIrpArrival(DevObj, Irp);
137 if(DevTypeFdo == fdx->DevType) {
138 return PptFdoClose(DevObj, Irp);
139 } else {
140 return PptPdoClose(DevObj, Irp);
141 }
142 }

Figure 9: Source code from dispatchRedirect.c in
Parallel port device driver

call IoCompleteRequest.

• PptDispatchClose calls PptFdoClose (Fig. 10, line 4).

• PptFdoClose enters the conditional statement at line
19 in Fig. 10 and calls P4CompleteRequest (Fig. 11,
line 1775). P4CompleteRequest calls the kernel API
IoCompleteRequest on a pointer which aliases the value
of Irp from Figure 9 and returns to the call site.

• PptFdoClose (Fig. 10) leaves the conditional statement
via the goto on line 26. At line 63, PptFdoClose calls
P4CompleteRequestReleaseRemLock (Fig. 11, line 1790).

• P4CompleteRequestReleaseRemLock calls the function
P4CompleteRequest, which makes the second call to
IoCompleteRequest on a pointer that aliases Irp from
Figure 9.

Why wasn’t this error previously detected by concrete ex-
ecution tools or static analysis tools? Triggering it in real
life requires putting the parallel port device driver into a
state where it is handling a close request from the operating
system while the user simultaneously physically removes the
parallel port from the computer (via the removal of a laptop
from a docking station, for example). This scenario is diffi-
cult to realize via testing. Furthermore, the static analysis
required to find this error involves interprocedural program
analysis and careful tracking of pointer relationships (to en-
sure that IoCompleteRequest is called twice on the same
pointer value)—without this tracking a static analysis will
report too many false errors.

7. EXPERIMENTAL RESULTS

7.1 Errors Found
We first present the results of applying SDV to 126 WDM

drivers. This sample includes 26 DDK samples (see Fig-
ure 12) and 100 other kernel-mode drivers obtained from
various sources (ranging in size from 48 to 130,000 lines of
code with an average size of 12,000 lines of code). The
set includes device drivers for basic ports, storage, USB,
1394-interface, mouse, keyboard, PCI battery and file sys-
tem filters. These drivers were verified together with DLLs
(so called ”export drivers”) they utilize. A total of twenty
DLLs were involved. All these 126 drivers have been in use
for many years. They are very well tested and have been
code reviewed by Windows kernel experts. Additionally, the
sources of the 26 DDK sample drivers have been open and
available to anyone in the world for over five years. Thus,
we did not expect to find many errors in these drivers.

80 EuroSys 2006

03 NTSTATUS

04 PptFdoClose(

05 IN PDEVICE_OBJECT DeviceObject,

06 IN PIRP Irp

07)

08 {

09 PFDO_EXTENSION fdx = DeviceObject->DeviceExtension;

10 NTSTATUS status;

11

12 PAGED_CODE();

13

14 //

15 // Verify that our device has not been SUPRISE_REMOVED. Generally

16 // only parallel ports on hot-plug busses (e.g., PCMCIA) and

17 // parallel ports in docking stations will be surprise removed.

18 //

19 if(fdx->PnpState & PPT_DEVICE_SURPRISE_REMOVED) {

20 //

21 // Our device has been SURPRISE removed, but since this is only

22 // a CLOSE, SUCCEED anyway.

23 //

24 status = P4CompleteRequest(Irp, STATUS_SUCCESS, 0);

25

26 goto target_exit;

27 }

28

29

30 //

31 // Try to acquire RemoveLock to prevent the device object from going

32 // away while we’re using it.

33 //

34 status = PptAcquireRemoveLock(&fdx->RemoveLock, Irp);

35 if(!NT_SUCCESS(status)) {

36 // Our device has been removed, but since this is only a CLOSE

37 status = STATUS_SUCCESS;

38 goto target_exit;

39 }

40

41 //

42 // We have the RemoveLock

43 //

44

45 ExAcquireFastMutex(&fdx->OpenCloseMutex);

46 if(fdx->OpenCloseRefCount > 0) {

47 //

48 // prevent rollover - strange as it may seem, it is perfectly

49 // legal for us to receive more closes than creates - this

50 // info came directly from Mr. PnP himself

51 //

52 if(((LONG)InterlockedDecrement(&fdx->OpenCloseRefCount)) < 0) {

53 // handle underflow

54 InterlockedIncrement(&fdx->OpenCloseRefCount);

55 }

56 }

57 ExReleaseFastMutex(&fdx->OpenCloseMutex);

58

59 target_exit:

60

61 DD((PCE)fdx,DDT,"PptFdoClose -");

62

63 return P4CompleteRequestReleaseRemLock(Irp, STATUS_SUCCESS, 0,

64 &fdx->RemoveLock);

65 }

66

Figure 10: Source code from fdoClose.c in Parallel
port device driver

On the 126 WDM drivers, SDV reported 206 defects, of
which we have carefully investigated 65 to date. We double
checked the results of our investigation with the developers
who own and maintain the driver code. Of the 65 defects,
53 were true errors and 12 were false errors. Of the 60 rules
packaged into SDV, all the defects were found from 40 rules.
The other 20 rules are able to find injected defects but did
not find any defects in the drivers analyzed.

We also have developed over 40 rules for a new driver API
called Kernel-Mode Driver Framework (KMDF). KMDF im-
plements the fundamental features required for kernel mode
drivers, including complete support for plug-and-play, power
management, I/O queues, DMA, and synchronization. Rule
development for SDV influenced some KMDF design deci-
sions, helped clarify coding patterns for drivers that KMDF
is promoting, and made those design decisions precise by
specifying them as API usage rules. For example, by writ-
ing rules that check request completion and cancellation of
requests in the driver, some inconsistencies and ambiguities
in the design have been discovered and corrected.

We applied SDV to 20 KMDF sample drivers, including a
disk driver, a serial device driver that supports power man-

1773
1774 NTSTATUS
1775 P4CompleteRequest(
1776 IN PIRP Irp,
1777 IN NTSTATUS Status,
1778 IN ULONG_PTR Information
1779)
1780 {
1781 P5TraceIrpCompletion(Irp);
1782 Irp->IoStatus.Status = Status;
1783 Irp->IoStatus.Information = Information;
1784 IoCompleteRequest(Irp,IO_NO_INCREMENT);
1785 return Status;
1786 }
1787
1788
1789 NTSTATUS
1790 P4CompleteRequestReleaseRemLock(
1791 IN PIRP Irp,
1792 IN NTSTATUS Status,
1793 IN ULONG_PTR Information,
1794 IN PIO_REMOVE_LOCK RemLock
1795)
1796 {
1797 P4CompleteRequest(Irp,Status,Information);
1798 PptReleaseRemoveLock(RemLock,Irp);
1799 return Status;
1800 }

Figure 11: Source code from util.c in Parallel port
device driver

agement, as well as drivers for 1394, mouse, keyboard, PCI,
modem and video. The sample drivers were written by the
team that is developing KMDF by converting existing DDK
samples. The code for the samples was reviewed by several
independent experts. On these 20 drivers, SDV reported 18
defects, all carefully investigated together with the driver
owners. Out of 18 defects found, 12 have been confirmed to
be real errors in the drivers and have been corrected.

7.1.1 True Errors

The following is a brief summary of some of the true errors
that SDV found in the 126 device drivers:

• In one particular path the device driver is marking
I/O request packet pending with a kernel API, but is
forgetting to also mark it pending by setting a flag in
the data structure (the value of the flag is checked at
the end of the dispatch routine by the SDV rule).

• The driver’s dispatch routine is returning the return
value STATUS PENDING but has declared the I/O re-
quest packet as completed with IoCompleteRequest

• The driver is calling IoStartNextPacket from within
its StartIo routine, which can lead to recursion that
exceeds the stack space.

• Early in the execution the device driver is calling an
API that can raise the interrupt request level of the
thread, and then (much later) is calling another ker-
nel API that should not be called when the interrupt
request level is raised due to the fact that it touches
paged data.

• IoCompleteRequest is being called while holding a spin-
lock, which can cause deadlock.

EuroSys 2006 81

Driver Lines of Code

src/vdd/dosioctl/krnldrvr 304
src/general/tracedrv/tracedrv 337
src/general/ioctl/sys 556
src/input/moufiltr 678
src/general/cancel/sys 702
src/input/kbfiltr 753
src/general/cancel/startio 760
src/general/event/sys 760
src/kernel/mca/imca/sys 803
src/general/toaster/toastmon 1010
src/wdm/1394/driver/1394diag 1923
src/wdm/1394/driver/1394vdev 1958
src/storage/filters/diskperf 2110
src/network/modem/fakemodem 2324
src/wdm/hid/gameenum 2797
src/general/toaster/bus 3633
src/kernel/serenum 4430
src/general/toaster/func 4755
src/input/mouclass 5042
src/storage/fdc/flpydisk 5074
src/input/kbdclass 5316
src/input/mouser 5476
src/storage/fdc/fdc 7101
src/input/pnpi8042/daytona 15398
src/kernel/serial 23197
src/kernel/parport 24536

Figure 12: The 26 drivers from the Windows DDK.

• The driver is detaching a device object from the device
stack when handling a IRP MN SURPRISE REMOVAL I/O
request packet.

• Upon a driver exiting, an acquired resource is not re-
leased (for example, the rules ZwRegistryOpen and
CancelSpinLock found such errors).

Figure 13 provides some details about the true errors that
were found in the 26 DDK sample drivers. In the figure, “#
functions” is the number of C functions from the device
driver and OS environment model that occur in the path;
“# steps” indicates the number of assignments, conditional
checks, function calls or function returns that occured in
the error path. These numbers show that the error paths
are interprocedural in nature, spanning a good number of
procedures in both the driver and OS model.

7.1.2 False Errors

The three most common causes for false errors found by
SDV are deficiencies in: (1) the C model of the Windows
kernel routines; (2) the API usage rules; (3) the harness
that calls the dispatch routines. Few false errors have been
attributed to SDV’s analysis engine.

Let us address each of these problem areas in turn. First,
our C model of the kernel is written by hand rather than de-
rived automatically from analysis of the kernel. This model
has been kept as simple as possible for the set of rules SDV
checks. However, sometimes we abstract away too much
from the state of the kernel. As a result, there may be cor-
relations between two calls to the kernel that SDV misses.

Error ID # functions # steps runtime (s)

1 16 94 73.332
2 19 134 15.074
3 12 73 69.259
4 9 67 5.515
5 6 29 5.187
6 30 212 426.612
7 47 344 985.443
8 6 51 36.216
9 14 105 12.190
10 13 99 11.909
11 15 110 12.393
12 26 137 69.126
13 14 115 12.500
14 14 141 573.742
15 16 123 61.736
16 15 132 55.626
17 14 141 569.96
18 16 123 63.236
19 15 132 55.782
20 15 143 12.266
21 18 159 188.177
22 12 90 1012.078
23 12 112 204.769

Figure 13: Details of true errors found in the 26
DDK sample drivers. # functions means the num-
ber of C functions from the device driver or OS
model that occur in the path; # steps indicates the
number of assignments, conditional checks, function
calls or function returns that occured in the error
path.

This typically results in false errors, which lead us to refine
the kernel model.

Second, the kernel APIs for plug-and-play and power man-
agement are quite complex, with many corner cases. The
rules for these APIs were hard to get right. Often, kernel
experts in these areas would disagree with one another about
subtle points in the rules. As a result, we would develop a
rule and have to iterate many times with the experts, show-
ing them errors found by SDV and then refining the rules
if the errors were false. This took a tremendous amount of
time and energy.

Third, the harness only tries a limited set of execution se-
quences of dispatch routines (see Section 3). Suppose that
a device driver programmer knows that a certain dispatch
routine will always be called before others and sets up im-
portant invariants that the later dispatch routines depend
on. If this sequence is not encoded in the harness, false
errors may result. Unfortunately, it is too expensive to se-
quentially execute all possible interleavings of the dispatch
routines.

7.2 Performance of SDV
We now present results about the performance of SDV on

the 26 drivers from the DDK on the 64 rules supplied with
SDV. (These runs were performed on a Pentium 3.06 GHz
dual processor machine with hyper-threading and 2Gb of
RAM.) There are a total of 1664 separate checks (checking
a driver against a rule) performed. Of these checks, 885

82 EuroSys 2006

Avg. total predicates in scope 8.012
Avg. global predicates 6.194
Avg. min. local predicates per function 0.938
Avg. max. local predicates per function 4.550

Figure 14: Averages regarding predicates generated
during checking of 26 DDK sample drivers.

trivially pass because the error routine is not reachable in
the call graph of the instrumented program (see Figure 5
and Section 5). The remaining checks break down into the
following categories:

Pass 661
Error found 32
Abstraction failure 24
Tool failure 2
Timeout 64

So, we see that SDV is able to automatically prove that
the majority of checks pass (1546/1664 = .93). Of the re-
maining 118 checks, SDV found 32 errors, failed in 26 cases
and timed out in 64 cases with no definite result (a check
times out after 2000 seconds = 33.33 minutes). The failure
cases are broken into two categories: Abstraction failures
are when the tool is unable to eliminate a known false er-
ror path. These account for 24 checks. Tool failures are
undiagnosed errors in the SDV tool.

Of the 717 checks in which the model checking engine ran
and completed with a definite result (“Pass” or “Error”), it
iterated 5.63 times on average with a standard deviation of
11.21 iterations. That is, on average, five false errors (in-
feasible error path) were encountered and eliminated before
the engine was able to complete a proof or find a feasible
error path through the device driver. The median number
of iterations is two, which deviates substantially from the
average. That is, about half of the runs require only one
iteration. The average run-time of the 717 checks is 101 sec-
onds with a standard deviation of 267 seconds and a median
run-time of 17 seconds. There is a substantial variation in
run-time because the introduction of each new predicate by
refinement doubles the potential state space to be explored.
The average peak memory consumption of SDV over these
checks was 30.5Mb. Generally, SDV runs effectively in un-
der half a gigabyte of memory (though in certain situations
it can become a memory hog if the binary decision diagram
data structures used by the Check module blow-up in size).

In Section ??, we postulated that API usage rules could
be checked in device drivers by tracking a relatively small
amount of state when compared to the entire state of the
device driver. To demonstrate this we collected data about
the number of predicates generated when checking the rules
over the DDK device drivers. These statistics were collected
only in the cases where the API usage rule was actually ap-
plicable to the driver. Figure 14 shows that, on average,
eight predicates (Boolean variables) are needed at each pro-
gram location during SDV’s analysis. This is well within
the scope of the model checking technology that SDV uses.

8. DISCUSSION
We now discuss some of the ways in which SDV could

be extended to increase its applicability, precision and effi-
ciency.

8.1 Memory Safety
When SDV says that a driver passes a rule, this is a

guarantee that the tool is able to make after examining all
the code paths. However the guarantee comes with some
caveats. The soundness of SDV depends critically on the
assumption that the device driver does not have wild point-
ers. That is, SDV does not check for the memory safety of a
device driver, but assumes it. Another analysis (see for ex-
ample CCured [41]) is needed to discharge the assumption
of memory-safe behavior.

8.2 Concurrency with Shared Memory
SDV currently analyzes each device driver in isolation

with a sequential semantics, whereas in reality device drivers
execute in the multi-threaded environment of the operating
system. While many SDV’s rules are motivated by concur-
rency issues, since SDV only analyzes one thread at a time
it will miss errors that only are exhibited in the presence of
more than one thread. That is, SDV does not detect er-
rors that result from the interleavings of multiple threads.
A new tool Kiss [42] has been developed on top of SDV to
find some classes of concurrency errors. Kiss is not sound
(i.e. if Kiss reports that no race conditions have been found
this does not guarentee that no race conditions exist). We
are also investigating sound methods of supporting multi-
ple threads in SDV through extensions to the Check mod-
ule [20].

8.3 Integer and Bit-level Operations
SDV uses an automatic theorem prover [2] to implement

symbolic simulation of C programs in its Refine module.
This theorem prover (and provers like it, such as Simplify [28])
treat numbers as unbounded integers, rather than fixed-
width bitvectors. This can lead to cases where SDV reports
both false errors and also misses errors (in cases where the
error is due to overflow).

Furthermore, bit-level operations are treated as uninter-
preted functions, which means that SDV may produce addi-
tional false errors. Because we have not included rules that
rely on the values of bitwise operations, we find that few
false errors can be attributed to our approximate modeling
of bit vector operations, but this is an area for improvement.
See [17, 18, 19] for recent work on this subject.

8.4 Liveness and Termination
It would be nice to show that a driver always makes

progress. For example, we would like to show that when
given an I/O request packet, a driver eventually will cancel
or complete the packet. However, such a progress property
is not a safety property but a liveness property. SDV cur-
rently does not support analysis of such properties. See [10,
21, 22] for recent work in this area.

8.5 Supporting Binary-level Analysis
SDV is a source-level tool, meaning that bugs introduced

during compilation will be missed. In principle we could
adapt SDV for use on binaries, perhaps using techniques
described in [30].

8.6 Scaling SDV

EuroSys 2006 83

There are a number of dimensions to scaling SDV. One is
to get SDV to run efficiently on larger drivers. Work in the
BLAST project has shown how to greatly increase the effi-
ciency of the abstract-check-refine loop through the use of in-
cremental analysis [35] and better predicate generation [34].
We also have found that SDV performs many refinements
because its pointer analysis [25] is not field-sensitive. We
believe that replacing SDV’s pointer analysis with a field-
sensitive one would greatly decrease the number of calls to
the Refine module and increase SDV’s efficiency.

Another challenge related to scaling is to develop API us-
age rules for other driver models. As we have mentioned
above, KMDF is a new driver model that we have devel-
oped rules for. But there are many legacy driver models
supported by Windows, including networking, storage, au-
dio, display, etc. Each of these “models” is a library that
abstracts away from the WDM driver model but has its own
set of rules. It is an open question of how to scale rule de-
velopment in the face of a large number of APIs.

9. CONCLUSION
Device drivers provide the mechanism by which any de-

veloper can add functionality into the Windows kernel. But
kernel-level modules are hard to develop, and hard to test.
SDV is an automatic tool that attempts to prove the cor-
rectness of these device drivers with respect to a set of ker-
nel API usage rules. It has been used to find a number
of deep and hard-to-reproduce errors within device drivers
for the Windows operating system, including those that are
distributed as a part of the Windows driver development kit.

Like a dataflow analyzer, SDV analyzes all code paths.
However, it uses iterative refinement to greatly reduce false
errors. This iterative refinement, also known as counterexample-
guided abstraction refinement, distinguishes SDV from other
dataflow analysis tools that do not perform refinement. Per-
haps surprisingly, even though the analysis engine can pro-
duce false errors in theory, in practice we find that all the
false errors were inaccuracies either in the rules or in the en-
vironment model, and we continually refine both the rules
and the environment model whenever we notice such false
errors.

Acknowledgements

We would like to thank Nar Ganapathy, Bob Rinne, Rob
Short, Jim Larus, Adrian Oney, Amitabh Srivastava, and
Peter Wieland for their support of the SDV project.

10. REFERENCES

[1] T. Ball, B. Cook, S. Das, and S. K. Rajamani.
Refining approximations in software predicate
abstraction. In TACAS 04: Tools and Algorithms for
the Construction and Analysis of Systems, pages
388–403, 2004.

[2] T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato:
Automatic theorem proving for predicate abstraction
refinement. In CAV 04: Computer-Aided Verification,
pages 457–461, 2004.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K.
Rajamani. Automatic predicate abstraction of C
programs. In PLDI 01: Programming Language
Design and Implementation, pages 203–213, 2001.

[4] T. Ball, M. Naik, and S. K. Rajamani. From symptom
to cause: Localizing errors in counterexample traces.
In POPL 03: Principles of programming languages,
pages 97–105, 2003.

[5] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and
cartesian abstractions for model checking C programs.
In TACAS 01: Tools and Algorithms for Construction
and Analysis of Systems, pages 268–283, 2001.

[6] T. Ball, A. Podelski, and S. K. Rajamani. On the
relative completeness of abstraction refinement. In
TACAS 02: Tools and Algorithms for Construction
and Analysis of Systems, pages 158–172, April 2002.

[7] T. Ball and S. K. Rajamani. Bebop: A symbolic
model checker for Boolean programs. In SPIN 00:
SPIN Workshop, pages 113–130, 2000.

[8] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN 01:
SPIN Workshop, pages 103–122, 2001.

[9] T. Ball and S. K. Rajamani. Bebop: A path-sensitive
interprocedural dataflow engine. In PASTE 01:
Workshop on Program Analysis for Software Tools and
Engineering, pages 97–103, 2001.

[10] A. Bradley, Z. Manna, and H. Sipma. Linear ranking
with reachability. In CAV 05: Computer-Aided
Verification, pages 491–504, 2005.

[11] R.E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, C-35(8):677–691, 1986.

[12] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for finding dynamic programming errors.
Software-Practice and Experience, 30(7):775–802, June
2000.

[13] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in c. In
ICSE 03: International Conference on Software
Engineering, pages 385–395, 2003.

[14] H. Chen, D. Dean, and D. Wagner. Model checking
one million lines of c code. In NDSS 04: Network and
Distributed System Security Symposium, 2004.

[15] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors. In
SOSP 01: Symposium on Operating System
Principles, pages 73–88, 2001.

[16] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In
CAV 00: Computer Aided Verification, pages 154–169,
2000.

[17] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Predicate abstraction of ANSI–C programs using
SAT. Formal Methods in System Design (FMSD),
25:105–127, September–November 2004.

[18] B. Cook and G. Gonthier. Using Stalm̊arck’s
algorithm to prove inequalities. In ICFEM 05:
Conference on Formal Engineering Methods, pages
330–344, 2005.

[19] B. Cook, D. Kroening, and N. Sharygina. Cogent:
Accurate theorem proving for program verification. In
CAV 05: Computer-Aided Verification, pages 296–300,
2005.

[20] B. Cook, D. Kroening, and N. Sharygina. Symbolic
model checking for asynchronous boolean programs.

84 EuroSys 2006

In SPIN 01: SPIN Workshop, pages 75–90, 2005.

[21] B. Cook, A. Podelski, and A. Rybalchenko.
Abstraction refinement for termination. In SAS 05:
Static Analysis Symposium, pages 87–101, 2005.

[22] B. Cook, A. Podelski, and A. Rybalchenko.
Termination proofs for systems code. In PLDI 06:
Programming Language Design and Implementation,
2006.

[23] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for the static analysis of
programs by construction or approximation of
fixpoints. In POPL 77: Principles of Programming
Languages, pages 238–252, 1977.

[24] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Miné, D. Monniaux, and X. Rival. The ASTREÉ
analyzer. In ESOP 05: European Symposium on
Programming, pages 21–30, 2005.

[25] M. Das. Unification-based pointer analysis with
directional assignments. In PLDI 00: Programming
Language Design and Implementation, pages 35–46,
2000.

[26] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. In PLDI 02:
Programming Language Design and Implementation,
pages 57–68, June 2002.

[27] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In PLDI 01:
Programming Language Design and Implementation,
pages 59–69, 2001.

[28] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A
theorem prover for program checking. Technical
Report HPL-2003-148, HP Labs, 2003.

[29] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In OSDI 00:
Operating System Design and Implementation, pages
1–16. Usenix Association, 2000.

[30] G. Balakrishnan et al. Model checking x86 executables
with CodeSurfer/x86 and WPDS++. In CAV 05:
Computer-Aided Verification, 2005.

[31] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for java. In PLDI 02: Programming Language
Design and Implementation”, pages 234–245, 2002.

[32] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, and M. Williams. Safe hardware access
with the Xen virtual machine monitor. In OASIS’04:
Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure, June
2004.

[33] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static
analyses. In PLDI 02: Programming Language Design
and Implementation, pages 69–82, 2002.

[34] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L.
McMillan. Abstractions from proofs. In POPL 04:
Principles of Programming Languages, pages 232–244,
2004.

[35] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In POPL 02: Principles of
Programming Languages, pages 58–70, January 2002.

[36] R.P. Kurshan. Computer-aided Verification of
Coordinating Processes. Princeton University Press,
1994.

[37] S. Lahiri, T. Ball, and B. Cook. Predicate abstraction
via symbolic decision procedures. In CAV 05:
Computer-Aided Verification, pages 24–38, 2005.

[38] L. Lamport. Proving the correctness of multiprocess
programs. IEEE Transactions on Software
Engineering, SE-3(2):125–143, 1977.

[39] J. R. Larus, T. Ball, M. Das, Rob DeLine,
M. Fähndrich, J. Pincus, S. K. Rajamani, and
R. Venkatapathy. Righting software. IEEE Software,
21(3):92–100, May/June 2004.

[40] K. R. M. Leino and G. Nelson. An extended static
checker for Modula-3. In CC 98: Compiler
Construction, pages 302–305, 1998.

[41] G. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In POPL 02:
Principles of Programming Languages, pages 128–139,
January 2002.

[42] S. Qadeer and D. Wu. KISS: keep it simple and
sequential. In PLDI 04: Programming Language
Design and Implementation, pages 14–24, 2004.

[43] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, February 2000.

[44] M. M. Swift, B. N. Bershad, and H. M. Levy.
Improving the reliability of commodity operating
systems. In SOSP 03: Symposium on Operating
System Principles, pages 207–222, June 2003.

[45] M. Y. Vardi and P. Wolper. An automata theoretic
apporach to automatic program verification. In LICS
86: Logic in Computer Science, pages 332–344. IEEE
Computer Society Press, 1996.

EuroSys 2006 85

86 EuroSys 2006

