SLAYER: Memory Safety for Systems-level Code

Josh Berdine, Byron Cook, and Samin Ishtiaq

Microsoft Research

Abstract. SLAYER is a program analysis tool designed to automati-
cally prove memory safety of industrial systems code. In this paper we
describe SLAYER’s implementation, and its application to Windows de-
vice drivers. This paper accompanies the first release of SLAYER.

1 Introduction

This paper describes SLAYER, a program analysis tool designed to prove the
absence of memory safety errors such as dangling pointer dereferences, double
frees, and memory leaks. Towards this goal, SLAYER searches for invariants that
form proofs in Separation Logic [8]. The algorithms implemented in SLAYER are
aimed at verifying moderately sized (e.g. 10K-30K LOC) systems level code bases
written in C. SLAYER is fully automatic and does not require annotations or
hints from the user.

2 Example

The majority of Windows faults are caused by third-party device drivers [1].
Because device drivers spend much of their time maintaining queues of requests,
many of these errors are related to maintaining memory safety while operating
over mutable linked data structures. Consider the code excerpt from the FireWire
device driver distributed in the Windows Driver Kit (WDK) v7600 shown in
Figure 1. The code is part of the cleanup routine in which allocated “isoch”
resources are deleted from the IsochResourceData list. The while loop (line 596)
and if test (line 600) traverse the list.

The suspicious code is on line 604 where the element is removed from the
wrong list. The code then assumes, on line 606, that listEntry is pointing into
the middle of an ISOCH RESOURCE_DATA , whereas it is actually pointing into
a CROM_DATA . The assignment to IsochResourceData on this line now sets it
to a parent object of the wrong type. SLAYER complains that it cannot verify
that the later accesses to IsochResourceData are to valid memory. This is a real
bug, now fixed in the Windows 8 codebase.

3 Applying SLAYER to device drivers

Although the current public release of SLAYER is as a standalone tool running
on vanilla C code, we have also integrated it with Static Driver Verifier (SDV) [1].

475 VOID
476 kmdf1394_EvtDeviceSelfManagedIoCleanup (
477 B IN WDFDEVICE Device)

478 @[]
{

PDEVICE_EXTENSION deviceExtension = NULL;
PLIST_ENTRY listEntry = NULL;

deviceExtension = GetDeviceContext(Device);

// Remove any isoch resource data
7/

El WHILE (TRUE)
{

if (1IsListEmpty(&deviceExtension->IsochResourceData))
{
PISOCH_RESOURCE_DATA IsochResourceData = NULL;

listEntry = RemoveHeadList(&deviceExtension->CromData);
IsochResourceData = CONTAINING_RECORD (

listEntry,

TISOCH_RESOURCE_DATA,

IsochResourceList);

} // if (!IsListEmpty(&deviceExtension->IsochResourceData))

}

} // kndf1394_EvtDeviceSelfianagedIoCleanup

Fig. 1. FireWire cleanup routine

In this integration, SLAYER is called instead of the model checker SLAM. The
SDV OS model used is an extension to SDV’s original OS model: it is developed
to be faithful both to various I/O protocols as well as to the heap.

The top-level user interaction is to provide the C source code of a Windows
Driver Framework (WDF) device driver, and get the result at the end of the
run. The result is one of: Safe (a proof the target memory safety property was
found); Possibly Unsafe (a failed proof in the form of an abstract counterexample
providing a path to a memory safety violation); or, Exhausted (Time/Memory
constraints exceeded). Figure 2 gives the overall tool flow picture.

A device driver consists of a set of dis-
patch routines. The OS model provides a

main function that simulates the lifetime of csmodelc

a driver (calls the driver’s dispatch routines) SUver

under the most general assumptions; it also e i il o Bl
provides behavioral specifications of the ker-

nel functions that the driver calls. The Mi-

crosoft Visual C compiler based frontend Separation Logc Prower

links the driver with the OS model to form

a complete, closed, sequential system that is

the input to the SLAYER analyzer.

The OS model can be viewed as the as- Fig. 2. SLAYER Flow
sumption under which the memory safety
property is proven for the source code. Ad-
ditionally, the OS model imposes the obliga-
tion that the driver maintain data structure integrity for objects passed over the
Driver—OS model interface. In this sense, underlying kernel and even hardware
properties can be seen to leak into the driver code.

4 SLAYER program analysis

SLAYER implements an analysis that attempts to prove the absence of memory
safety errors. Such an error occurs whenever dereferencing a pointer to an object
outside the object’s dynamic lifetime. Proving this property subsumes those such
as double-frees, and null or dangling pointer dereferences.

If SLAYER finds a proof, then the input program under our semantics is
memory safe. There are C programs (that overrun an array or access misaligned
data, for example) that are safe in our idealized semantics, but have undefined
meaning according to the C standard. This situation is characteristic of auto-
matic “sound” tools.

To elaborate, the main idealization in our semantics is the model of memory:
SLAYER takes a “logical”’, as opposed to a “physical”’, view of heap memory.
Memory is modeled as a collection of disjoint structured objects. The structure
of each object is determined by the source-level struct definition, omitting aspects
such as alignment, padding, and byte widths of scalar values. The memory model
is not even close to byte-accurate, so legitimate pointer traversals that use char*
as a universal type are not provable.

The focus of SLAYER is reasoning about the shape of mutable linked data
structures. To this end, validity of memory is treated at a per-object granularity.
In particular, arrays and structs are treated as unbounded objects where access-
ing any member from a valid object is valid, and any index of a valid array is
valid. This is deliberately in contrast to tools aimed at catching buffer overflows
such as ESP [4].

4.1 Prover

Assertion Language The particular fragment of Separation Logic used is,
like other tools such as Spacelnvader [10] and Thor [9], an extension of that
introduced in Smallfoot [3].

The assertion logic does not distinguish between the various C scalar types
such as pointers, integers and floats. It does distinguish offsets, which are not
first-class in C and represent differences between pointers to members of struc-
tured objects, and so are expressions that can be added to pointers via field
access “.”, or subtracted from them via CONTAINING RECORD. Structured val-
ues are represented using a form of records mapping offsets to scalar values
similar to a first-order theory of arrays (variables, select, store), but where the
domain is given by an associated C struct definition.

The pure, heap-independent, part of the logic is essentially passed through
to the Z3 SMT solver [5], thereby inheriting the same generality. Atomic pure
formulas in particular include (principally linear) arithmetic (<, <), and equal-
ity over address expressions (p = ¢, p.CromData # p.IsochResourceData). Pure
formulas are kept in negation-normal form.

Apart from Separation Logic’s emp, which describes an empty part of the
heap, atomic spatial formulas are of two forms: points-to or list-segment. A
points-to [— r describes a single heap cell at location [that contains an object

described by a record r. A list-segment Is(A, k, p, f,b,n) describes a possibly-
empty, possibly-cyclic, segment of a doubly-linked list, where the heap structure
of each item of the list is given by the formula A. This second-order inductive
predicate is used to support complex composite data structures [2].

Formulas are closed under separating conjunction P+ and disjunction PVQ,
and may have a prefix of existential quantifiers 3x.). Unlike related tools, for-
mulas are not restricted to disjunctive-normal form, and arbitrary nesting of x
and V is supported. While this generalization of representation does not add
expressivity in principle, and is a substantial complication for the implementa-
tion, there are several motivations. One is the ability to compactly represent
assertions that otherwise may blow up when expressed in DNF: for example it is
common for different code branches to produce formulas whose heap structures
differ in only a small region. Another is added flexibility in the design of theorem
proving algorithms, where small proofs generally require (intermediate) formulas
not in DNF.

Subtraction All manipulation of formulas performed by the program analysis
operations in SLAYER are, at the core, defined in terms of a judgment form
called subtraction (a generalization of “frame inference” introduced in [3]), and
implemented using a prover for these judgments. A subtraction judgment M +
Jx. S ~ R holds if and only if the entailment M F Jx. (S*R) is universally valid.
This is a production form, where a valid remainder R is computed as a function
of the minuend M, existentials @, and subtrahend S. Informally, a subtraction
query M F Jx.S ~» asks the prover to re-express M, possibly weakening it,
into the form S % R, thereby ensuring that heaps satisfying M have subheaps
satisfying S, and yielding a formula R that describes the rest of each M heap.

Proof search is performed using a sequent calculus that includes deduction
rules specific to the fragment’s atomic formulas. A particular collection of axioms
involving — and Is are built into the calculus. These axioms generally require
induction to prove, and by adding them to the prover it is able to prove induc-
tive properties without searching for induction hypotheses. Additionally, these
axioms, and knowledge of the semantics of the atomic forms, are used to di-
rect aggressive use of Cut where subformulas of S are used to choose small but
not atomic or quantifier-free intermediate proof goals. Searching for proofs with
Cut enables localizing case analysis, resulting in much smaller proofs and search
spaces, as well as more compactly represented remainders.

Reasoning about pure formulas is done using 73, given an axiomatization of
the pure fragment of the assertion logic. To enable incremental solving, during
proof search SLAYER maintains a first-order approximation of the hypotheses in
Z3. Leaves of proof trees are discharged by Z3, as they are implications between
pure formulas. Z3 is also used to reason about equality between pointers in order
to guide application of proof rules that manipulate spatial formulas. Addition-
ally, some case splits in the sequent calculus are directed by unsatisfiable cores
extracted by Z3. Overall this results in many small queries, involving the theories

of arrays, data types, integer linear arithmetic, uninterpreted functions, as well
as quantifier elimination for each.

The prover implemented in SLAYER is not complete, due (in part) to limited
treatment of quantifiers and not attempting to find proofs using induction over
the second-order list segments.

4.2 Symbolic Execution and Abstraction

Interprocedural Analysis SLAYER uses a version of the Reps-Horowitz-
Sagiv algorithm with localization [7] to perform a whole-program interproce-
dural analysis. The procedure specifications computed as summaries take the
form Vg. {P}f(x){Q}. The ghost variables g allow values on procedure entry to
be compactly related to those on exit. Application of such specifications relies
on subtraction’s ability to reason adequately about quantified formulas. This
parameterization is useful, for instance, to treat so-called heap cutpoints, as well
as to express pure pre/post relations, to for instance reestablish properties of
shadowed stack variables when returning from recursive procedures.

Transformers Individual instructions, including specification statements, are
symbolically executed following Smallfoot [3]. Given the generalization of sub-
traction to arbitrary disjunction and existential quantification, no separate “re-
arrangement” operation is needed in SLAYER.

Abstraction The abstraction operation that generalizes formulas to loop in-
variants takes the form of a rewrite system that progressively weakens formulas,
similar to Spacelnvader [6]. Instead of syntactic variable occurrence conditions,
SLAYER uses rewrite rules guarded by properties involving a form of reacha-
bility through formulas modulo provable equality. Syntactic conditions proved
too fragile when using a more general assertion logic. Another difference is that
subtraction is used to perform the actual manipulation of the formulas, which
means that the algorithms which determine how and if to rewrite do not need
to know the full logical meaning of formulas.

Abstraction has also been extended to arbitrarily nested disjunction. When
considering whether to apply a particular weakening of the formula, all the
deeper disjuncts are considered, and distinctions where both alternatives appear
are not preserved. This enables abstracting and hoisting common facts out of
disjunctions, transforming formulas closer to conjunctive-normal form. So unlike
the join operation of [10] which merges disjuncts of DNF formulas, the support
of nested disjunction allows merging parts of formulas even when they cannot
be fully merged.

5 Experimental Results and Availability

Table 1 presents some experimental results. The fw programs are extracted from
the Windows FireWire driver, and are representative of device driver type code:

a lot of control structures, traversal through linked lists, pointer arithmetic (the
cleanup_isochresourcedata tests are the FireWire bug testcases). The sll pro-
grams are similar but avoid using CONTAINING RECORD to factor out pointer
arithmetic. We are very conscious of the differences and prototype status of
tools in this field; we present these results only as a strawman benchmark. The
table gives the time, usr+sys in seconds, for SLAYER to prove each test Safe
or Possibly Unsafe. The machine used was an Intel E5630 running Windows 7
64-bit.

fw/attach_buffer_insert_head_list.c Safe 1.8 s1l/append.c Safe 14.2
fw/callback_remove_entry_list.c Safe 99.8 s1ll/copy.c Safe 3.8
fw/cleanup_isochresourcedata.c Safe 28.0 sll/copy_unsafe.c Unsafe 0.3
fw/cleanup_isochresourcedata_unsafe.c Unsafe 1.8 sll/create.c Safe 0.1
fw/cromdata_add_remove.c Safe 31.5 sll/create_kernel.c Safe 3.8
fw/is_on_list_flat.c Safe 18.2 sll/destroy.c Safe 0.4
fw/is_on_list_via_devext.c Safe 53.1 sll/filter.c Safe 10.5

sll/find.c Safe 3.5

sll/reverse.c Safe 1.2

sll/traverse.c Safe 0.7

Table 1. Benchmarks

SLAYER is available from http://research.microsoft.com/slayer. The down-
load includes these benchmarks, and other C programs that stress memory safety.
We plan to make a set of releases that revise the core components (analyzer per-
formance, OS model fidelity), and to make our integration with SDV available.

References

1. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S. K. Rajamani, and A. Ustuner. Thorough Static Analysis of Device
Drivers. In FuroSys, 2006.

2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, and
H. Yang. Shape analysis for composite data structures. In CAV, 2007.

3. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with separation
logic. In APLAS, 2005.

4. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. In PLDI, 2002.

5. L. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In TACAS, 2008.

6. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS, 2006.

7. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-
rated heap abstractions. In SAS, 2006.

8. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL, 2001.

9. S. Magill, M-H. Tsai, P. Lee, and Y-K. Tsay. THOR: A Tool for Reasoning about
Shape and Arithmetic. In CAV, 2008.

10. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W.
O’Hearn. Scalable shape analysis for systems code. In CAV, 2008.

