
Repair of Boolean Programs with an Application to C

Andreas Griesmayer1, Roderick Bloem1, and Byron Cook2

1 Graz University of Technology
2 Microsoft Research

Abstract. We show how to find and fix faults in Boolean programs by extending
the program to a game. In the game, the protagonist can select an alternative im-
plementation for an incorrect statement. If the protagonist can do so successfully
using a memoryless strategy that does not depend on the stack contents, we have
found a correction for the Boolean program. We present a symbolic algorithm
that localizes possibly faulty statements and provides corrections.
If the Boolean program is an abstraction of a C program, the repair for the
Boolean program suggests a repair for the original C program. This yields a cor-
rect but incomplete approach to repairing C programs. We have applied this ap-
proach to Boolean programs that are produced as abstractions by SLAM and have
thus successfully patched several faulty Windows device drivers.

1 Introduction

When a software model checker disproves a property, it typically returns a counterex-
ample. A counterexample, however, is just an example of a failure, only a hint to the
root cause of the program’s error. In order to fix the bug we must understand the coun-
terexample, find its root cause, and then implement a fix. In this paper we describe a
method to automatically suggest repairs to source code based on the abstractions com-
puted within a software model checker. With our method the programmer can either
simply implement one of the proposed repairs, or the programmer may find that the
proposed repairs lead to greater understanding of the root cause of the counterexample
returned by the software model checker.

The technical contribution of our work is a method to fix faulty Boolean programs
by computing a memoryless, stackless strategy. We assume that the software model
checker is based on predicate abstraction [11] to Boolean programs [5] (i.e., pushdown
automata), as is done in tools like SLAM [3]. The Boolean program can be converted
into a game between the system (protagonist) and the environment (antagonist). Given
a suspect expression, the system decides how the expression should behave, whereas
the environment resolves nondeterminism. Such a game can be regarded as the push-
down equivalent of a reactive module [1]. A winning strategy for this game is one
that ensures that the specification is adhered to by fixing the proper decisions for the
system. If such a strategy exists, we can fix the Boolean program by implementing
the decisions that the strategy prescribes. We are looking for a repair that changes the
program as little as possible, so that it remains amenable to further modification by the
programmer. The repair should depend only on global variables and the local variables
that are currently in scope, and not on the stack contents. A change that does not satisfy

2 Andreas Griesmayer, Roderick Bloem, and Byron Cook

these constraints cannot be easily implemented in a Boolean program. Such a repair
corresponds to a memoryless, stackless strategy [2]. Our choice to repair the program
by replacing expressions works relatively well in practice, but is not the only possibility.
Our technical approach is applicable to different fault models as well.

By replacing the Boolean predicates by the expressions they represent, we obtain
a constraint describing a set of repairs for the original C program. Any such repair
leads to a C program that adheres to its specification. The programmer then selects a
repair that does not violate any implicit assumptions. Although a repair for the Boolean
program guarantees the existence of a repair for the C program, the converse does not
hold. The abstract program may contain spurious counterexamples as well as the real
counterexample that corresponds to the bug and it may not be possible to repair all
of these. In order to demonstrate the viability of our approach we have implemented
the proposed method and used it to compute suggested repairs for several Microsoft
Windows device drivers after analysis using SLAM [3].

Related Work The work described here extends work done in [13, 17] on locating and
correcting faults in finite-state systems.

Alur, La Torre, and Madhusudan [2] give a fixpoint computation algorithm for solv-
ing modular pushdown games that is similar to the algorithm we present in this paper.
They do not apply it to repair and do not show an implementation. They further focus on
complexity analysis for reachability in different settings of visibility: global memory,
local memory and local but persistent memory.

Work by Walukiewicz [18] focuses on computing strategies for more general µ-
calculus properties on pushdown systems. This work is not in the setting of repair and
the strategies that are found are not in general memoryless. Basing a repair on them
would significantly alter the program by adding a second concurrent thread. Bouajjani,
Esparza, and Maler [6] give algorithms for reachability analysis in alternating push-
down systems. Their algorithm is polynomial, but the strategy it produces is an alter-
nating automaton and may depend on the contents of the stack.

There has been considerable work in fault localization. Most of it is of heuristic
nature and relies on similarities between incorrect traces of the program and their dif-
ferences with similar, correct traces [4, 12, 19]. Unlike our approach, this work requires
the existence of correct executions that are similar to the counterexamples found, but
most importantly, none of this work addresses repair. The approach of [4], for instance,
marks as suspect the statements that appear in different failure traces but not in traces
that satisfy the specification, and thus works on the basic block level. There is no guar-
antee that the statements found can be used to repair the program or that a possible
repair location is found, even if it exists. Nevertheless, the approach appears to be quite
good at finding faulty statements. It would be interesting to see if it can be used as a
preprocessing step to our algorithm to limit the number of statements that we attempt
to repair.

In [8], fault localization is extended to abstract counterexamples. The authors argue
that explanations of abstract counterexamples are more informative than explanations of
concrete counterexamples, because the predicates used capture the important informa-
tion in the program, but not more: it is an automatically generated high-level description

Repair of Boolean Programs with an Application to C 3

of the program. For instance, the information that x should be greater than y may be
much more informative that the information that x should be 8239 and not 4.

Demsky and Rinard [9] and Khurshid, Garcı́a, and Suen [14] present work on repair-
ing corrupt data structures without terminating the program. Their work is on recovering
from a failure, not on fixing faults in the system.

2 Boolean Programs

2.1 Syntax and Semantics

Boolean programs [5] are similar to C programs: they have functions and recursion,
global and local variables. The difference is that all variables are of Boolean domain and
no additional storage is available. Boolean programs also support assertions, parallel
assignments, and nondetermism. In the following, we give a short formalization. We
will not give the details of the execution model, but it can easily be defined in terms
of a virtual machine. Note that a Boolean program may have more than one execution,
depending on nondeterminism.

A Boolean program is a tuple (R, main, Vg), where R is a set of routines, main ∈ R
is the initial routine, and Vg is a set of global variables. A routine r ∈ R is a tuple
(Sr, Vr), where Sr = (sr,0, . . . , sr,f) is a sequence of statements and Vr is a set of
local variables. Statement sr,0 is the initial statement and sr,f is the final statement.

The set of variables visible in r is V ′
r = Vg ∪Vr. A valuation ξ ⊆ V ′

r is the subset of
the visible variables that is set to 1, and the set of valuations in routine r is Xr = 2V ′

r .
We will not define the statements in detail. For a formalization it suffices to define

two functions: The control flow graph is given by next(ξ, s, s′) meaning that control
may continue at s′ ∈ Sr after executing s ∈ Sr with valuation ξ ∈ Xr. For conditional
statements, s′ depends on ξ. (Because of nondeterminism, a conditional statement may
have multiple successors for one ξ.) In particular, if sr,i is a function call, it is followed
by the statement sr,i+1, not by the first statement of the called routine.

The change of the valuation that results from executing s ∈ Sr is denoted by τs ⊆
Xr ×Xr. For instance, if s assigns 1 to variable a, then τ(s) = {(ξ, ξ∪{a}) | ξ ∈ Xr}.
The expression choose[v,w] expresses nondeterminism. It evaluates to 1 if v is
1. Otherwise, it evaluates to 0 if w is 1, and nondeterministically otherwise. Thus, if
statement s is a := choose[v,w] then τs =

{

(ξ, ξ′) | ξ \ {a} = ξ′ \ {a} ∧

(v ∈ ξ → a ∈ ξ′) ∧ ((v /∈ ξ ∧ w ∈ ξ) → a /∈ ξ′)
}

. Since Boolean programs are
usually abstractions of C programs, and the Boolean variables are predicates, not all
valuations are possible. Nondeterminism can be limited to feasible valuations by an
enforce statement. We will not take such statements into account in the formalization,
but they are easily added and are handled by our implementation.

The set of states of a routine is Qr = Sr × Xr and the set of initial states is
Ir = {sr,0} × Xr. The set of states of a program is the (disjoint) union of the set of
states of its routines. The initial states of the program are the initial states of main. A
state (s, ξ) is a bad state if s is an assert statement and ξ is a valuation that violates the
assertion.

4 Andreas Griesmayer, Roderick Bloem, and Byron Cook

For a call statement s from routine src to routine dst , we use a relation µs :
Xsrc ×Xdst . This mapping handles the assignment of the actual parameters to the for-
mal parameters. The values of global variables remain unchanged and local variables
that are not formal parameters are assigned nondeterministically. We use the function
ρs : Xsrc × Xdst → Xsrc to compute the valuation after the call returns. It copies the
values of the global variables from the called function, copies the values of the local
variables from the values they had before the call, and assigns the value returned by
dst .

Example. We give an example of a Boolean program in Fig. 1(a). It was generated
by abstraction of the C program in Fig. 2, using the predicates shown in Fig. 3. We
only have global variables and V ′

main
= V ′

f
= {p1, p2, p3}, so Xmain = Xf = X =

2{p1,p2,p3}. The first statement in Line 1 is a parallel assignment which simultaneously
assigns values to all variables. Thus, τ1 = {(ξ, {p2, p3}) | ξ ∈ X}. (The subscript to τ
refers to the line number.) Note that f does not have arguments or return results. Thus,
µ2 = µ8 = {(ξ, ξ) | ξ ∈ X} and ρ2(ξmain, ξf) = ρ8(ξmain, ξf) = ξf.

Routine f assigns new values to all of the variables in Line 6 and calls itself until
p2 = 0. In Line 3 of the main routine, an assertion checks that p1 = 1. The program
does not fulfill this requirement. ut

2.2 Model Checking of Boolean Programs

We review model checking of Boolean programs [5, 10]. Given a Boolean program
P = (R, main, Vg), we associate with every routine r ∈ R an execution graph Er =
〈Qr, Er〉, where Qr is the set of states of r and Er ⊆ Qr × Qr is a set of edges
(to be defined). Intuitively, an edge represents a step in the execution and elements of
E∗ represent executions. ((The relation E∗ is closely related to the path edges used
in interprocedural dataflow analysis [15].)) We associate with P an execution graph
E = 〈Q, E〉, where Q =

⋃

r∈R Qr, E = Ec ∪
⋃

r∈R Er. The set Ec of call edges is
defined below.

The definitions of the edge relations Er and Ec are mutually recursive. First, we
define an update relation τ ′

s on the statements. If s is a statement other than a call, then
τ ′
s = τs. Otherwise τ ′

s complies with the called routine dst : τ ′
s =

{

(ξ1, ξ2) | ∃ξ′1, ξ
′
2 :

(ξ1, ξ
′
1) ∈ µs ∧ ((sdst ,0, ξ

′
1), (sdst ,f , ξ′2)) ∈ E∗

dst
∧ ρs(ξ1, ξ

′
2) = ξ2

}

.
Furthermore, we define the reachable states Rch and the sets of edges Er and Ec

as follows.

Rch =
{

(s, ξ) | ∃ξ0 : ((smain,0, ξ0), (s, ξ)) ∈ E∗
}

,

Er =
{

((s, ξ), (s′, ξ′)) | (s, ξ) ∈ Rch ∧ next(ξ, s, s′) ∧ (ξ, ξ′) ∈ τ ′
s

}

, and

Ec =
{

((ssrc , ξ), (sdst ,0, ξ
′)) | ssrc calls dst ∧ (ssrc, ξ) ∈ Rch ∧ (ξ, ξ′) ∈ µssrc

}

.

Thus, we start with the initial states of the program and add edges from states as
they become reachable. In particular, edges from call statements are added as soon as
paths through the called routine are calculated.

Theorem 1. For q, q′ ∈ Q, we have (q, q′) ∈ E∗ iff there is an execution of the program
that reaches q and subsequently reaches q′.

Repair of Boolean Programs with an Application to C 5

decl p1, p2, p3; 000 010 011 100 000 010 011 100
0 main()

• • • • • • • •

1 p1, p2, p3 := 0, 1, 1;
◦ ◦ •

UUUUUUUUU

JJJJ
tttt

��

◦ ◦ ◦ •

UUUUUUUUU

JJJJ
tttt

��

◦

2 f ();

•

rrrrrrrrrr
◦ ◦ ◦ •

ābrrr

rrrrrrr

•

b̄��

����

•

c̄

•

abd̄::

::::

3 assert(p1); X X X X X

4 end;

5 f ()
◦ • • ◦ • • • •

6 p1, p2, p3:=
choose[0,(p2|p3|p1)],
p3,
choose[0,(!p2|!p3|p1)];

•

•

• ◦ •

oooooooooooooooo
•

• •

OOOOOOOOOOOOOOOO

7 if(p2) \\if(∗sys)

◦ •

\\

•

\\

◦ •

a

\\

•

b

\\

•

c

\\

•

d

\\

8 f ();

•

��������

yyyyyyyyyyy
◦ ◦ ◦ •

ā��

������
ābyyy

yyyyyyy
āppppp

ppppppppppp

•

b̄��

�����

◦ •

d̄NNNNN

NNNNNNNNNNN
ad̄EEE

EEEEEEE

9 fi
10 end • ◦ ◦ ◦ •

ā

•

b̄

•

c̄

•

d̄

(a) Boolean Program (b) Execution Graph (c) Game Graph

Fig. 1. Boolean program and corresponding execution and game graph. There is one column for
every consistent valuation. The valuation is given as a triplet p1p2p3. Reached states are given
by •, unreachable states by ◦. Control flow goes from the top to the bottom, except for the dotted
lines, which denote call edges.

1 static int x;

2 void main() {

3 x = 3;

4 f ();

5 assert(x == 0);

}

6 void f () {

7 x = x - 1;

8 if (x > 1) {

9 f ();

}

}

Fig. 2. Faulty C program

p1: x == 0
p2: x > 1
p3: x > 2

Fig. 3. Predicates used for abstraction.

a: ∗sys(000) = 1 ā: ∗sys(000) = 0
b: ∗sys(010) = 1 b̄: ∗sys(010) = 0
c: ∗sys(011) = 1 c̄: ∗sys(011) = 0
d: ∗sys(100) = 1 d̄: ∗sys(100) = 0

Fig. 4. Abbreviations for the conditions on
the implementation of ∗sys

6 Andreas Griesmayer, Roderick Bloem, and Byron Cook

Example. Fig. 1(b) gives the execution graph of the example. An example of an exe-
cution starts in Line 1 with p1 = p2 = p3 = 0. (We denoted this state by (1, (0, 0, 0)).)
Then it progresses to state (2, (0, 1, 1)) and calls f with the same valuation. Then, the
valuation nondeterministically becomes 010 or 011. It then recurs and, unless the recur-
sion is infinite, finishes f with valuation 000. It returns to main in that state, showing
that the assertion can be violated. ut

3 Repair of Boolean Programs

Suppose a Boolean program contains executions that violate an assert statement. A
repair is a replacement of an existing statement such that the resulting program can not
reach a bad state. Such a replacement can involve the choose function, and thus be
nondeterministic. In this case, the program does not reach a bad state for any behavior
of the nondeterministic statement.

To find repairs, a proper fault model has to be used. In the following, we assume that
the program contains one fault, viz. an incorrect expression. This is only one possible
fault model. Our algorithm is independent of the used fault model and other models
could be used, including changes to the left hand side of an assignment or insertion
or deletion of statements at arbitrary positions. We can thus adjust our approach to
different areas of application, but this is not in the scope of this paper.

3.1 Building the Game

To compute a correct replacement for an existing expression, we extend the model
checking algorithm to compute games between the environment (the antagonist) and
the system (the protagonist). We extend the set of expressions with the construct ∗sys.
This construct represents an arbitrary function controlled by the system. The environ-
ment controls nondeterminism through the choose function.

We replace a given expression by ∗sys and ask the following question: is there an
implementation for ∗sys such that the bad states are avoided regardless of the choices
of the environment? We do this by negating the question and computing under which
implementations of ∗sys the bad states are reached. If we then replace ∗sys by any other
implementation, the resulting Boolean program satisfies its specification. We allow the
implementation of ∗sys to be an arbitrary expression in terms of the visible variables.
Thus, ∗sys does not introduce extra memory, nor can the result of ∗sys depend on the
content of the stack. Computation of ∗sys corresponds to the computation of a mod-
ular strategy in [2]. In Section 3.5 we show how to attempt repair on all expressions
simultaneously.

3.2 Computing the Strategy

Let P be a Boolean program (R, main, Vg) that contains exactly one occurrence of ∗sys.
In order to compute a proper implementation of ∗sys, we define the game graph of P . In
this graph, we may progress from one state to another under one implementation of ∗sys
and not under another. This holds both for statements in which ∗sys occurs and for call

Repair of Boolean Programs with an Application to C 7

statements, because the behavior of the called routine may depend on the implementa-
tion of ∗sys.

Suppose that ∗sys occurs in routine r. A set of valuations c ⊆ Xr defines an imple-
mentation of ∗sys: for ξ ∈ Xr we have ∗sys(ξ) = 1 if and only if ξ ∈ c. Let C = 2Xr be
the set of possible implementations.

We associate with every routine r ∈ R a game graph Gr = 〈Qr, Er〉, where Qr is
the set of states of r and Er ⊆ Qr × C × Qr is a set of labeled edges (to be defined).
The game graph of P is G = 〈Q, E〉, where Q =

⋃

r∈R Qr, E = Ec ∪
⋃

r∈R Er.
(Ec ⊆ Q × S × Q is defined below.) We define the reflexive transitive closure of a
labeled edge relation E ⊆ Q × C × Q as E∗ = {(q, c, q′′) | q = q′′ ∨ ∃q′ : (q, c, q′) ∈
E∗ ∧ (q′, c, q′′) ∈ E}.

For game graphs, τ ′
s ⊆ Xr ×C ×Xr takes into account the implementation of ∗sys.

If s is a statement that does not include ∗sys and is not a call, we have τ ′
s = {(ξ, c, ξ′) |

c ∈ C ∧ (ξ, ξ′) ∈ τs}. We will use an example to show how ∗sys is handled. Given an
implementation c, the statement s = (a := ∗sys), assigns 1 to a in states ξ with ξ ∈ c.
Thus, we have

τ ′
s = {(ξ, c, ξ′) | c ∈ C ∧ (ξ ∈ c ∧ ξ′ = ξ ∪ {a}) ∨ (ξ /∈ c ∧ ξ′ = ξ \ {a}).

(If the set of valuations is limited using an enforce statement, we do not include edges
to impossible valuations.) Finally, if s is a call to dst ,

τ ′
s = {(ξ1, c, ξ2) | ∃ξ′1, ξ

′
2 :

(ξ1, ξ
′
1) ∈ µs, ((sdst ,0, ξ

′
1), c, (sdst ,f , ξ′2)) ∈ E∗

dst
∧ ρs(ξ1, ξ

′
2) = ξ2}.

Now we can define

Rc =
{

(s, ξ) | ∃ξ0 : ((smain,0, ξ0), c, (s, ξ)) ∈ E∗
}

,

Er =
{

((s, ξ), c, (s′, ξ′)) | (s, ξ) ∈ Rc ∧ next(ξ, s, s′) ∧ (ξ, c, ξ′) ∈ τ ′
s

}

,

Ec =
{

((ssrc , ξ), c, (sdst ,0, ξ
′)) | ssrc calls dst ∧ (ssrc, ξ) ∈ Rc ∧ (ξ, ξ′) ∈ µssrc

}

.

We have the following lemma.

Lemma 1. For c ∈ C, let P ′
c be the Boolean program in which ∗sys is replaced by the

function described by c. There is an edge (q, c, q′) ∈ E∗ iff P ′
c contains an execution

that reaches q and subsequently reaches q′.

Symbolic Computation. Iterating over all possible implementation of ∗sys is very ineffi-
cient: there are 2Xr such implementations. The algorithm can be implemented symbol-
ically using binary decision diagrams (BDDs) [7]. For each valuation ξ ∈ Xr we intro-
duce a BDD variable xξ that we refer to as a condition: xξ = 1 (0) iff ∗sys(ξ) = 1 (0,
resp.). Thus, an assignment to the variables corresponds to an implementation c ⊆ 2Xr .
We construct a BDD for τ ′

s for every s and use these BDDs to construct E∗ symboli-
cally. The algorithm is analogous to the explicit one, except that we handle all possible
implementations simultaneously. The number of BDD variables is exponential in the

8 Andreas Griesmayer, Roderick Bloem, and Byron Cook

number of variables in scope, which is the major bottleneck for efficiency. Thus, our al-
gorithm is doubly exponential in the number of variables and exponential in the number
of nodes in the graph, which matches the lower bound shown in [2].

Example. We attempt to repair the Boolean program by replacing the if statement
in Line 7 by ∗sys. (See Fig. 1(c) for the game graph.) The edges between the states are
labeled with a Boolean function over Xr that represents all implementations for that
edge. The conditions are given in Fig. 4. For instance, b represents all implementations
such that ∗sys(0, 1, 0) = 1.

Consider state (6, (0, 1, 1)) of routine f. From here, an execution may nondetermin-
istically proceed to (7, (0, 1, 0)) and then to Line 10, provided that ∗sys(0, 1, 0) = 0. Be-
cause the other edges on the path do not restrict the implementation of ∗sys, the program
can proceed, from state (6, (0, 1, 1)) to (10, (0, 1, 0)) if ∗sys(0, 1, 0) = 0. This condition
propagates to Line 2 of main, which calls f. Thus, in main, the program proceeds from
(2, (0, 1, 1)) to (3, (0, 1, 0)) if ∗sys(0, 1, 0) = 0, and then violates the assertion. Thus, a
successful implementation of ∗sys cannot have ∗sys(0, 1, 0) = 0. ut

3.3 Extracting a Repair

To extract a repair from the game graph, we select all paths (v, c, v′) ∈ E∗
main that

connect an initial state with a bad state. Implementations that allow these paths are
faulty. The set of correct implementations is thus I = C \

⋃

{c | ∃(x, c, y) ∈ E∗ ∧ x ∈
Imain ∧ y ∈ bad}, where bad is the set of bad states.

Theorem 2. If we replace ∗sys with any implementation c ∈ I , the resulting program
contains no execution that leads to a bad state.

If I is given symbolically, each prime implicant of I corresponds to a repair. The
BDD variables VP that appear positively in the implicant denote the conditions un-
der which the implementation must return 1 and the negative variables VN denote
conditions under which the implementation must return 0. Thus, ∗sys must return 1
(0) for implementations ξ such that xξ ∈ VP (xξ ∈ VN , resp.) Identifying vari-
ables with the conditions they denote, the repair can be given as a set of statements
choose[

∨

x∈VP
x,

∨

x∈VN
x], one for each (irredundant) prime implicant.

Example. Consider again Fig. 1(c). There are paths from the initial states to error
states for any implementation that satisfies āb∨ b̄∨c̄, which can be simplified to ā∨ b̄∨c̄.
Thus, I = abc. Therefore, the suggested repair is choose(a ∨ b ∨ c, 0), or, in terms of
predicates, choose(¬p1 ∧ (p2 ∨ ¬p3), 0). ut

3.4 Mapping Boolean Repairs to C

Suppose the Boolean program is a conservative abstraction of the C program. A repair
for a Boolean program corresponds to a repair for the C program. If we substitute the
meaning of the predicates in the repair for the Boolean program, we obtain a constraint
for the C program. This constraint requires that in a given line a given predicate be-
comes true in some situations and false in others. Any implementation that satisfies this
constraint is guaranteed satisfy the specification. Note that there may be more than one

Repair of Boolean Programs with an Application to C 9

implementation that satisfies the constraint. It is up to the programmer to select a good
repair, depending on the intended semantics.

Example. Recall that the Boolean program that we have repaired is an abstraction of
the C program in Fig. 2. The meaning of the predicates p1, p2, and p3 is given in Fig. 3.
The repair that we have found says that the then branch should certainly be taken if
x 6= 0 ∧ (x > 1 ∨ x ≤ 2), which is equivalent to x 6= 0. Substituting x 6= 0 in Line 8
gives the correct behavior. Note that the suggestion allows us to take the then branch
also in other cases. In particular, we could satisfy it by substituting true in Line 8.
Although this satisfies the specification (the assertion is never violated), it is clearly
undesirable, as it introduces an infinite loop. In general, user interaction is necessary to
select the desired repair from the set of possible repairs given by the algorithm. We have
observed, however, that the suggested repairs are typically quite good. They reduce the
number of statements to be considered to just a few and give good hints on how to
modify the statements. A more realistic example is found in the next section. ut

3.5 Localizing Faults

With the graphs we defined so far, we can localize the fault by successively replacing
every expression in the program by ∗sys and computing the related game graph. Expres-
sions for which a repair is found are potential fault locations. These games differ only in
the implementation of one expression. To avoid redundant computations, we compute
a combined game graph for all possible repairs at one time. To this end, we compute τ ′

for each statement once with the original expression, and a second time for its imple-
mentation with ∗sys. The combined graph is built using labels identifying the different
subgraphs for the repair of each statement. Using symbolic representation, this can be
done quite efficiently.

4 Experimental Results

In order to demonstrate the viability of our approach, we have performed experiments
on Boolean programs constructed by the SLAM-based Static Driver Verifier [3] , using
our implementation based on CUDD [16]. We examined nine bugs in drivers from the
Windows operating system. We used a representative set of drivers that implemented
various functionalities, including storage, input, networking, etc. For this reason we
believe that the results should be repeatable for other drivers and other code of similar
size and complexity. The driver’s code size ranged from 2,000 to 35,000 lines of C code.
(Between 1,700 and 25,000 lines in the Boolean program.)

For verification, a driver is accompanied by a test harness and an automaton. The
harness is the same in every test and contains a routine that nondeterministically calls
functions in the drivers API. The automaton contains code to test if a given property
holds.

Table 1 lists the results of the experiments. This table contains the following in-
formation: (1) the name of the driver, (2) the number of lines of code of the Boolean
program, (3) the number of expressions examined for repair, (4) the number of repairs
in the Boolean program, (5) the number of repairs in the C-code of the driver (all other

10 Andreas Griesmayer, Roderick Bloem, and Byron Cook

Table 1. Results from experiments with Boolean programs produced by SLAM when checking
properties of Windows device drivers

Driver LoC # Expr. # Total # in Driver Time(s) # vars Results Property

1394 diag 7223 273 57 8 1345 2/10 X MarkIrpPending
bulltlp3.1 4751 860 30 3 16482 13/15 X1 IrpProcComplete
daytona 14364 305 2 0 379 2/0 X1 StartIoRecursion
gameenum 4001 217 29 1 577 2/9 X MarkIrpPending
hidgame 3611 335 27 4 7132 9/17 X2 LowerDriverReturn
mousefilter 1755 165 21 3 4035 7/33 X PendCompleteReq
parport 24379 1055 3 1 8334 2/0 X DoubleCompletion
pscr 4842 374 5 0 2797 6/7 X1 IrqlReturn
sfloppy 2216 19 6 4 4 2/0 X AddDevice

Table 2. Informal summary of properties listed in Table 1

Property Summary

AddDevice Checks that a driver’s AddDevice routine calls certain key APIs.
DoubleCompletion Checks that drivers do not complete I/O request packets twice.
IrpProcComplete Ensures that dispatch routines completely process I/O request packets.
IrqlReturn Checks that a driver dispatch routine’s thread priority is the same at function call and exit.
LowerDriverReturn Checks that if a driver calls another driver lower in stack, the dispatch routine will return the

same status as lower driver.
MarkIrpPending Ensures that returns of STATUS PENDING and calls to IoMarkIrpPending are correlated.
PendCompleteReq Checks that drivers do not return STATUS PENDING if IoCompleteRequest has been called

during the execution of the dispatch routine.
StartIoRecursion Checks for potential recursion in a driver’s StartIo routines.

repairs attempt to fix the bug by changing the test harness or the automaton), (6) the
overall run time, (7) number of global variables and the maximum number of local
variables, (8) the results of the approach (discussed below), and (9) the name of the
tested property. Table 2 contains brief and informal descriptions of the properties that
we used.

We examined the repairs computed for the Boolean program and checked if they
can be used for the C code of the driver. Examples where the real fault was within the
set of found repairs are marked with X. For the remaining examples we either found
no repairs, or the approach suggested only “cheating” repairs such as avoiding a call
to the erroneous routine or staying in a loop forever. Missing the repair can have two
reasons:X1 marks examples where the fault was a missing call or the wrong order of
calls. These faults do not fit in our fault model and thus cannot be found. X 2 marks
examples where the abstraction was too coarse to find a repair.

In the rest of the section, we describe adjustments to our approach that made our
approach feasible for real device drivers and we present a case study of the Windows
parallel port driver.

4.1 Adjustments for Checking Windows Device Drivers

Limiting the Number of Variables Considered for Repair: While the examples contain
up to 40 predicates visible at one time, many of them are temporary local variables
that are uninteresting. Global variables hold information from the test harness, which
give informations about the driver’s environment. By reducing the number of variables
considered for the implementation of ∗sys, we may drastically reduce the size of the

Repair of Boolean Programs with an Application to C 11

state { bool CompletionAlreadyCalled = 0; }

IoCompleteRequest.entry
{

if (SdvHarnessIrp==$1) {
if (CompletionAlreadyCalled) { error(); }
else { CompletionAlreadyCalled = 1; }

}
}

Fig. 5. Temporal property DoubleCompletion.

133 NTSTATUS
134 PptDispatchClose(PDEVICE_OBJECT DevObj,PIRP Irp) {
135 PFDO_EXTENSION fdx = DevObj->DeviceExtension;
136 P5TraceIrpArrival(DevObj, Irp);
137 if(DevTypeFdo == fdx->DevType) {
138 return PptFdoClose(DevObj, Irp);
139 } else {
140 return PptPdoClose(DevObj, Irp);
141 } }

Fig. 6. Source code from dispatchRedirect.c in
Parallel port device driver

BDD. On the other hand, we can miss results that are not expressible with the limited
set. No incorrect repairs are generated. For five of the examples, this heuristic was
necessary to be able to compute repairs.

Parallel Assignments: Parallel assignments are hard to handle: Repairing all expres-
sions at the same time is very inefficient. Repairing only one is usually infeasible be-
cause the assignments are tightly related and because many valuations of the predicates
are ruled out using an enforce statement. Therefore, we searched for a new implemen-
tation of one expression, while allowing the other predicates to take arbitrary values in
accordance with the enforce rule. The repairs for 1394 diag and gameenum suggest new
values in parallel assignments which were not possible without this optimization.

Removing Nondeterministic Functions: The abstraction refinement process starts
with a nondeterministic program and adds predicates when unfeasible paths are re-
ported. In some cases, a feasible counterexample is found before any predicates for
some of the functions are discovered. Such functions induce infeasible paths which
make it impossible to repair the Boolean program. In two cases, bulltlp3.1 and hidgame,
we removed calls to such functions from the harness in order to find repairs. In contrast
to the other heuristics, this one can produce repairs which are not valid in the original C
program. Tighter integration of the approach with SLAM would instead trigger further
abstraction in such cases.

4.2 Case Study: Windows Parallel Port Device Driver

We will now describe how we have used our approach to find a repair for a buggy
Windows parallel port device driver. The relevant code is given in Figs. 6, 7, and 8.
The code in Figure 5 describes a temporal property, DoubleCompletion. The driver vi-
olates this property, which ensures that the device driver dispatch routines do not call
the kernel-level API function IoCompleteRequest more than once on the same I/O re-
quest packet. (This example originally appears in [3]) The Windows kernel function Io-
CompleteRequest frees up the space of a request packet, which may then be re-allocated
and passed to another thread in the system. Calling IoCompleteRequest twice with the
same parameter can have disastrous consequences to the system’s stability.

When trying to prove that the device driver does not violate the rule, the test harness
calls the device driver’s dispatch routines nondeterministically, using an I/O request
packet called SdvHarnessIrp. The erroneous execution is as follows. The test harness
calls the parallel port device driver’s close dispatch routine PptDispatchClose (Fig. 6,
Line 134) on the I/O request packet SdvHarnessIrp. The function IoCompleteRequest

12 Andreas Griesmayer, Roderick Bloem, and Byron Cook

04 NTSTATUS PptFdoClose(
05 IN PDEVICE_OBJECT DeviceObject,
06 IN PIRP Irp
07) {
08 PFDO_EXTENSION fdx=DeviceObject->DeviceExtension;
09 NTSTATUS status;
10
11 PAGED_CODE();
12
13 // Verify that device was not SUPRISE_REMOVED.
14 if(fdx->PnpState & PPT_DEVICE_SURPRISE_REMOVED) {
15 // Our device has been SURPRISE removed, but
16 // since this is a CLOSE, SUCCEED anyway
17 status=P4CompleteRequest(Irp,STATUS_SUCCESS,0);
18 goto target_exit;
19 }
...
59 target_exit:
60 DD((PCE)fdx,DDT,"PptFdoClose -");
61 return P4CompleteRequestReleaseRemLock(
62 Irp, STATUS_SUCCESS, 0, &fdx->RemoveLock);
63 }

Fig. 7. Source code from fdoClose.c in Parallel
port device driver

1774 NTSTATUS P4CompleteRequest(
1775 IN PIRP Irp,
1776 IN NTSTATUS Status,
1777 IN ULONG_PTR Information
1778){
1779 P5TraceIrpCompletion(Irp);
1780 Irp->IoStatus.Status = Status;
1781 Irp->IoStatus.Information = Information;
1782 IoCompleteRequest(Irp,IO_NO_INCREMENT);
1783 return Status;
1784 }
1785
1786 NTSTATUS P4CompleteRequestReleaseRemLock(
1787 IN PIRP Irp,
1788 IN NTSTATUS Status,
1789 IN ULONG_PTR Information,
1790 IN PIO_REMOVE_LOCK RemLock
1791) {
1792 P4CompleteRequest(Irp,Status,Information);
1793 PptReleaseRemoveLock(RemLock,Irp);
1794 return Status;
1795 }

Fig. 8. Source code from util.c in Parallel port
device driver

1 void P4CompleteRequest_2() begin
2 if(*sys) then
3 goto L7;
4 else
5 goto L8;
6 fi
7 L8: SLIC_IoCompleteRequest_entry_51();
8 L7: IoCompleteRequest_1();
9 return ;

10 end

Fig. 9. Boolean routine from abstraction of P4-
CompleteRequest (Fig. 8, line 1775)

if (SdvHarnessIrp==R) {
if (CompletionAlreadyCalled) {}
else {

CompletionAlreadyCalled = 1;
IoCompleteRequest(R);

}
}

Fig. 10. Replacement for the call of Io-
CompleteRequest in P4CompleteRequest

will erroneously be called twice on this package. When PptFdoClose (Fig. 7, Line 4)
is called, we enter the conditional statement at Line 14 and call P4CompleteRequest
(Fig. 8, Line 1774). Then, in Line 1782, IoCompleteRequest is called on SdvHarnessIrp
and the function returns to the call site. We then leave the conditional statement via the
goto on Line 18. At Line 60 P4CompleteRequestReleaseRemLock (Fig. 8, Line 1786)
is called, which itself calls P4CompleteRequest and thus makes the second call to Io-
CompleteRequest on SdvHarnessIrp.

Our algorithm finds three repairs for the Boolean program, including Line 2 of
routine P4CompleteRequest 2, shown in Fig. 9, which is the abstraction of the routine
P4CompleteRequest. The abstraction of the driver contains two predicates: g0: Comple-
tionAlreadyCalled 6= 0 and g1: done 6= 0. We know the predicate CompletionAlready-
Called from the safety property. Variable done is defined by the SDV harness and is
true iff we are still verifying the property (Irp is still equal to SdvHarnessIrp). The if
statement in Line 2 decides whether or not to call SLIC IoCompleteRequest entry 51
which executed an abstracted version of the rule-checking code in Fig. 5. The original
routine, IoCompleteRequest 1(), is called in any case. The suggested repair for Line 2
is if(choose[g0&&!g1,0]), which means we may not enter IoCompleteRequest
if we are still checking the property and CompletionAlreadyCalled is 0. A screen shot
of the tool used to examine the repairs is given in Fig.11.

A possible implementation of this result in the driver is to add a new variable
CompletionAlreadyCalled that is initialized to zero (as in the automaton) and a vari-
able SdvHarnessIrp which is initialized to the value of the I/O request packet passed
into the driver dispatch routine. Thus, we repair the driver by replacing the call to Io-

Repair of Boolean Programs with an Application to C 13

Fig. 11. Tool for viewing the repairs. On the left, we can choose which repair to examine. The
text fields give details on the repair and the corresponding parts of the Boolean program and C
code.

CompleteRequest in P4CompleteRequest by the code given in Fig. 10. Note that the
repair of the Boolean program is memoryless because the automaton that implements
the temporal property is included in the Boolean program. For the C program this is not
the case, and we need to add a variable.

5 Conclusions

Modern software model checkers provide counterexamples when they disprove a prop-
erty. While clearly useful, counterexamples are not what the programmer is eventually
wants: a correct program. In this paper we have presented a method to automatically
suggest repairs in Boolean program. Given a model checker for C that uses Boolean
programs as an abstraction, we can use this method to fix faults in C programs. If a
repair is found for the Boolean program, then there is a repair for the C program. Our
approach often yields useful results, as shown by the application of our algorithm to
buggy Windows device drivers.

Future research includes finding fixes for violations of liveness constraints such as
infinite recursion. It would also be interesting to integrate repair and refinement more
tightly, by adding new predicates when needed for repair. Our approach is inefficient
when there are many Boolean variables in scope at the same time. One way to speed the
algorithm up may be a preprocessing step by a fault localization tool to narrow down the
set of suspect statements. Finally, our fault model may not be ideal. Instead of replacing
existing expressions, we may need to consider other repairs, such as the insertion of
statements. The theory presented here works regardless of the fault model.

The authors would like to thank Ranjit Jhala and the anonymous reviewers for their
valuable comments. This work was supported in part by the European Commission
under contract 507219 (PROSYD).

References

[1] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design, 15:7–
48, 1999.

14 Andreas Griesmayer, Roderick Bloem, and Byron Cook

[2] R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for recursive game graphs. In
Tools and Algorithms for the Construction and the Analysis of Systems (TACAS’03), pages
363–378, 2003.

[3] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis of device drivers. In European Systems
Conference (EuroSys’06), 2006.

[4] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: Localizing errors in coun-
terexample traces. In 30th Symposium on Principles of Programming Languages (POPL
2003), pages 97–105, 2003.

[5] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean programs. In
SPIN 00: SPIN Workshop, pages 113–130. 2000.

[6] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model checking. In Proc. 8th Int. Conf. on Concurrency Theory (CONCUR’97),
pages 135–150. 1997.

[7] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys, 24:293–318, 1992.

[8] S. Chaki, A. Groce, and O. Strichman. Explaining abstract counterexamples. In Proc. of
the International Symposium on Foundations of Software Engineering, pages 73–82, 2004.

[9] B. Demsky and M. Rinard. Automatic detection and repair of errors in data structures.
In Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’03), pages 78–95, 2003.

[10] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model
checking pushdown systems. In Twelfth Conference on Computer Aided Verification
(CAV’00), pages 324–336. Springer-Verlag, 2000.

[11] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In Ninth Conference
on Computer Aided Verification (CAV’97), pages 72–83. 1997.

[12] A. Groce. Error explanation with distance metrics. In Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS’04), pages 108–122, 2004.

[13] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In 17th Conference
on Computer Aided Verification (CAV’05), pages 226–238 2005.

[14] S. Khurshid, I. Garcı́a, and Y. Suen. Repairing structurally complex data. In SPIN Workshop
on Model Checking of Software (SPIN’05), pages 123–138, 2005.

[15] T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In Symposium on Principles of Programming Languages, pages 49–61, 1995.

[16] F. Somenzi. CUDD: CU Decision Diagram Package. University of Colorado at Boulder,
ftp://vlsi.colorado.edu/pub/.

[17] S. Staber, B. Jobstmann, and R. Bloem. Finding and fixing faults. In 13th Conference on
Correct Hardware Design and Verification Methods (CHARME ’05), pages 35–49. 2005.

[18] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Com-
putation, 157:234–263, 2000.

[19] A. Zeller. Isolating cause-effect chains from computer programs. In 10th Int. Symp. on the
Foundations of Software Engineering (FSE-10), pages 1–10, November 2002.

