
Terminator: Beyond Safety
(Tool Paper)

Byron Cook1, Andreas Podelski2,3, and Andrey Rybalchenko2,4

1 Microsoft Research
2 Max-Planck-Institut für Informatik

3 Universität Freiburg, Institut für Informatik
4 EPFL

Abstract. Previous symbolic software model checkers (i.e., program
analysis tools based on predicate abstraction, pushdown model check-
ing and iterative counterexample-guided abstraction refinement, etc.) are
restricted to safety properties. Terminator is the first software model
checker for termination. It is now being used to prove that device driver
dispatch routines always return to their caller (or return counterexamples
if they if they fail to terminate).

1 Introduction

Terminator is a program analysis and verification tool for termination. It
supports large program fragments (i.e., >20,000 LOC) together with C pro-
gramming language features such as arbitrarily nested loops, arbitrarily nested
recursive functions, pointer-aliasing and side-effects, function-pointers, etc. It
is fully automatic; no annotations or auxiliary proof arguments (e.g., ranking
functions) need to be provided. It automatically synthesizes the termination ar-
gument. In the case where the proof cannot be refined Terminator produces
counterexamples in the form of (possibly nested) looping paths through the con-
trol flow graph. In program analysis terms, Terminator is interprocedural, path
sensitive and context-sensitive. Technically it is based on predicate abstraction,
pushdown model checking and iterative counterexample-guided abstraction re-
finement, i.e., on the ingredients of software model checkers such as Blast [12],
Magic [3], Slam [1].

We have applied Terminator to device drivers ranging in sizes from 5,000
to 35,000 LOC in order to prove that their dispatch routines always re-
turn to the operating system when called. These experiments were carried
out using an integration of Terminator and the Windows Static Driver
Verifier[1,15] product. Overall, 8 termination bugs were found in 23 device
drivers. The runtime ranged from 5 seconds to 44 hours. A full account
of the results can be found in [8]. See also the Terminator home page
http://research.microsoft.com/TERMINATOR.

2 Termination Analysis for Software

Reactive systems such as operating systems, web servers, mail servers, and
database engines are constructed from sets of components that we expect will

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 415–418, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

416 B. Cook, A. Podelski, and A. Rybalchenko

always terminate. Cases where these functions unexpectedly do not return to
their calling contexts leads to non-responsive systems and system crashes. Prov-
ing that these system components always terminate has been a challenge because,
until now, no termination tool has ever been able to provide the necessary capac-
ity (>20,000 LOC) together with accurate support for programming language
features such as arbitrarily nested loops and recursive functions, pointers and
side-effects, function-pointers, etc. Terminator fills this gap.

In the context of program analysis and model checking, tools checking pro-
grams over infinite data spaces have been targeted at safety properties. These
tools are usually based on abstraction. While the preservation of termination
properties from the abstract to the concrete system is sound (if the abstract
system terminates then so does the concrete one), it is also worthless in all but
pathological cases (with classical abstraction techniques related to homomor-
phic abstraction or simulation, the abstraction to a finite graph will ‘always’
introduce a loop and thus it will not preserve the termination property).

There exist tools for proving termination for very specialized classes of
programs and calculi, such as rewriting [11], logic and functional program-
ming [5,13,14], and imperative programs with specific arithmetic opera-
tions [2,6,9]. None of these tools targets scalability and the features of practical
programming languages.

3 Foundations Behind Terminator

Terminator is the culmination of successive research, namely (i) a new proof
rule for termination, (ii) an appropriate form of abstraction for the automation of
the proof rule via abstract interpretation, (iii) a form of iterative counterexample-
guided refinement not only of the abstraction but also of the candidate termi-
nation argument, and finally (iv) a practical algorithm for binary reachability
analysis that is used for validation of candidate termination arguments. Below
we highlight the theoretical foundations of Terminator.

(i) Termination argument. The termination argument constructed by Termi-

nator is a union of well-founded relations that forms a transition invariant, i.e.,
a binary relation over program states that contains the transitive closure of the
transition relation of the program [17]. One distinguishing feature of transition
invariants is that they can be constructed by abstract fixpoint computation.
This fits well into the framework of abstract interpretation [10] and thus leads
naturally to automatic methods.

(ii) Abstraction for termination. Transition predicate abstraction [18] overcomes
the above-mentioned limitation of classical abstraction techniques to the verifica-
tion of safety properties. Transition predicate abstraction induces a finite graph
where nodes are labeled by abstract transitions. Termination is determined by
the well-foundedness of those abstract transitions, and not the absence of loops.
Transition predicate abstraction can be refined in the classical way, namely by
adding more predicates [4].

Terminator: Beyond Safety 417

(iii) Refinement for termination. As described in [7], Terminator incremen-
tally constructs a candidate transition invariant and thus iteratively refines the
termination argument. This refinement is again guided by counterexamples. A
counterexample is here a path that leads some state s to some state s′ such
that the pair (s, s′) violates the candidate transition invariant (which does not
yet fully contain the transitive closure of the transition relation). The path, a
sequence of statements, may be viewed as a program. Terminator uses the
ranking function synthesis tool RankFinder [16] to compute a ranking func-
tion for this program. The corresponding ranking relation consists of all pairs of
states with decreasing rank, including the pair (s, s′). The refinement of the ter-
mination argument amounts to adding this relation to the candidate transition
invariant (a union of well-founded relations).

(iv) Binary reachability analysis. In the refinement loop described above, for
each new candidate transition invariant, we need to check its validity (the fact
that it contains the transitive closure of the transition relation). Terminator

implements this check, the binary reachability analysis, using a second kind of
refinement, namely counterexample-guided abstraction refinement (viz. of transi-
tion predicate abstraction). In contrast, a safety property translates to one fixed
invariant, whose validity is checked by (standard, unary) reachability analysis.
The crux of Terminator’s implemenation of binary reachability analysis is to
reduce each new binary reachability problem to a (unary) reachability problem
for a new program constructed by a syntactic transformation from the given pro-
gram [8]. After each transformation, Terminator applies (unary) reachability
analysis. In a sense, Terminator implements a reduction of termination not to
a safety property but to the existence of a certain safety property.

4 Beyond Termination

In some cases, termination depends on additional properties (such as: the
repeated request will eventually be served) that can be modeled as fairness
assumptions. Termination is an example of a basic liveness property. We are
working on the next generation of Terminator that will prove general liveness
properties under fairness assumptions.

References

1. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of device drivers.
In EuroSys’06: European Systems Conference, pages 73–85, 2006.

2. A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial programs. In VM-
CAI’05: Verification, Model Checking, and Abstract Interpretation, volume 3385 of
LNCS, pages 113–129. Springer, 2005.

3. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software
components in C. In ICSE’03: International Conference on Software Engineering,
pages 385–395. IEEE, 2003.

418 B. Cook, A. Podelski, and A. Rybalchenko

4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV’00: Computer Aided Verification, volume 1855 of
LNCS, pages 154–169. Springer, 2000.

5. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. The Journal of Logic Programming, 41(1):103–123, 1999.

6. M. Colón and H. Sipma. Practical methods for proving program termination.
In CAV’02: Computer Aided Verification, volume 2404 of LNCS, pages 442–454.
Springer, 2002.

7. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termina-
tion. In SAS’05: Static Analysis Symposium, volume 3672 of LNCS, pages 87–101.
Springer, 2005.

8. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI’06: Programming Language Design and Implementation (to appear), 2006.

9. P. Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In VMCAI’05: Verification,
Model Checking, and Abstract Interpretation, volume 3385 of LNCS, pages 1–24.
Springer, 2005.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In POPL’79: Principles of Programming Languages, pages 269–282. ACM Press,
1979.

11. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In RTA’04: Rewriting Techniques and Applications, volume
3091 of LNCS, pages 210–220. Springer, 2004.

12. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL’04: Principles of Programming Languages, pages 232–244. ACM
Press, 2004.

13. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. In POPL’01: Principles of Programming Languages, volume
36, 3 of ACM SIGPLAN Notices, pages 81–92. ACM Press, 2001.

14. N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. TermiLog: A system for checking
termination of queries to logic programs. In CAV’97: Computer-Aided Verification,
LNCS, pages 444–447. Springer, 1997.

15. Microsoft Corporation. Windows Static Driver Verifier. Available at www.
microsoft.com/whdc/devtools/tools/SDV.mspx, July 2004.

16. A. Podelski and A. Rybalchenko. A complete method for the synthesis of lin-
ear ranking functions. In VMCAI’04: Verification, Model Checking, and Abstract
Interpretation, pages 239–251, 2004.

17. A. Podelski and A. Rybalchenko. Transition invariants. In LICS’04: Logic in
Computer Science, pages 32–41. IEEE, 2004.

18. A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termi-
nation. In POPL’05: Principles of Programming Languages, pages 132–144. ACM
Press, 2005.

file:www.microsoft.com/whdc/devtools/tools/SDV.mspx
file:www.microsoft.com/whdc/devtools/tools/SDV.mspx

	Introduction
	Termination Analysis for Software
	Foundations Behind Terminator
	Beyond Termination

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

