
Termination Proofs for Systems Code ∗

Byron Cook
Microsoft Research

bycook@microsoft.com

Andreas Podelski
Max-Planck-Institut für Informatik

podelski@mpi-sb.mpg.de

Andrey Rybalchenko
Max-Planck-Institut für Informatik and

EPFL
rybal@mpi-sb.mpg.de and
andrey.rybalchenko@epfl.ch

Abstract
Program termination is central to the process of ensuring that sys-
tems code can always react. We describe a new program termina-
tion prover that performs a path-sensitive and context-sensitive pro-
gram analysis and provides capacity for large program fragments
(i.e. more than 20,000 lines of code) together with support for pro-
gramming language features such as arbitrarily nested loops, point-
ers, function-pointers, side-effects, etc. We also present experimen-
tal results on device driver dispatch routines from the Windows op-
erating system. The most distinguishing aspect of our tool is how
it shifts the balance between the two tasks of constructing and re-
spectively checking the termination argument. Checking becomes
the hard step. In this paper we show how we solve the correspond-
ing challenge of checking with binary reachability analysis.

Categories and Subject Descriptors D.2.4 [Software]: Software
Engineering—Program Verification; D.4.5 [Software]: Operating
Systems—Reliability

General Terms Reliability, Verification

Keywords Program termination, model checking, program verifi-
cation, formal verification

1. Introduction
Reactive systems (e.g. operating systems, web servers, mail servers,
database engines, etc) are usually constructed from a set of com-
ponents that we expect will always terminate. Cases where these
functions unexpectedly do not return to their calling context leads
to non-responsive systems. Device driver dispatch routines, for ex-
ample, must eventually return to their caller. Consider the function
in Figure 1 which is called from several dispatch routines within
theWindows serial enumeration device driver. This code calls other
serial-based device drivers by passing I/O request packets via the
kernel routine IoCallDriver (line 50, pIrp is a pointer to the

∗The second and third author were supported in part by the German Re-
search Foundation (DFG) as a part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Complex Sys-
tems” (SFB/TR 14 AVACS), by the German Federal Ministry of Educa-
tion and Research (BMBF) in the framework of the Verisoft project under
grant 01 IS C38.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’06 June 10–16, 2006, Ottawa, Ontario, Canada
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

request packet and FdoData->TopOfStack is the pointer to
another serial-based device driver). In the case where the other de-
vice driver returns a return-value that indicates success, but places
0 in PIoStatusBlock->Information, the serial enumera-
tion driver will fail to increment the value pointed to by nActual
(line 66), possibly causing the driver to infinitely execute this loop
and not return to its calling context. The consequence of this error
is that the computer’s serial devices could become non-responsive.
Worse yet, depending on what actions the other device driver takes,
this loop may cause repeated acquiring and releasing of kernel
resources (memory, locks, etc) at high priority and excessive phys-
ical bus activity. This extra work stresses the operating system,
the other drivers, and the user applications running on the system,
which may cause them to crash or become non-responsive too.
This example demonstrates how a notion of termination is cen-

tral to the process of ensuring that reactive systems can always re-
act. Until now no automatic termination tool has ever been able
to provide a capacity for large program fragments (>20,000 lines)
together with accurate support for programming language features
such as arbitrarily nested loops, pointers, function-pointers, side-
effects, etc. In this paper we describe such a tool, called TERMINA-
TOR.
TERMINATOR’smost distinguishing aspect, with respect to pre-

vious methods and tools for proving program termination, is how it
shifts the balance between the two tasks of constructing and respec-
tively checking the termination argument. The classical method is
to construct an expression defining the rank of a state and then to
check that its value decreases in every transition from a reachable
state to a next one. The construction of the ranking function is the
hard part and forms a task that needs to be applied to the whole
program. The checking part is relatively easy. In our method, the
task of constructing ranking functions is the relatively easy part;
they are constructed on demand based on the examination of only
a few selected paths through the program.
Furthermore, TERMINATOR is not required to construct only

one correct termination argument but rather a set of guesses of
possible arguments, some of which may be bad guesses. That is,
this set need not be the exact set of the ‘right’ ranking functions but
only a superset. We find the same monotonicity of the refinement
of the termination argument as with iterative abstraction refinement
for safety (the set of predicates need not be the exact set of ‘right’
predicates but only a superset).
Checking the termination argument is the hard part of our

method. This is because the termination argument is now a set
of ranking functions, not a single ranking function. With a single
ranking function one must show that the rank decreases from the
pre- to post-state after executing each single transition step. In our
setting it is not sufficient to look at a single transition step. Instead,
we must consider all finite sequences of transitions. We must show
that, for every sequence, one of the ranking functions decreases

415

1 NTSTATUS
2 Serenum_ReadSerialPort(CHAR * PReadBuffer, USHORT Buflen,
3 ULONG Timeout, USHORT * nActual,
4 IO_STATUS_BLOCK * PIoStatusBlock,
5 const FDO_DEVICE_DATA * FdoData)
6 {
7 NTSTATUS status;
8 IRP * pIrp;
9 LARGE_INTEGER startingOffset;

10 KEVENT event;
11 SERIAL_TIMEOUTS timeouts;
12 ULONG i;
13
14 startingOffset.QuadPart = (LONGLONG) 0;
15 //
16 // Set the proper timeouts for the read
17 //
18
19 timeouts.ReadIntervalTimeout = MAXULONG;
20 timeouts.ReadTotalTimeoutMultiplier = MAXULONG;
21 timeouts.ReadTotalTimeoutConstant = Timeout;
22 timeouts.WriteTotalTimeoutMultiplier = 0;
23 timeouts.WriteTotalTimeoutConstant = 0;
24
25 KeInitializeEvent(&event, NotificationEvent, FALSE);
26
27 status = Serenum_IoSyncIoctlEx(IOCTL_SERIAL_SET_TIMEOUTS, FALSE,FdoData->TopOfStack,
28 &event, &timeouts, sizeof(timeouts), NULL, 0);
29
30 if (!NT_SUCCESS(status)) {
31 return status;
32 }
33
34 Serenum_KdPrint(FdoData, SER_DBG_SS_TRACE, ("Read pending...\n"));
35
36 *nActual = 0;
37
38 while (*nActual < Buflen) {
39 KeClearEvent(&event);
40
41 pIrp = IoBuildSynchronousFsdRequest(IRP_MJ_READ, FdoData->TopOfStack,
42 PReadBuffer, 1, &startingOffset,
43 &event, PIoStatusBlock);
44
45 if (pIrp == NULL) {
46 Serenum_KdPrint(FdoData, SER_DBG_SS_ERROR, ("Failed to allocate IRP\n"));
47 return STATUS_INSUFFICIENT_RESOURCES;
48 }
49
50 status = IoCallDriver(FdoData->TopOfStack, pIrp);
51
52 if (status == STATUS_PENDING) {
53
54 status = KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
55
56 if (status == STATUS_SUCCESS) {
57 status = PIoStatusBlock->Status;
58 }
59 }
60
61 if (!NT_SUCCESS(status) || status == STATUS_TIMEOUT) {
62 Serenum_KdPrint (FdoData, SER_DBG_SS_ERROR, ("IO Call failed with status %x\n", status));
63 return status;
64 }
65
66 *nActual += (USHORT)PIoStatusBlock->Information;
67 PReadBuffer += (USHORT)PIoStatusBlock->Information;
68 }
69
70 return status;
71 }

Figure 1. Utility function containing a termination bug. This function is used by several dispatch routines in the Windows serial enumeration
device driver, SERENUM.SYS

416

T := ∅ (* termination argument: union of well-founded relations *)
repeat

(* check binary reachability for T *)
if R+

I ⊆ T then
report “Terminating”

else
ρ := a binary relation such that ρ ⊆ R+

I but ρ #⊆ T

(* find rank function for ρ if it exists *)
if ρ is not a well-founded relation then
report “Not Terminating”

else
(* construct termination argument *)
W := a ranking relation, i.e. ρ ⊆ W andW well-founded
T := T ∪ W

end.

Figure 2. Algorithm underlying TERMINATOR (from [13]). The
binary reachability analysis, which checks the inclusion R+

I ⊆ T ,
is described in Section 3. If the check fails, it returns a binary
relation ρ. The binary relation ρ is represented by a sequence of
statements (with a loop), i.e. a program. The construction of a
ranking function for this program and of the corresponding ranking
relationW is implemented via techniques explained in [22].

between the pre- and post-state. In other words: we must first find
all pairs of states s1 and s2 such that s1 is reachable from the pro-
gram’s initial state and s2 is reachable from s1; and we must then
show that the value of one the ranking functions decreases from s1
to s2. We call this task binary reachability analysis. Previously, it
was not known whether binary reachability analysis could be made
practical. The challenge raised by our approach was to show that
this is indeed the case.
In this paper, we show that one can make binary reachability

analysis practical. Furthermore, through experiments with TERMI-
NATOR on Windows device drivers, we demonstrate that it is effec-
tive at proving termination arguments for industrial systems code.

2. TERMINATOR
The algorithm for the incremental construction of termination argu-
ments underlying TERMINATOR is outlined in [13]. In this section
we briefly describe TERMINATOR’s design and explain the role that
binary reachability plays in it.
TERMINATOR iterates between two procedures: its binary

reachability analysis check the candidate termination argument,
while its rank function synthesis engine incrementally constructs
the termination argument.
See Figure 2. We assume a program P with a transition relation

R and a set of initial states I . We define the binary reachability
relation R+

I as the transitive closure of R restricted to reachable
states. It consists of the pairs of states (s1, s2) such that s2 is
reachable from s1 in at least one step and s1 itself is reachable
from an initial state s0. Formally,

R+
I ! {(s1, s2) | ∃s0 ∈ I . (s0, s1) ∈ R∗ ∧ (s1, s2) ∈ R+}

Binary reachability analysis is a procedure that checks whetherR+
I

is contained in a given binary relation T :

R+
I ⊆ T

In the case that the inclusion does not hold, there exists a non-
empty sequence of statements τ1, . . . , τi, . . . τn with an execution
sequence s0 →τ1 s1 . . . si−1 →τi si . . . sn−1 →τn sn such
that the pair of states (si, sn) is not in T , formally (si, sn) ∈ R+

I

but (si, sn) #∈ T . By the form of T in our setting, the two states
si and sn will always have the same program location; thus, the
statements τi+1, . . . τn form a cycle in the program. Let ρ be the
relation consisting of all pairs of states (si, sn) that are connected
by an execution sequence of the form described above (induced
by the sequence of statements τ1, . . . , τi, . . . τn). That is, the
relation ρ is the counterexample to the inclusion R+

I ⊆ T . We
have ρ ⊆ R+

I and ρ #⊆ T .
TERMINATOR applies a rank synthesis tool based on [22] to ρ

in attempt to construct a ranking function (thus proving its well-
foundedness). From this we can construct a corresponding ranking
relation W , which consists simply of the pairs of states with de-
creasing, positive rank. Thus, the constructed ranking relation W
contains the relation ρ and is well-founded. See Figure 3 for an
example.
Note that the union T of ranking relations, however, is in gen-

eral not well-founded (it is only disjunctively well-founded in the
terminology of [23]). This is why it would not be sufficient to show
the inclusion R ⊆ T , and why we must instead prove R+

I ⊆ T .
Our approach thus follows the framework of [20] where temporal
reasoning (here, about termination) is reduced to first order reason-
ing using auxiliary assertions (here, the union T of ranking rela-
tions).

Example. Consider Figure 4. In order to prove this program ter-
minating, TERMINATOR incrementally constructs a relation T that
must eventually contain the binary reachability relation of that pro-
gram. It is sufficient to specify (and to construct) the subrelations
T " with pairs of states at the same program location # where # is
one of 7, 12, 28 and 33. These locations form a set of cutpoints, in
the terminology of Floyd [15]. We then can prove

R+
I ∩ {(s, t) | s(pc) = t(pc) = #} ⊆ T "

for each #. The overall termination argument, T , can be constructed
as the union of the T "s together with a relation that expresses all of
non-composable pairs. Formally,

T ! T 7 ∪ T 12 ∪ T 28 ∪ T 33 ∪ T DIFF

where TDIFF is a large set of trivially well-founded relations loca-
tion such as {(s, t) | s(pc) = 3 ∧ t(pc) = 2}, {(s, t) | s(pc) =
3 ∧ t(pc) = 5}, etc. More precisely:

T DIFF !
[

i#=j

{(s, t) | s(pc) = i ∧ t(pc) = j}

The relations T " constructed by TERMINATOR are listed in
Figure 5. Note that T 28 = T 28

0 ∪ T 28
1 ∪ T 28

2 is a union of well-
founded relations but is itself not well-founded.
TERMINATOR starts with T "

0 , the empty relation denoted by
false, and adds ranking relations T "

1 , T "
2 etc. until there are

no more counterexamples for #. This means that the relation T"

formed by their union contains every pair (si, sn) of states at
location # such that si is reachable from a state s1 at the start of
main and sn is reachable from si by any non-empty sequence of
execution steps.
TERMINATOR’s binary reachability analysis is designed to sup-

port programs with pointer aliasing, as found in Figure 4. Notice
that the termination argument at program location 28, T28, does not
specify the relationships between x, y, p, and q. This is an example
of the separation of concerns in TERMINATOR. Binary reachability
analysis tracks the aliasing of *p but the termination argument does
not specify the aliasing relationships. Furthermore, the construction
of the termination argument does not need to track them.
In order to prove that T33 contains all pairs of states at loca-

tion 33, the binary reachability analysis must derive and prove that
b==true is a program invariant at location 36. It thus subsumes

417

1: do {
2: if (z>x) {
3: x++;
4: } else {
5: z++;
6: }
7: } while (x<y);

(a)Multipath loop

1: do {
2: assume(z>x);
3: x++;
7: } while (x<y);

(b) Loop representing the path
1 → 2 → 3 → 7 through the loop
in (a).

Q((x0, y0, z0), (x1, y1, z1)) ! z0 > x0

∧ x1 = x0 + 1
∧ y1 = y0

∧ z1 = z0

∧ x1 < y1

(c) The relation Q represents the path 1 → 2 → 3 → 7
through the loop in (a). The expression (x0, y0, z0) is used
to represent program states at the beginning of the loop body,
and (x1, y1, z1) is used to represent the resulting state after
executing the body. Three iterations of the loop in (b), for
example, can be represented by Q ◦ Q ◦ Q.

Figure 3. TERMINATOR uses binary reachability to search for possibly not well-founded paths and uses a rank function synthesis engine to
try and show that they are spurious counterexamples (i.e. that they are well-founded). For example: TERMINATOR might find the path 1 →
2 → 3 → 7 → 1 in the loop in (a). This path can be represented either as another program loop found in (b) or the relation Q from (c).
TERMINATOR’s rank function synthesis engine proves the well-foundedness of Q by finding the ranking function f(x, y, z) ! y − x. The
ranking relation W is defined as {(s, t) | f(t) > 0 ∧ f(t) ≥ f(s) + 1}, i.e. {(s, t) | t(y) − t(x) > 0 ∧ t(y) − t(x) ≥ s(y) − s(x) + 1}.

the synthesis of program invariants, the task of standard reachabil-
ity analysis. Again, this is an example of the separation of concerns
in TERMINATOR, since the construction of T 33 does not involve
deriving and proving the invariant.
If we comment out the code at line 11 in Figure 4 then TERMI-

NATOR fails to prove termination and produces the following path
through the program, denoted by line numbers (notice that the call
to Ack is not reachable in the first iteration of the loop).

stem = 20→ 21→ 23→ 24→ 25→ 27→ 29→ 39→ 40→
41→ 42→ 44→ 27→ 29→ 30→ 3→ 5→ 9→ 12

cycle = 3→ 5→ 6→ 7→ 3→ 5→ 9→ 12
The path is a lasso consisting of two parts, a stem and a cycle;

the cycle is iterated forever if it is entered by a state that results from
executing the stem. Notice that in general, the stem and the cycle
can contain the unrolling of one or more loops in the program.

3. Binary reachability analysis
In this section we describe the design and an implementation of
binary reachability analysis. We proceed as follows:

1. We give a characterization of R+
I by the least fixpoint of a

function F .
2. Guided by the structure of F , we show a transformation on P .
This transformation creates a new program bP that imple-
ments F . This means that the least fixpoint of F is equivalent
to the set of reachable states in bP .

3. We describe a transformation of bP that creates bPT . An error
location in bPT is not reachable if and only if the inclusion
R+

I ⊆ T holds. This allows us to use a temporal safety prover
to check the validity of T .

4. Finally, we describe how TERMINATOR transforms error paths
found by the safety checker in bPT to an input for TERMINA-
TOR’s rank function synthesis engine.

3.1 Fixpoint characterization
Wefirst define a function F whose least fixpoint isR+

I . The domain
of F consists of binary relations over states of the given program.
The least element is the transition relation restricted to initial states.

⊥ ! {(s1, s2) | s1 ∈ I ∧ (s1, s2) ∈ R}

Before formalizing F , we define an auxiliary function id(2) that
restricts the identity relation over the program states to the image
of its input relation, formally,

id(2)(X) ! {(s2, s2) | ∃s1. (s1, s2) ∈ X}.
Let ◦ denote the relational composition operator:

X ◦ Y ! {(s1, s3) | ∃s2. (s1, s2) ∈ X ∧ (s2, s3) ∈ Y }.
The function F takes a binary relation X as input. It returns the
relational composition of the union of X and the identity relation
restricted to the second component, with the transition relation R
of the program.

F (X) ! (X ∪ id(2)(X)) ◦ R

In effect F either copies the righthand component ofX into the left
before passing it to R, or else it simply passes X itself to R.

THEOREM 1. The binary reachability relation R+
I of the program

P is equal to the least fixpoint of the function F on the domain of
binary relations with the least element ⊥:

R+
I = lfp(F,⊥).

3.2 Reachability characterization
We define a transformation bP of the program P and an equivalence
relation . between pairs of states in P and states of bP . The trans-
formation reflects the structure of the function F , expressed in P ’s
programming language. We will establish a connection between the
least fixpoint of F over ⊥ and the set of reachable states of bP .
Let V = {v1, . . . ,vn,pc} be the set of program variables

in P , including the program counter. The set of variables bV of
transformed program bP contains V and a duplicate set of variables
‘V = {‘v1, . . . ,‘vn,‘pc}. These are used in bP to record values
of V in previous states (We will discuss how TERMINATOR create
these variables for pointer and records expressions in Section 4.2).
We say that a state bs in bP is equivalent to a pair of states (s1, s2)

in P , written bs . (s1, s2), if the following conditions hold.
bs(‘v1) = s1(v1) bs(v1) = s2(v1)

.

bs(‘vn) = s1(vn) bs(vn) = s2(vn)

bs(‘pc) = s1(pc) bs(pc) = s2(pc)

418

1 int Ack(int x, int y)
2 {
3 if (x>0) {
4 int n;
5 if (y>0) {
6 y--;
7 n = Ack(x,y);
8 } else {
9 n = 1;

10 }
11 x--;
12 return Ack(x,n);
13 } else {
14 return y+1;
15 }
16 }
17
18 void main()
19 {
20 int x = nondet();
21 int y = nondet();
22
23 int * p = &y;
24 int * q = &x;
25 bool b = true;
26
27 while(x<100 && 100<y && b)
28 {
29 if (p==q) {
30 int k = Ack(nondet(),nondet());
31 (*p)++;
32 while((k--)>100)
33 {
34 if (nondet()) {p = &y;}
35 if (nondet()) {p = &x;}
36 if (!b) {k++;}
37 }
38 } else {
39 (*q)--;
40 (*p)--;
41 if (nondet()) {p = &y;}
42 if (nondet()) {p = &x;}
43 }
44 b = nondet();
45 }
46 }

Figure 4. Example program. nondet() is used to represent non-
deterministically chosen integers and Booleans

Let bI be the set of initial states of bP defined as follows.
bI ! {bs | ∃s0 ∈ I . bs . (s0, s0)}

See Figure 6, which shows a transformation on program state-
ments. We construct bP by applying this transformation on each
statement of the program P . Let post bP denote the post operator of
the program bP .
There is an analogy between transformed statements and the

structure of the function F :
• The assignment statements in Figure 6 correspond to the appli-
cation id(2)(X),

• The if-conditional with non-deterministic choice between the
branches corresponds to the union X ∪ id(2)(X),

well-founded binary relations T "
k

7 T 7
0 (s, t) ! false

T 7
1 (s, t) ! t(y) > −1 ∧ t(y) ≤ s(y) − 1

12 T 12
0 (s, t) ! false

T 12
1 (s, t) ! t(x) > −1 ∧ t(x) ≤ s(x) − 1

28 T 28
0 (s, t) ! false

T 28
1 (s, t) ! t(y) > 100 ∧ t(y) ≤ s(y) − 1

T 28
2 (s, t) ! t(x) < 100 ∧ t(x) ≥ s(x) + 1

33 T 33
0 (s, t) ! false

T 33
1 (s, t) ! t(k) > 100 ∧ t(k) ≤ s(k) − 1

Figure 5. The termination argument (a union of well-founded bi-
nary relations T "

k between states at the same cutpoint location #)
incrementally constructed and then checked by TERMINATOR, thus
proving the termination of the program in Figure 4. TERMINATOR
starts with T "

0 , the empty relation denoted by false.

L: stmt =⇒

L: if (nondet()) {
‘v1 = v1;
...
‘vn = vn;
‘pc = L;

} else {
skip;

}
stmt

Figure 6. Transformation used to construct bP from P .

• The relational composition with R is reflected by i) having the
original statement of the program P after the conditional and ii)
the connection between states bs and pairs of states (s1, s2).

We formalize the analogy in the following theorem.

THEOREM 2. The least fixpoint of the function F on the domain of
binary relations with the least element⊥ is equal to the set of states
of the transformed program bP reachable after at least one step:

lfp(F,⊥) = post+bP (bI).

The equality holds under the assumption that we identify a state bs
with a pair of states (s1, s2) if they are .-equivalent.
The statement of Theorem 2 involves the following technicali-

ties:

• We assume that there are no statements in P whose destination
location is the initial location of P . This is because we do
not instrument the first instruction in P in order to model ⊥.
The tranformation will not be correct, however, if this first
instruction is reachable later during the program’s execution.

• We assume that the operator post bP treats the compound state-
ments

L: if (nondet()) {...} stmt

419

of the program bP as monolithic ones. This means that the inter-
mediate states at locations of bP added due to the transformation
are not considered to be elements of post+bP (bI).

We can now implement the binary reachability analysis in three
steps:

• Create the transformed program bP ,
• Compute the set of reachable states post+bP (bI), and
• Check the inclusion between the computed set and T .

3.3 Reachability characterization
In practice, we would like to stop the reachability computation as
soon as it becomes evident that the inclusion does not hold. In this
section we describe an additional transformation, applied on the
program bP , that addresses this issue.
The additional transformation takes the program bP and pro-

duces bPT by replacing each compound statement of bP (except the
initial statement):

L: if (nondet()) {...} stmt
by the statement:

L: if (!(TL)) { ERROR: skip; }
if (nondet()) {...} stmt

To construct the Boolean expression TL we first assume that the
relation T is represented by an assertion over variables ‘V and V ,
which denote the values of the program variables in the first and
the second component of the pairs (s1, s2) ∈ T . Note that the
program counter variable pc does not appear in the program text
of C programs. Hence, we cannot insert the assertion T into the
program text directly. To overcome this, we use the expression TL

that is obtained by substituting L for pc in T . For example, for
T = ((‘pc = L12 ∧ pc = L12) =⇒ (x > −1 ∧ x < ‘x) and
location L28 we obtain the following conditional:

L28: if (! (! (‘pc==L12 && L28==L12)
|| (x>-1 && x<‘x))

)
{

ERROR: skip;
}

We will revisit this example in Section 4.1.

THEOREM 3. The inclusion R+
I ⊆ T holds if and only if the

location ERROR is not reachable in the program bPT .

Now, we can apply a temporal safety checker on the program bPT

to prove the non-reachability of the location ERROR. For safety
checkers based on counterexample-guided abstraction refinement,
the formulation of bPT (particularly with several optimizations to be
described in Section 4) gives ample opportunity for good abstrac-
tions.

3.4 Analyzing error paths of bPT

We assume that a temporal safety checker can produce an error path
if the location ERROR is reachable. Next, we describe the interpre-
tation of such an error path π in the context of TERMINATOR’s
algorithm, which we have described in Section 2.
We need to extract a counterexample ρ to the inclusionR+

I ⊆ T
from the error path π. We observe that π must, at some point,
traverse through the positive branch of the conditional added by
the transformation in Figure 6. We split π at the latest appearance of
such statement into stem and cycle. We then remove all statements
that were added by the program transformation from the stem and
the cycle. Let Rstem and Rcycle be the transition relations of the
stem and the cycle, respectively. We produce the relation ρ, see

Figure 2, as follows.

ρ ! {(s2, s3) | ∃s1 ∈ I . (s1, s2) ∈ Rstem ∧ (s2, s3) ∈ Rcycle}
The resulting relation ρ is represented as a conjunction of atomic
assertions computed via a symbolic simulation of the path in P .
We assume that the safety checker also outputs an aliasing

configuration between pointer variables that together with the error
path π witnesses the reachability of the location ERROR in bPT . We
encode this information into ρ by an additional conjunction.
If the rank function synthesis step fails for the relation ρ, the

stem and the cycle constitute a possible counterexample to termi-
nation of the program P .

Example. Consider the following simple program:
1 void main() {
2 int x = nondet();
3 int * p = nondet();
4 if (p==&x) {
5 do {
6 x--;
7 } while(*p>0);
8 }
9 }

With a termination argument T 5 = false the (false) counterex-
ample to termination will be the stem = 2 → 3 → 4 → 5 and
cycle = 6 → 7 → 5.
The rank function synthesis engine knows nothing about point-

ers (i.e. the meaning of *p). However, if we symbolically simulate
this path while constructing the mathematical relationship, we can
see that *p and x represents the same value. Therefore, when con-
structing the mathematical relation representing this path, we can
simply use the same mathematical variable. Let v0 and v1 be the
values that both *p and x have before and after the execution of
the stem/cycle statements. We can define the stem and cycle repre-
sent mathematical relations Rstem and Rcycle as:

Rstem(v0, v1) ! true
Rcycle(v0, v1) ! v1 = v0 − 1 ∧ v1 > 0

Rcycle is well-founded, where the ranking function is v. This is
mapped back to a relation over program variables by choosing
either x or *p. That is, we could either use T 5(s, t) ! t(x) >
0 ∧ t(x) < s(x) or T 5(s, t) ! t(∗p) > 0 ∧ t(∗p) < s(∗p) for the
refinement of the termination argument.
Note that, even if we incorrectly assume that two C expressions

always alias, this does not cause an unsoundness in TERMINATOR.
The only constraint on T5 is that it is well-founded. If we use
the argument T 5(s, t) ! t(x) > 0 ∧ t(x) < s(x), the binary
reachability will find cases where x and *p do not alias if such
examples exist.

4. Optimizations
In this section we describe several optimizations that TERMINA-
TOR applies during the program transformation described in Sec-
tion 3. The first optimization exploits the fact that we can con-
struct and check termination arguments for one location at a time.
The remaining optimizations prune away executions of bPT that the
temporal safety checker does not need to consider when trying to
proving the non-reachability of the location ERROR. We implement
these optimizations as additional program transformations and per-
form them during the construction of the program bPT .

4.1 Specialization of bPT

The termination argument T for the program P is a conjunction
of termination arguments T " for each cutpoint #. Each termination

420

1 void main() 0.1 int ‘x, ‘y, ‘pc;
2 { 0
3 int x,y; 1 void main()
4 2 {
5 S: if(y>=1) { 3 int x, y;
6 while(x>=0) 4
7 { 4.1 ‘x = x;
8 L: x = x+y; 4.2 ‘y = y;
9 } 4.3 ‘pc = L0;

10 } 5 S: if (y>=1) {
11 } 6 while (x>=0)

7 {
8.1 L: if (‘pc==L
8.2 && L==L
8.2 && !(x>=0
8.3 && x<=‘x-1
8.4)
8.5) {
8.6 ERROR: ;
8.7 }
8.8 if (nondet()){
8.9 ‘x = x;
8.10 ‘y = y;
8.11 ‘pc = L;
8.11 }
8 x = x+y;
9 }
10 }
11 }

Program P Program bPT

Figure 7. Example of the program transformation for checking the
binary reachability query (‘pc = L∧pc = L) =⇒ (x ≥ 0∧x ≤
‘x − 1) at the location L.

argument T " is of the form

(‘pc = # ∧ pc = #) =⇒ (T "
1 ∨ · · · ∨ T "

n).

Assume that TERMINATOR is processing the location #. When the
program transformation creates a statement of the program bPT

at the location #′ #= # then the corresponding expression T is
equivalent to false, since the conjunction T" ∧ pc = #′ is valid.
Thus, we can drop the statement

if (! T_L) { ERROR: skip; }

at all locations different from # (see the example in Section 3.3).
Furthermore, we can also drop the statement

if (nondet()) { ... }

at these locations, since the states bs that are created by taking
the positive branch of the above conditional at location #′ #= #
cannot cause the computation to reach the location ERROR, be-
cause bs #∈ T ".
We apply this optimization on all examples in the remainder of

this section. See Figure 7 for an example of specialization of bPT .

4.2 Pre-variables for C programs
The program transformation described in Section 3 implicitly re-
quires that we create a pre-variable for every heap and stack loca-
tion addressable using C expressions from the program variables in
scope. However, in practice this is impossible.
Assume that TERMINATOR is processesing a termination argu-

ment for a given cutpoint. For each variable x of scalar type, i.e.,
int, char, long, etc., in scope of the cutpoint we count the
number n of dereference operators in the type definition of the vari-
able x. For example, if x is defined as int **x; then n = 2. For

1 void main()
2 {
3 int ...;
4 L0:
5 L1: while (...) {
6 ...
7 L2: while (...) {
8 ...
9 }
10 ...
11 }
12 if (...)
13 goto L0;
14 }

Figure 8. Example program with three cutpoints L0, L1, and L2.

each 0 ≤ i ≤ n + 1 we create the following pre-variable.

‘p . . .p| {z }
i times

x

and we insert the assignment statement

‘p . . .p| {z }
i times

x = * . . .*| {z }
i times

x;

in the conditional from Figure 6, during the program transforma-
tion.
Note that it is sound for TERMINATOR not to create duplicate-

variables for locations addressable in the original C program, this
only serves to make TERMINATOR more complete.
TERMINATOR also creates pre-variables for field access expres-

sions, say x->f, that appear in the termination argument. It cre-
ates a pre-variable ‘x f and the corresponding assignment state-
ment ‘x f = x->f;.

4.3 Structured programs
When proving the termination argument for a cutpoint # within a
structured program it is not necessary to prove termination at # for
executions that leave the # loop and then return—these executions
will be covered when proving termination of the outer loop. To
implement this optimization we insert

if (‘pc == L) { exit(); }

into the source code of the transformed program at exit points of
the loop that # represents.
We illustrate this optimization on Figures 8 and 9. Assume that

we are in the process of inferring a termination argument for the
cutpoint that corresponds to the while-loop at the location L2.
By inserting the conditional statement at line 9.1 we exclude from
consideration states bs, where bs(pc) = L2 that appear on compu-
tations leaving the inner loop and coming back to the location L2.

4.4 Weak binary reachability
In large programs, paths to a cutpoint can be very long. These
paths may execute many instructions that are not relevant to the
termination analysis at the cutpoint. We observed examples of such
paths on some dispatch routines when applying TERMINATOR.
TERMINATOR can abstract away the prefixes of such paths in two
different ways:

1. It could ignore all program statements that are executed be-
tween the start of the main function and the call to the function
containing the cutpoint under consideration.

421

1 void main()
2 {
3 int ...;
4 L0:
5 L1: while (...) {
6 ...
7 L2: while (...) {
7.1 if (! T_L) { ... }
7.2 if (nondet()) {...; ‘pc = L2;}
8 ...
9 }
9.1 if (‘pc == L2) { exit(); }

10 ...
11 }
12 if (...)
13 goto L0;
14 }

Figure 9. Transformed program for cutpoint L2 with the
return-statement at line 9.1 added due to optimization.

2. It could also ignore all program statements within the function
containing the cutpoint that appear between the first statement
and the statement that corresponds to the cutpoint.

Note that these optimizations must ensure that values that would
be initialized during the code that is being skipped must still be
initialized (with non-determinatic values) in the abstraction. In
most temporal safety checkers this is automatic. We introduce two
approximations R+

1 and R+
2 of the binary reachability relation

R+
I that correspond to the above abstractions. Then, we define

the corresponding program transformations that given a program
bPT create programs bP 1

T and bP 2
T which implement the first and the

second approximation respectively.
Let #entry be the entry location of the function containing the

cutpoint that we are analyzing. We define the first approximation
R+

1 as follows.

R+
1 ! {(s1, s2) | ∃s0. s0(pc) = #entry ∧

(s0, s1) ∈ R∗ ∧
(s1, s2) ∈ R+ ∧
s1(pc) = s2(pc) = #}

The second approximation R+
2 is the transitive closure of R re-

stricted to the cutpoint. Note that, ifR+
I is restricted to states where

the pc equals #, R+
I ⊆ R+

1 ⊆ R+
2 .

The program bP 1
T , which represents the approximation R+

1 , is
obtained from bP by inserting a call to the function containing the
cutpoint as the first instruction in the function main. We illustrate
bP 1

T in Figure 10(b).
The program bP 2

T , which represents the approximation R+
2 , is

obtained from bP 1
T inserting a goto-statement at the beginning

of the function containing the cutpoint. The destination label of
the goto-statement is the cutpoint location. We illustrate bP 2

T in
Figure 10(c).
TERMINATOR first analyzes bP 2

T . If bP 2
T ’s error location is not

reachable then TERMINATOR proceeds with the next cutpoint. If,
however, an error path is found, then TERMINATOR switches its fo-
cus to bP 1

T . If bP 1
T ’s error location is not reachable then, again, TER-

MINATOR proceeds with the next cutpoint. If an error path in bP 1
T is

found then TERMINATOR must revert to the original bPT . Note that
predicates found by a predicate-abstraction based temporal safety
checker during the analysis of bP 2

T can be reused with bP 1
T , etc.

1 void main() 1 void main() 1 void main()
2 { 2 { 2 {
3 ... 2.1 f(); 2.1 f();
4 g(); 2.2 exit; 2.2 exit;
5 ... 3 ... 3 ...
6 } 4 g(); 4 g();
7 5 ... 5 ...
8 void g() 6 } 6 }
9 { 7 7

10 ... 8 void g() 8 void g()
11 f(); 9 { 9 {
12 ... 10 ... 10 ...
13 } 11 f(); 11 f();
14 12 ... 12 ...
15 void f() 13 } 13 }
16 { 14 14
17 ... 15 void f() 15 void f()
18 L: while 16 { 16 {
19 ... 17 ... 16.1 goto L;
20 } 18 L: while 17 ...

19 ... 18 L: while
20 } 19 ...

20 }

(a) (b) (c)

Figure 10. (a) Example program with a cutpoint at location L in
the function f. (b) Transformed program bP 1

T for cutpoint L. The
safety checker does not consider the function g. (c) Transformed
program bP 2

T for cutpoint L. The safety checker considers neither
the function g nor the initial part of f.

1 void main()
2 {
3 int x=nondet(), y=nondet(), z=nondet();
4 if (y>0) {
5 do {
6 if (nondet()) {
7 x = x + y;
8 } else {
9 z = x - y;
10 }
11 } while (x<y && y<z);
13 }
14 }

Figure 11. An example program

This optimization does not affect TERMINATOR’s precision:
TERMINATOR produces counterexamples to termination only when
analyzing bPT . This optimization speeds up the analysis of pro-
grams that terminate, and slows down the checking of loops and
recursive functions that do not guarantee termination.

5. A complete example
In this section we work through a TERMINATOR-style termination
proof search on the program in Figure 11. As there is a only one
loop we need simply to find and prove a termination argument for
one program location (program location 5).

First iteration. We start the proof search with the termination
argument T 5 initialized to the empty argument, i.e. T 5(s, t) !
false. In order to check the validity of the termination argument
T 5, the binary reachability procedure will try to prove the safety
of a program that it constructs. Note that, in this case, weak binary
reachability is not powerful enough. This is due to the fact that we
must know y>0 during the analysis of the loop. For this reason
we will skip directly to strong binary reachability. Recall that our

422

implementation of binary reachability analysis produces a new
program and performs reachability analysis on it. The new program
in this case is:

0.1 int ’pc = 0;
0.2 int ’x, ’y, ’z;
1 void main()
2 {
3 int x=nondet(), y=nondet(), z=nondet();
4 if (y>0) {
5 do {
5.1 if (’pc==5) {
5.2 if (!(false)) {
5.3 ERROR: skip;
5.4 }
5.5 }
5.6 if (’pc==0) {
5.7 if (nondet()) {
5.8 ’x = x;
5.9 ’y = y;
5.10 ’z = z;
5.11 ’pc = 5;
5.12 }
5.13 }
6 if (nondet()) {
7 x = x + y;
8 } else {
9 z = x - y;
10 }
11 } while (x<y && y<z);
13 }
14 }

Note that T 5 = false is used in the conditional at line 5.2. A
temporal safety checker will find that the program location ERROR
(i.e. location 5.3) is reachable, with one possible counterexample
being: 3 → 4 → 5 → 5.1 → 5.6 → 5.7 → 5.8 → 5.9 → 5.10 →
5.11 → 5.12 → 5.13 → 6 → 7 → 8 → 10 → 11 → 5 →
5.1 → 5.2 → 5.3. This counterexample can be broken up into
a representative stem and cycle. We perform this by splitting the
stem from the cycle at the occurence of line 5.8, and then removing
all of the line numbers introduced by instrumentation. This leaves
us with:

stem = 3 → 4 → 5
cycle = 6 → 7 → 8 → 10 → 11 → 5

The stem and cycle represent the mathematical relationsRstem and
Rcycle:

Rstem((x0, y0, z0), (x1, y1, z1)) ! y1 > 0
∧ x1 = x0

∧ z1 = z0

Rcycle((x0, y0, z0), (x1, y1, z1)) ! x1 = x0 + y0

∧ z1 = z0

∧ y1 = y0

∧ x1 < y1

∧ y1 < z1

The counterexample that we pass to the rank function synthesis
engine is the relation

ρ1(s1, s2) ! ∃s0 ∈ I . (s0, s1) ∈ Rstem ∧ (s1, s2) ∈ Rcycle

The rank function synthesis engine can prove this relation well-
founded, and returns the following ranking relation computed dur-
ing the proof which over-approximates ρ1:

T 5
1 (s, t) ! t(x) < t(y) ∧ t(x) ≥ s(x) + 1

That is, we know that T 5
1 is well-founded and that ρ1 ⊆ T 5

1—
think of T 5

1 as the generalization or core-reason as to why the path
represented by ρ1 is a spurious termination counterexample. T5

1 is
then added to our termination argument:

T 5(s, t) ! T 5
1 (s, t) ∨ false

Second iteration. We then start the process again: we are trying to
prove termination at program location 5 and the current termination
argument, T 5, equals T 5(s, t) ! T 5

1 (s, t) ∨ false and where:

T 5
1 (s, t) ! t(x) < t(y) ∧ t(x) ≥ s(x) + 1

The binary reachability procedure will produce the following pro-
gram:

0.1 int ’pc = 0;
0.2 int ’x, ’y, ’z;
1 void main()
2 {
3 int x=nondet(), y=nondet(), z=nondet();
4 if (y>0) {
5 do {
5.1 if (’pc==5) {
5.2 if (!((x<y && x>=’x)
5.3 || false
5.4));
5.5 }
5.6 if (’pc==0) {
5.7 if (nondet()) {
5.8 ’x = x;
5.9 ’y = y;
5.10 ’z = z;
5.11 ’pc = 5;
5.12 }
5.13 }
6 if (nondet()) {
7 x = x + y;
8 } else {
9 z = x - y;
10 }
11 } while (x<y && y<z);
13 }
14 }

A temporal safety checker will find that ERROR is reachable, and
will produce the following counterexample:

stem = 3 → 4 → 5
cycle = 6 → 8 → 9 → 10 → 11 → 5

The representative relations Rstem and Rcycle are defined as:

Rstem((x0, y0, z0), (x1, y1, z1)) ! y1 > 0
∧ x1 = x0

∧ z1 = z0

Rcycle((x0, y0, z0), (x1, y1, z1)) ! z1 = x0 − y0

∧ x1 = x0

∧ y1 = y0

∧ x1 < y1

∧ y1 < z1

We can define a second counterexample relation, ρ2, as:

ρ2(s1, s2) ! ∃s0 ∈ I . (s0, s1) ∈ Rstem ∧ (s1, s2) ∈ Rcycle

ρ2 is also well-founded—the ranking relation produced is:

T 5
2 (s, t) ! t(y) < t(z) ∧ t(z) ≤ s(z) − 1

We again refine the termination argument:

T 5(s, t) ! T 5
2 (s, t) ∨ T 5

1 (s, t) ∨ false

423

Third iteration. We are now ready to try and prove the validity of
the termination argument:

T 5(s, t) ! T 5
2 (s, t) ∨ T 5

1 (s, t) ∨ false

The program that the binary reachability procedure produces is:
0.1 int ’pc = 0;
0.2 int ’x, ’y, ’z;
1 void main()
2 {
3 int x=nondet(), y=nondet(), z=nondet();
4 if (y>0) {
5 do {
5.1 if (’pc==5) {
5.2 if (!((y<z && z<=’z)
5.3 || (x<y && x>=’x)
5.4 || false
5.5));
5.6 }
5.7 if (’pc==0) {
5.8 if (nondet()) {
5.9 ’x = x;
5.10 ’y = y;
5.11 ’z = z;
5.12 ’pc = 5;
5.13 }
5.14 }
6 if (nondet()) {
7 x = x + y;
8 } else {
9 z = x - y;
10 }
11 } while (x<y && y<z);
13 }
14 }

The location ERROR is not reachable in this program and, therefore,
the final termination argument for program location 5 is valid:

T 5(s, t) ! T 5
2 (s, t) ∨ T 5

1 (s, t) ∨ false

where
T 5

2 (s, t) ! t(y) < t(z) ∧ t(z) ≤ s(z) − 1

T 5
1 (s, t) ! t(x) < t(y) ∧ t(x) ≥ s(x) + 1

Because there is only one cutpoint in this program, we can reason
that the final whole-program termination argument is:

R+
I ⊆ T 5

2 ∪ T 5
1 ∪ T DIFF

6. Experimental results
We have integrated TERMINATOR into the Static Driver Verifier
(SDV) formal verification tool [2, 21], which is distributed as a
part of the Microsoft Windows Device Driver Development Kit.
SDV uses a temporal safety checker to prove properties of device
drivers. SDV provides a set of safety properties together with an
abstract model of the environment in which device drivers exe-
cute. We were able to reuse SDV’s environment model in the new
integration after two minor modifications. The new property that
our SDV/TERMINATOR integration proves of a device driver is that
dispatch routines, when called, always return back to the environ-
ment’s call-site. The environment uses non-deterministic choices to
model the possibility of calling any of the device driver’s dispatch
routines, providing coverage for all of the dispatch routines in the
device driver.
We applied SDV/TERMINATOR to the standard 23 Windows OS

device drivers used within Microsoft to test SDV. Each of these 23
drivers provides from 5 to 10 dispatch routines.
The results of these experiments are displayed in Figure 12.

The results indicate the scalability of TERMINATOR to programs

D
riv
er

Ru
n-
tim
e (
se
co
nd
s)

Tr
ue
bu
gs
fo
un
d

Fa
lse
bu
gs
re
po
rte
d

Li
ne
s o
f c
od
e

Cu
tp
oi
nt
se
t s
iz
e

1 12 0 1 1K 3

2 8 0 0 1K 8

3 410 0 1 8K 26

4 1475 0 1 7.5K 24

5 123292 1 11 5.5K 50

6 196 1 3 5K 29

7 4174 0 0 8K 23

8 210 0 11 5K 27

9 1294 0 5 6K 38

10 158 0 0 8K 21

11 13 0 0 2.5K 6

12 204 0 0 2.5K 16

13 257 1 1 7.5K 26

14 5 0 0 1K 2

15 141 0 1 6.5K 18

16 22 0 0 1.5K 2

17 800 1 6 4K 35

18 1503 1 0 6.5K 31

19 209 0 3 3K 28

20 4099 0 2 10K 63

21 1461 1 4 16K 56

22 114762 0 5 34K 65

23 158746 2 10 35K 75

Figure 12. Results of experiments using an integration of TERMI-
NATOR with the Windows Static Driver Verifier[21] product (SDV)
on the standard 23 Windows OS device drivers used to test SDV.
Each device driver exports from 5 to 10 dispatch routines, all of
which must be proved terminating.

424

with up to 35,000 lines of code. In practice TERMINATOR spends
effectively 100% of its time in the binary reachability analysis. For
this reason, the results in Figure 12 also demonstrate the accuracy
and scalability of TERMINATOR’s binary reachability analysis.
The termination violations reported by TERMINATOR are split

into two categories in Figure 12: true bugs and false bugs. The false
bugs are due to inaccuracies in TERMINATOR’s analysis, which can
be categorized accordingly:
Heaps: Amajority of the false bugs were caused by loops in which

the program is walking a linked-list data structure. For example:

do { f(p); p = p->next} while (p != NULL);

TERMINATOR currently does not have a rank function synthesis
mechanism that accurately models operations occurring in the
program that modify the shape of the heap. TERMINATOR’s
rank function synthesis module can determine that a counter
pointed to by a pointer is decremented, but it is unable to reason
effectively about the effects of instructions on heap-sizes.
Note that, in cases where the drivers are using high-level op-
erations on kernel-level data-structures (such as queues and
stacks), these were not reported as bugs by TERMINATOR. This
is due to the fact that we were able to model the size of the
structures using arithmetic in the SDV environment model.

Bit operations: Our implementation of binary reachability analy-
sis overapproximates the meaning of the C bit operations such
as &1, meaning that TERMINATOR can return false counterex-
amples in cases where the termination condition requires a more
precision treatment of these operations.

Note that in most cases the false bugs caused by linked-lists and bit
operations are easily recognizable by the developer of the driver.
Another interesting aspect is that we saw no false bugs due to in-
accuracies in the environment model. This gives us hope that, with
improvements to the handling of bit-vectors and heaps, TERMINA-
TOR could achieve an unprecedented level of accuracy for auto-
matic program verification.
The true bugs in Figure 12 are termination counterexamples

found by TERMINATOR that have been confirmed as bugs by de-
velopers in the Windows kernel team. The bug in driver number 5
is the example used in Section 1 (Figure 1). In this case TERMINA-
TOR returned a path with 2531 steps (formally, a sequence of 2531
statements). The path was from the start of the environment model’s
main function through the driver and into the loop in Figure 1.

7. Related work
Automatic program termination is a research topic dating back to
Turing [24] and before. Techniques have been developed in a num-
ber of contexts, including term rewriting (e.g. [11, 16]) and logic
and functional programming (e.g. [9, 18, 19]). Inspired by the suc-
cess of automatic program verification for temporal safety prop-
erties (e.g. [2, 4, 17]), researchers have found a renewed interest
in techniques for proving program termination of imperative pro-
grams (e.g. [6, 7, 10, 14]).
In summary, our work differs from the previous research in two

ways:
• Our method and tool seems to be the first automatic program
termination analysis that is successfully applied to industrial
systems code.

• In the previous approaches for proving the termination of im-
perative programs, finding a ranking function is the main task

1 See [12] for more information on we might support these operations more
accurately

(proving that the ranking function actually decreases in every
computation step of the program is relatively easy). In our ap-
proach the main task is the check of the termination argument,
for which we have designed a binary reachability analysis.

One of the earliest abstraction-based verification tools, SYN-
TOX [5] can check the termination of Pascal programs using
greatest-fixpoint iteration. This is an alternative approach with a
different flavor than ours. The problem here is to develop practical
over-approximation techniques for greatest-fixpoint iteration.
There are other abstraction-based methods for termination that

are targeted at more specialized settings (e.g. [1] or [25]). These
approaches do not implement abstraction refinement, meaning that
loss of information under a (fixed) abstraction cannot be recovered.
We finally come to the comparison with model checking for

finite-state systems. It has been observed that for a given finite-
state system, termination can be reduced to a safety property2. The
algorithm in [3] makes this explicit using a program transformation,
but this fact implicitly underlies all model checking algorithms
for termination in finite-state systems. The idea is to search for a
repeated occurrence of the same state on some trace. Interestingly,
there exists a way in which our method generalizes the model
checking algorithm for termination of finite-state systems. Namely,
we can phrase the algorithm as the binary reachability analysis that
checks the inclusion R+

I ⊆ T for one particular binary relation
T , fixed independently of the finite-state system; T consists of all
pairs of different states.

T = {(s1, s2) | s1 #= s2} =
[

s1 #=s2

{(s1, s2)}

The relation T is a finite union of well-founded relations (finite
because of the limitation to finite-state systems; in fact, T is the
largest relation with this property). Hence, termination can be
shown by checking the inclusion of the binary reachability rela-
tion of the finite-state system in T , i.e. R+

I ⊆ T .

8. Conclusion
In this paper we have introduced a method and a tool, TERMINA-
TOR, that supports the following set of features:

Scalability. As the experimental results demonstrate, TERMINA-
TOR is able to analyze the termination of device driver dis-
patch routines with up to 35,000 lines of code. This is due to
the fact that TERMINATOR’s binary reachability analysis imple-
ments a form of counterexample-guided abstraction refinement
that leverages the locality of each binary reachability query.

Applicability. TERMINATOR supports most of the language fea-
tures required in at least one application area (device drivers):
arbitrary loop nesting, side-effects and aliasing, function-
pointers, etc. This is due to binary reachability which tracks
these details independently.

Automation. TERMINATOR is completely automatic. It does not
require the user to provide ranking functions or proof hints. This
is due to TERMINATOR’s counterexample-guided argument re-
finement mechanism, which leverages binary reachability.

Precision. TERMINATOR implements a precise path-sensitive and
context-sensitive program analysis.

Counterexample generation. TERMINATOR provides counterex-
amples to failed termination proofs. This is, again, a feature that

2 In contrast, for an infinite-state system, we have only shown that termina-
tion can be reduced to the existence of a safety property. The difficulty of
an automatic proof is that the tool has to find that safety property.

425

is a direct consequence of TERMINATOR’s binary reachability
analysis.

TERMINATOR achieves this milestone by shifting the burden
away from the construction of termination arguments and to the
checking of termination arguments. TERMINATOR constructs ter-
mination arguments which are the disjunction of (possibly many)
simple well-founded relations. Each of these relations is drawn, on
demand, from a simple and fast analysis on a single path through
the program. TERMINATOR’s binary reachability analysis, on the
other hand, must perform the arduous task of actually checking that
the disjunction of arguments covers over all possible pairs of states
within all possible traces through the program. The experiments
that we have performed with TERMINATOR show that this task can
be solved with satisfying accuracy and scalability.

Future work In the future we would like to investigate ways in
which binary reachability and TERMINATOR’s method of refine-
ment for termination arguments can be used when proving liveness
properties of concurrent programs. We would also like to inves-
tigate methods of accelerating the production of counterexamples
in TERMINATOR’s binary reachability analysis using tools such as
CBMC [8].
TERMINATOR could potentially be used in ways beyond simply

proving termination. For example, SYNTOX [5] is used to derive de-
bugging information, namely, to derive states that must inevitably
reach the error state, a property that can be phrased in terms of ter-
mination. TERMINATOR’s analysis could potentially be used in a
similar fashion.

Acknowledgments We would like to thank the following peo-
ple and groups for useful discussions regarding this work: Wolf-
gang Ahrendt, Domagoj Babic, Tom Ball, Clark Barrett, Andreas
Blass, Aaron Bradley, Koen Claessen, Marsha Chechick, East Lon-
don Massive, Jürgen Giesl, Alexey Gotsman, Yuri Gurevich, Arie
Gurfinkel, Alan Hu, Joe Hurd, Shuvendu Lahiri, the formal meth-
ods group at the National Security Agency, John Matthews, Sri-
ram Rajamani, Zvonimir Rakamaric, Mooly Sagiv, Mary Sheeran,
David Wahlstedt, Angela Wallenburg, the Windows SDV team and
Windows kernel team, Andrei Voronkov, and many others.

References
[1] I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate

abstraction. In VMCAI’2005: Verification, Model Checking, and
Abstract Interpretation, volume 3385 of LNCS. Springer, 2005.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-
Garvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough
static analysis of device drivers. In EuroSys’06: European Systems
Conference, 2006.

[3] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety
checking. In FMICS’02: Formal Methods for Industrial Critical
Systems, volume 66(2) of ENTCS, 2002.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-
critical software. In PLDI’2003: Programming Language Design and
Implementation, pages 196–207. ACM Press, 2003.

[5] F. Bourdoncle. Abstract debugging of higher-order imperative
languages. In PLDI’1993: Programming Language Design and
Implementation, pages 46–55. ACM Press, 1993.

[6] A. Bradley, Z. Manna, and H. Sipma. Linear ranking with
reachability. In CAV’05: Conference on Computer Aided Verification,
volume 3576 of LNCS. Springer, 2005.

[7] A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial
programs. In VMCAI’2005: Verification, Model Checking, and
Abstract Interpretation, volume 3385 of LNCS. Springer, 2005.

[8] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In TACAS’04: Tools and Algorithms for the Construction
and Analysis of Systems, volume 2988 of LNCS, pages 168–176.
Springer, 2004.

[9] M. Codish and C. Taboch. A semantic basis for the termination
analysis of logic programs. The Journal of Logic Programming,
41(1):103–123, 1999.

[10] M. Colón and H. Sipma. Practical methods for proving program
termination. In CAV’2002: Computer Aided Verification, volume
2404 of LNCS, pages 442–454. Springer, 2002.

[11] E. Contejean, C. Marché, B. Monate, and X. Urbain. Proving
Termination of Rewriting with CiME. In Extended Abstracts of the
6th International Workshop on Termination, WST’03, pages 71–73,
June 2003.

[12] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem
proving for program verification. In CAV’05: Conference on
Computer Aided Verification, 2005.

[13] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement
for termination. In SAS’2005: Static Analysis Symposium, volume
3672 of LNCS, pages 87–101. Springer, 2005.

[14] P. Cousot. Proving program invariance and termination by parametric
abstraction, lagrangian relaxation and semidefinite programming.
In VMCAI’2005: Verification, Model Checking, and Abstract
Interpretation, volume 3385 of LNCS. Springer, 2005.

[15] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz,
editor, Mathematical Aspects of Computer Science, volume 19 of
Proceedings of Symposia in Applied Mathematics, pages 19–32.
American Mathematical Society, 1967.

[16] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated
termination proofs with AProVE. In RTA’2004: Rewriting Techniques
and Applications, volume 3091 of LNCS, pages 210–220. Springer,
2004.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.
Abstractions from proofs. In POPL’2004: Principles of Programming
Languages, pages 232–244. ACM Press, 2004.

[18] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change
principle for program termination. In POPL’2001: Principles of
Programming Languages, volume 36, 3 of ACM SIGPLAN Notices,
pages 81–92. ACM Press, 2001.

[19] N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. TermiLog: A system
for checking termination of queries to logic programs. In CAV’97:
Computer-Aided Verification, LNCS, pages 444–447. Springer, 1997.

[20] Z. Manna and A. Pnueli. Temporal verification of reactive systems:
Safety. Springer, 1995.

[21] Microsoft Corporation. Windows Static Driver Verifier. Available at
www.microsoft.com/whdc/devtools/tools/SDV.mspx, July 2004.

[22] A. Podelski and A. Rybalchenko. A complete method for the
synthesis of linear ranking functions. In VMCAI’2004: Verification,
Model Checking, and Abstract Interpretation, volume 2937 of LNCS,
pages 239–251. Springer, 2004.

[23] A. Podelski and A. Rybalchenko. Transition invariants. In
LICS’2004: Logic in Computer Science, pages 32–41. IEEE, 2004.

[24] A. Turing. On computable numbers, with an application to the
Entscheidungsproblem. London Mathematical Society, 42(2):230–
265, 1936.

[25] E. Yahav, T. Reps, M. Sagiv, and R.Wilhelm. Verifying temporal heap
properties specified via evolution logic. In ESOP’2003: European
Symp. on Programming, volume 2618 of LNCS, pages 204–222.
Springer, 2003.

426

