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Abstract. Predicate abstraction is an automatic technique that can
be used to find abstract models of large or infinite-state systems. In
tools like SLAM, where predicate abstraction is applied to software model
checking, a number of heuristic approximations must be used to improve
the performance of computing an abstraction from a set of predicates.
For this reason, SLAM can sometimes reach a state in which it is not able
to further refine the abstraction.

In this paper we report on an application of Das & Dill’s algorithm for
predicate abstraction refinement. SLAM now uses this strategy lazily to
recover precision in cases where the abstractions generated are too coarse.
We describe how we have extended Das & Dill’s original algorithm for use
in software model checking. Our extension supports procedures, threads,
and potential pointer aliasing. We also present results from experiments
with SLAM on device driver sources from the Windows operating system.

1 Introduction

Automatic iterative abstraction refinement strategies allow us to apply model
checking to large or infinite-state systems. When applying iterative abstraction
refinement, we must strike a delicate balance between the accuracy of the ab-
straction that is produced and the speed at which it is generated. Therefore, in
practice, a number of coarse approximations are typically employed. SLam [II,
for example, uses the Cartesian approzimation [2] and the maximum cube length
approzimation [3]. In addition, SLAM’s abstraction module uses a special pur-
pose symbolic theorem prover which is similar to the work of Lahiri, Bryant &
Cook [] but optimized for speed and not precision. For this reason SLAM can
run into the following situation:

— The abstract program has an error trace t.

— The trace t is found to be infeasible in the concrete program, and a set of
predicates S are generated to rule out ¢ in the abstraction.

— Even after abstracting the program with respect to S, since the abstraction
is imprecise, t is still feasible in the abstraction.

As a result, iterative refinement is unable to make further progress. This situa-
tion, which we call an NDF-state (for “No Difference Found” in the error traces
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seen in two successive iterations of iterative refinement), is not merely a the-
oretical concern. Users of predicate abstraction based tools do encounter it in
practice.

1) void main()

2) {

3) int x = *;

4) int y = *;

5) int z = *;

6) if (x<y) {

7) if (y<z) {

8) if (1(x<z)) {
9) error();
10) }

11) }

12) }

13) }

Fig. 1. Example program

As an example, consider the small C program in Fig. [[] where * models non-
deterministic value introduction. This program calls the procedure error () if x
is not less than z after first checking that x is less than y and that y is less than
z. By the transitivity of <, we know that error () will never be called. Without
using the technique described in this paper, SLAM’s standard predicate abstrac-
tion algorithm can not prove that the call to error() is unreachable. In this
case, the incompleteness is due to SLAM’s use of the Cartesian approximation,
in which the update of each predicate is modeled independently.

To see why the property cannot be proved, consider the abstraction in Fig.
This is what SLAM would produce when given the following predicates: {b1 =
x<y,b22y<zDb32x<z)

Notice how the abstraction models the update of the Boolean variables in-
dependently. For example, when modeling the effect of the instruction at line
5, SLAM determines that both b2 and b3 could be affected. It therefore assigns
nondeterministically chosen values to the Boolean variables. In this example the
approximation causes the abstraction to lose the transitivity correlation between
b1, b2 and b3. For this reason we cannot rule out the trace to the call to error ()
in the abstraction. A more precise modeling of the assignment would not lose
this information. The more accurate translation might be as follows:

b2 = x;
if (bl && b2) { b3 = 1; } else { b3 = *; }
Frequently, the style of approximation used in Fig.[2is good enough to prove

properties correct. In fact: it is often better — as argued by Ball, Podelski &
Rajamani [2] — because the more precise abstraction comes with an unnecessary
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1) void main()
2) {
) bool bl, b2, b3;
3) bl1,b3 = *,%*;
4) bl,b2 = *, %,
5) b2,b3 = *,%;
6) if (b1) {
7) if (b2) {
8) if (1b3) {
9) error();
10) }
11) }
12) }
13) }

Fig. 2. Abstraction of the program in Fig. [ with respect to the predicates {b1 4
x<y,b22y<zb3Lx< z}. Note that b1,b2 = e,g; represents parallel assignment.

performance cost in cases where it is not needed. But, as we see in this case, the
approximation can be too coarse at times.

The tension is that, if we model all possible correlations, the performance of
computing the abstraction becomes intractable. However, for every correlation
that we drop, there will inevitably be an example that requires it. What we need
is a technique that refines these correlations only in the unusual cases in which
they are important.

In this paper we describe such a technique. It is based on Das & Dill’s algo-
rithm for abstraction-refinement [3]. In the example described above, the tech-
nique would examine the trace to the call to error() and then, as a result of
its analysis, refine the abstraction of the assignment to z as:

b2,b3 = *,* constrain (!(bl && b2’ && 'b3’));

where the constrain keyword in the abstraction will cause SLAM’s symbolic
reachability module to ignore transitions that do not maintain the invariant.
Notice that we’re using b3’ to represent the value of b3 after the transition.
With this refinement on the transition relation of the abstraction, a symbolic
reachability engine can then be used to prove that the abstraction does not call
error().

This paper makes two novel contributions:

— We provide details on our extension to Das & Dill’s original technique that
allows for its application in software model checking. The extension that we
describe supports procedures, threads and potential pointer aliasing.

— We demonstrate the technique’s effectiveness on real-world industrial bench-
marks. We report on the results of experiments run on the source code of
a number of device drivers written for the Windows operating system. We
demonstrate that the technique’s impact on SLAM’s accuracy is large, while
its tax on performance is modest.
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The paper is organized as follows: Section [2 describes SLAM’s implementa-
tion of predicate abstraction with iterative refinement for software. In Section [
we introduce CONSTRAIN, which is our extension to Das & Dill’s algorithm. Sec-
tion[d] describes the results of our experiments with CONSTRAIN and the checking
of Windows operating system device drivers. We then relate our work to the lit-
erature in Section[d, discuss ideas for future work in Section [0, and make several
concluding observations in Section [7}

2 Predicate Abstraction and Software Model Checking

Predicate abstraction is a technique proposed by Graf & Saidi [6] and Colén
& Uribe [7]. The idea is to find a set of predicates that must be maintained
when proving a property of a transition system. The predicates are then used to
compute an abstraction of the original transition system that is more amenable
to algorithmic verification techniques such as model checking. Counter-example
guided refinement is a technique that can be used to automate the search for
these predicates.

SLAM is an implementation of counter-example driven refinement for the C
language, using predicate abstraction. SLAM combines three modules to auto-
matically compute an abstraction of a C program based on counter-examples
encountered during the abstraction process. The modules are called C2Bp [2/3],
BEeBOP [8/9] and NEWTON

C2BP is used within SLAM to abstract C programs. C2BP takes as input
a program P and a set of predicates {e1, - ,e,}, which are expressions with
Boolean type that may contain relational and arithmetical sub-expressions, and
produces an abstraction. The abstraction is represented as a Boolean program—
a form much like a C program in which all variables have type bool. C2BP
operates by abstracting each statement s in P into a corresponding statement sy
in the abstraction. The statement s, conservatively maintains the value of each
predicate e; using a representative Boolean variable.

SLAM performs symbolic model checking on the Boolean program produced
by C2Bp with BEBOP. If BEBOP can prove that the Boolean program does not
call error () then the C program also can not call error (). We know this is true
because the Boolean program is an abstraction of the C program. If BEBOP finds
a failing trace in the abstraction that corresponds to a real error in the original
C program then SLAM terminates after providing information to the user about
the trace. Otherwise, the spurious counter-example found by BEBOP is used to
compute additional predicates. The tasks of determining if found traces are real
and the generation of new predicates is performed by the module NEWTON.

In the case that the counter-example is spurious and additional predicates
are found, then C2BP is called again. This loop is repeated until the program is
proved correct, a real trace to error() is found, or a state is reached in which
a spurious trace cannot be ruled out via additional predicates. As mentioned in
Section [I] this final case is an NDF-state.
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3 Extending Das and Dill’s Abstraction Refinement for
Software Model Checking

Das & Dill’s algorithm [5] refines an abstract transition relation by looking for
spurious transitions in traces and ruling them out in the abstraction using only
the predicates already available. Our adaptation of Das & Dill’s algorithm to
software model checking is called CONSTRAIN. CONSTRAIN takes, as arguments,
the original C program and a trace through the abstraction that includes the
valuation of the predicates at each step. CONSTRAIN then returns a set of con-
straints to be added to the abstraction. In pseudo ML-syntax, CONSTRAIN has
the following type:

CONSTRAIN : (pgm X abstr X trace) — constraint list

CONSTRAIN analyzes each abstract transition in the trace using a function called
SpPURIOUS, which has the following ML-like type:

SPURIOUS : (inst X absState X absState X (absState option)) — query

In the invocation SPURIOUS(%, ag, a1, Some(a.)), the first parameter (i) is the
transition’s instruction in the C program. The second and third parameters (ag
and ap) are the transition’s pre-state and post-state. The fourth parameter a.
is optional, and is used only for processing procedure return instructions. For a
return instruction from procedure R, a. is the state that the abstraction was in
just before calling the procedure R. For other instructions, the fourth parameter
is passed the value None. CONSTRAIN maintains a stack on which the abstract
state is pushed when a trace crosses into a procedure call, and is popped when a
trace crosses a procedure return transition, so as to supply the fourth parameter
for SPURIOUS for processing return instructions.

The type query is a logic expression that CONSTRAIN can then pass to an
automatic theorem prover such as Simplify [11], Verifun or CVC [13]. If the
query is provably valid then the abstract transition at instruction ¢ is spurious
and can be constrained.

3.1 Discovering Spurious Transitions

SLAM represents C programs in an intermediate nondeterministic control-flow-
graph representation where all instructions are either assignment statements,
assume statements, procedure calls or procedure returns. We define SPURIOUS
for each of these instruction types. Let £ be the concretization function from
abstract states to sets of concrete states, and let Pre(i, ©) be the pre-image of
states © with respect to instruction ¢. More precisely,

Pre(i,0) £ {c | 3¢’ € O such that ¢ can transition to ¢’ via instruction i}

For deterministic instructions, Pre can be computed using WP, the weakest pre-
condition [14]. Within WP we use Morris’s general axiom of assignment to
conservatively model possible pointer aliasing relationships.
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Assignment and Assume statements. If 7 is an assignment statement or an
assume statement, then SPURIOUS is defined as:

SPURIOUS(7, ag, a1, None) £ (E(ag) == —Pre(i,E(ay)))

If SPURIOUS(4, ag, a1, None) is a valid query then a constraint —(ag A a}) can be
added to the abstraction to rule out the spurious abstract transition. Here a)
denotes the state a; expressed in terms of primed or next-state variables.

Consider the example from Figs. [l and Bl from Section [ Suppose that we
call SPURIOUS with the abstract transition

b1 AB2AD3 > bl Ab2A b3

That is, we are asking SPURIOUS the question: “Should the abstraction’s
state be allowed to change from (b1 A b2 A b3) to (bl A b2 A —b3) by executing
the statement at line 57”

More precisely, we are interested in the value of:

SPURIOUS(5, bl Ab2 A b3, bl Ab2 A —b3, None)

Note that £(b1) £ x <y, £(b2) £ y < z, and £(b3) 2 x < z. Let us use
to denote the nondeterministically chosen value that was introduced by *. After
unfolding Pre and £, SPURIOUS(5, bl A b2 A b3, bl A b2 A —b3, None) equals

(k<A <z)Ax<z)= (<Y Ay <a)A=(x<a))

Since this query can be proved valid by a theorem prover, CONSTRAIN then
produces the following constraint which rules out this transition:

constrain (!(bl && b2 && b3 && b1’ && b2’ & !b3’));

Notice that this constraint is not quite the same as the constraint from Section [l
Later, we will describe an optimization that produces that constraint.

Procedure calls and returns. Let instruction i be a call to procedure R from
some procedure @ of the C program:

x:R(€17627"' 76N)

For convenience, we will make the procedure call and the assignment of the
return value explicit in the intermediate representation of the C program with
the introduction of a fresh variable x,.q;:

ZTret = R(e1,€2,... ,eN);
T = Trets

The abstraction of this call is divided into three parts: (1) the computation
of actual parameters, (2) the corresponding call in the Boolean program, and
(3) computation of the side effects of the call. The computation of the actual
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parameters in the Boolean program takes the form: p1,ps,... ,p; =c1,¢2,... ,¢;,
as defined by Ball et al. [3], where j is the number of formal parameters for
function R in the Boolean program (note that j could be different from N, the
number of formal parameters for R in the C program), and {p1,ps,...p;} are
temporary variables introduced in the Boolean program. The actual call to R in
the Boolean program takes the form:

reti,reta, ... ,rety = R(p1,p2,... ,p;)

where k is the number of predicates in R that are return predicates, and the
variables {rety,rets, ... ,ret;} are temporaries used to hold values of the return
predicates in Q). Immediately following the call, all local predicates that could
be modified by the call are updated.

Let ap be the abstract state immediately before execution of i, and let a;
be the abstract state just after the call is made. Let the formal parameters
of f be fi, fo,... fn. Let i denote the special parallel assignment instruction
fi,f2, .- fn =e1,€e2,...e,. SPURIOUS is defined as:

SPURIOUS(4, ag, a1, None) = &(ag) = —Pre(i?, £(ay))

Assume that CONSTRAIN uses a function § to map formal parameter predi-
cates of R to the corresponding parameter temporaries in {pi1,p2,...p;}, If
SPURIOUS(, ag, a1, None) is valid, then CONSTRAIN will add —(agp A §(a})), to
the computation of actual parameters for the call in the abstraction.

We will now define SPURIOUS for procedure return instructions. Let i be the
statement return r in R. Recall that the call to R in @) assigns the return value
to variable z. We first define two auxiliary functions: p over the variables in scope
at @, and v over variables in scope at R. The function p is defined as follows:

(v) = v if v is a local variable or formal parameter of @
)= v, if v is a global variable, where v, is a fresh variable

Conceptually, we can think of v, as caching the value of global v in @ just before
the call to R. The function - is defined as follows:

v if v is global
(W) =< Xper ifvisr
p(e;) if v is a symbolic value of the parameter f; to R

Let ¢ denote the assignment statement in the intermediate form = = ;..
Let ag be an abstract state just before execution of the return statement, and
let a; be an abstract state just after execution of the return statement, and let
a. be the state just before execution of the call to R. In this case we define
SPURIOUS as:

SPURIOUS(4, ag, a1, Some(a.)) = (v(E(ao)) A p(E(ae))) = —Pre(i”,E(ar))

If SPURIOUS(4, ag, a1, Some(a,)) is valid, then CONSTRAIN will add —(ag Aw(ac)A
ay) to the return transition in the abstraction, where w maps each predicate in
R to the corresponding return temporary from {rety,rets,... ,ret;}, is added
for the instruction that computes the side-effects of the call.
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1) int foo(int a) 11) void main()
2) { 12) {
3) int b = *; 13) int x = *;
4) if (a<b) { 14) int y = *;
5) return b; 15) int z = *;
6) } else { 16) if (x<y) {
7) exit(); 17) z = foo(y);
8) + 18) if (1 (x<z)) {
9) ¥ 19) error();
10) 20) }
21) }

Fig. 3. Example program with procedure calls and returns

3.2 Example of Return Processing

As an example of how CONSTRAIN and SPURIOUS handle procedure returns,
consider the program in Fig. Bl When modeling the return from foo we must
consider three states: (1) The state of the program just before the call to foo,
(2) the state of the program just before the return from foo, and (3) the state
of the program just after the return from foo.

Imagine that SLAM is tracking the following predicates (where « is used to
represent the symbolic initial value of the argument to foo):

main: {bl £x <y,b22y<zb3=x<z}
foo:{al £ a <b}
The following is part of a spurious trace that BEBOP might find while model
checking the abstraction:

b1 A —b2A—b3 i cee e al sl bl A —b2 A —b3

At the procedure call transition at line 17, CONSTRAIN will push the state
bl A b2 A b3 onto the stack. Then, when processing the return instruction at line
5, CONSTRAIN will pop the stack and call SPURIOUS with this popped state as
the optional parameter:

SPURIOUS(17, a1, bl A =b2 A —b3, Some(bl A b2 A —b3))

which we can evaluate by unfolding the definitions of £, v, p and SPURIOUS:
(v(E(a1)) A p(E(bL A =b2 A =b3))) = —Pre(17",E(b1 A =b2 A —b3))

e V(@ <)) Ap((x <y) A=(y <2) A=(x < 2z))
= —Pre(17",(x < y) A=(y < z2) A(x < 2))

0 Y@ <P A (x<y) A=y <2)A(x<2)
= —Pre(17",(x < y) A=(y < 2) A (x < 2))

SPrety (Y <zree) AN(x<y)A(y<2z)A=(x<2)
= ((x < y) A (¥ < Zret) A (% < Zret))
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Since the last expression is provably Vali CONSTRAIN will add the constraint
constrain ( !(bl && 'b2 && b3 && retl && b1’ && !'b2’ & !'b3’));

(where retl is the return temporary corresponding to al) to the instruction
that computes the side effects of the call.

3.3 Optimizations and Additional Extensions

In the example from Section B.I] we were not able to compute the constraint
promised in Section [0 However, by iteratively dropping predicates from the
abstract states and re-evaluating SPURIOUS we can find this strengthened con-
straint. After searching for the necessary predicates we will find that

SPURIOUS(5, bl, b2 A —b3, None)

is valid, which gives us the following stronger constraint ! (bl && b2’ && !b3’).
This is an important optimization because it allows CONSTRAIN to eliminate
more spurious transitions than the weaker constraint does. However, the ap-
proach that we currently use to compute this strengthening is not optimal. We
will discuss this further in Section [Gl.

As another optimization consider the fact that, although it is not always true,
the constraint that we found in Section [[lcan be encoded as something that holds
for all time. That is, in this case, transitivity is true regardless of the transition
at line 5. For this reason, the constraint could be expressed in such a way that
the reachability engine ignores all transitions that violate the invariant when-
ever the invariant is in scope. As an optimization, BEBOP provides exactly this
construct through the keyword enforce. When performing reachability analysis
on this abstraction, BEBOP will then prune states from consideration in which
the enforce constraint is not true.

CONSTRAIN can potentially find and rule out spurious transitions at multiple
points along a given trace. Through experimentation we have found that, when
CONSTRAIN is used lazily, the overall performance of SLAM is at its best when
CONSTRAIN is allowed to return only up to the first five constraints found during
a single pass. We have also found that, when an enforce constraint is found, it
is best to return immediately.

CONSTRAIN can also find multiple constraints if it is executed multiple times
using the same set of predicates, but different traces. That is, if CONSTRAIN
and BEBOP are alternated without the addition of new predicates via NEWTON.
We have found that, when used lazily, it is most efficient to allow up to four
alternations of BEBOP and CONSTRAIN before running NEWTON again in order
to find additional predicates. Beyond these four calls, few of the constraints that
are found and instrumented into the abstraction seem to contribute to SLAM’s
overall accuracy or performance.

! By the transitivity of < over x, y and zret
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CONSTRAIN can easily be extended to support thread-switches in the traces
that are passed to it. For this purpose CONSTRAIN maintains a set of call-stacks—
one for each thread. The traces contain information about when threads are
switched. CONSTRAIN then switches between the stacks during the analysis.

4 Experimental Results

In Section [I] we conjectured that Das & Dill’s algorithm could be used to
improve SLAM’s precision while not significantly degrading performance. In this
section we attempt to measure this with experimental findings. We also demon-
strate how several of C2BP’s approximations effect SLAM’s performance and
accuracy.

4.1 Improving Accuracy with Das and Dill’s Algorithm

To determine the effectiveness of CONSTRAIN, we have executed SLAM on soft-
ware model checking benchmarks using the following three configurations:

No Constrain: SLAM without support from CONSTRAIN.

Lazy mode: SLAM using CONSTRAIN, in which CONSTRAIN is used simply as
an NDF-state recovery method. Each call to CONSTRAIN is allowed to gen-
erate up to five constraints, and CONSTRAIN is called up to four times before
returning to the standard SLAM loop.

Eager mode: SL.AM with CONSTRAIN in which C2BP is configured to be maxi-
mally imprecise, leaving CONSTRAIN as the only working abstraction mecha-
nism. In this configuration, because CONSTRAIN is doing all of the reasoning
during the abstraction computation, each call to CONSTRAIN is allowed to
add up to 200 new constraints, and CONSTRAIN can be executed up to 200
times before new predicates are sought out.

For each of these three configurations, SLAM was then used to check 35 safety
properties of 26 Windows device drivers (910 checks in total, 644 of which require
SLAM’s analysis). The timeout threshold was set to 1200 seconds. The memory
threshold was set to 500 megabytes. The sizes of the device drivers used in these
experiments ranged from 10,000 to 40,000 lines of C code. The results are in
Fig. [

The most important aspect of this figure is the first row, which represents
the number of cases in which SLAM terminated in an NDF-state. In the No
Constrain column we can see that in 170 out of the 910 checks (or nearly one
in five checks if we ignore the 266 cases where a property did not apply to a
driver) SLAM became stuck in an NDF-state. This was the result that SLAM’s
users experienced before we implemented CONSTRAIN: 170 cases where SLAM
was not able to produce a useful result due to incompleteness.

The Lazy mode column represents the result of running SLAM with CON-
STRAIN as an NDF-state recovery method. In 167 out of 170 NDF-state cases,
CONSTRAIN provided accuracy enough that SLAM was able to make further
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lResult [No Constrain|Lazy mode[Eager mode‘
Termination in NDF-state 170 3 3
Property passes found 470 554 544
Time/memory threshold exceeded 59 107 122
Property violations found 19 50 45
Property not applicable to driver 266 266 266

Fig. 4. Results from experiments with CONSTRAIN on 26 device drivers and 35 safety
properties. Of the 910 checks, only 644 require SLAM’s analysis. The time threshold
was set to 1200 seconds. The memory threshold was set to 500 megabytes.

progress. The three cases in which SLAM still reached an NDF-state are due to
some subtle problems that occur when refining abstractions in the presence of
some special heap-based data structures.

The Eager column displays the result from running SLAM using a disabled
C2BP module: The functional result is largely the same, but the performance is
less impressive than the Lazy mode. In this configuration, 15 additional checks
exceed the 20 minute timeout.

4.2 Impact on Performance

In order to measure CONSTRAIN’s effect on SLAM’s performance we first recorded
the total CONSTRAIN runtime required to compute the results of the Lazy mode
column of Fig. @ and compared it the total runtime of SLAM. We found that ten
percent of SLAM’s overall runtime was spent in the CONSTRAIN module.

Then, in order to determine the impact on SLAM’s performance in just the
cases where CONSTRAIN is actually used, we collected a number of averages
while running SLAM in the default (lazy) configuration on 126 benchmarks that
required at least one call to CONSTRAIN in order to recover from an NDF-state.
The statistical averages are displayed in Fig. Q.

lDescription ‘Average
SLAM runtime 354.31s
Amount of runtime spent in CONSTRAIN 81.24s
Calls to CONSTRAIN 4.40
CONSTRAIN refinement iterations 1.74
Constraints generated 6.17

Fig. 5. Averages collected when applying SLAM to 126 device-driver based benchmarks
in which CONSTRAIN is required to recover from an NDF-state.

We can see that, even when we limit the averages to those cases in which
CONSTRAIN is called, its impact on SLAM’s overall runtime is not overwhelming.
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In these cases, 23 percent of SLAM’s overall runtime was spent computing con-
straints. On average, CONSTRAIN was called about five times per model-checking
run. And, on average, the refinement loop using CONSTRAIN and BEBOP was
called in less than two iterations of SLAM’s main loop. Finally, employing CON-
STRAIN resulted in, on average, less than seven constraints to the final Boolean
abstraction found.

4.3 Tuning the Approximations

In order to understand how the calls to CONSTRAIN are affected by C2BP’s
approximations we ran SLAM in various configurations on four drivers with six
properties. In one case SLAM’s analysis is not required.

Unfortunately, the Cartesian abstraction cannot be turned off in C2Bp. How-
ever, we can adjust the use of the maximum cube length approximation and our
fast but imprecise symbolic theorem prover.

lDescription [S/3[S/5[S/oo[C/3[C/5[C/oo‘
Total calls to CONSTRAIN 99| 112 408] 10 7 5
Total constraints generated 145| 160| 705 7 5 3
Termination in NDF-state 0 0 0 0 0 0
Property passes found 15| 14| 13 6 5 4
Time/memory threshold exceeded| 7| 8 9] 17| 18| 19
Property violations found 1 1 1 0 0 0
Property not applicable to driver 1 1 1 1 1 1

Fig. 6. Totals collected while checking six properties on four drivers with SLAM using 6
different configurations. S = use of our symbolic theorem prover; C = use of a standard
concrete theorem prover; 3 = maximum cube length set to three; 5 = maximum cube
length set to five; co = maximum cube length not set. The timeout threshold was set
to 1200 seconds. The space threshold was set to 500 megabytes.

Fig. @ displays the results from running SLAM in the following six config-
urations: S/3 is SLAM’s default configuration, in which the symbolic theorem
prover is used and the cubes are limited to a maximum of three. S/5 uses the
symbolic theorem prover with cubes limited to five. S/oo uses the symbolic the-
orem prover and does not limit the cubes. C/3 uses a more accurate concrete
theorem prover and limits the cubes to three. C/5 uses the concrete theorem
prover and limits the cubes to five. C/oo uses the concrete theorem prover and
does not limit the cubes.

In Fig. B1S/3 provides the best performance and accuracy because it maxi-
mizes the property violations and passes found, and minimizes the cases in which
SLAM’s execution exceeded the time or memory threshold. An interesting side-
effect of enlarging the cube sizes when the symbolic theorem prover is used is
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that the precision actually goes down. The reason is that this prover only im-
plements a subset of first-order logic and larger cube sizes increase the chances
of unsupported symbols.

Fig. Bl demonstrates that, rather than shutting off C2BP’s approximations,
it is best to leave them on for the common cases. In the uncommon cases that
require more precision, CONSTRAIN can patch up the result.

5 Related Work

The use of counter-examples to automatically guide refinement in model checking
has been described in many papers, including those by Alur et al. [16], Balarin
& Sangiovanni-Vincentelli and Clarke et al. [18]. Predicate abstraction com-
bined with counter-example driven refinement has been since widely adopted for
the verification of software-like systems. Examples of tools that use this strategy
include InVeSt [19], SLam [10], Boop [20], CALVIN [21] Mur¢— [22], BLAST
and Macic [23]. However, in all of these tools, refinement has traditionally con-
sisted of adding additional predicates.

Rather than simply adding more predicates, more recent research work has
focused on improving the abstractions produced in predicate abstraction. The
work in this area can be categorized as follows:

Removing corner-case problems: As an example consider the Cartesian ab-
straction. This approximation essentially causes invariants involving disjunc-
tions of predicates to be lost. CONSTRAIN deals with this as it does with all
other approximations: it explicitly restricts transitions one-by-one that vio-
late the disjunctions. Another way of avoiding this is to add predicates which
explicitly contain these disjunctions. In the context of BLAST, recent work
by Henzinger, Jhala & McMillan [24] does precisely this.

Better abstraction algorithms: For example, Lahiri, Bryant & Cook [4] de-
scribe a technique that uses a symbolic theorem prover to avoid the necessity
of the mazimum cube length approximation. In principle, by using this theo-
rem prover, C2BP could improve the quality of the abstractions generated.
Because our symbolic prover supports such a limited subset of logic we have
found (in Fig. B) that the maximum cube length approximation is still a
good thing to do.

Making better use of the predicates: Our work falls into this category. An-
other strategy in this category is the work on removing redundant predi-
cates [2523]. For example, during the predicate discovery phase, Chaki et
al. [23] analyze many counter-example traces instead of one. They find predi-
cates that can eliminate each of the spurious traces. Then they find a minimal
set of these predicates so that each of the spurious traces can be removed
and add those predicates.
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6 Future Work

In Section [3.3] we alluded to the fact that CONSTRAIN attempts to strengthen
the constraints that it finds. To compute this strengthening CONSTRAIN specu-
latively throws out predicates one-by-one from the calls to SPURIOUS until the
minimal set that is required is found. This results in an algorithm that makes a
linear number of calls to the theorem prover for each constraint generated. How-
ever, many automatic theorem provers compute something that is close to the
strengthening that CONSTRAIN is searching for. Examples include CVC [13] and
Verifun [12]. In the future we should investigate using this information provided
by the theorem prover to strengthen constraints.

NDF-states are currently the only trigger that cause SLAM to invoke CON-
STRAIN. It is possible that there are additional good triggers. For example: if a
large majority of predicates are being added to rule out transitions through a
small segment of code, CONSTRAIN might be better able to refine the abstraction
than NEwTON and C2BP. Adding additional triggers is something that we hope
to investigate further.

The enforce constraints mentioned in Section are extremely strong and
can, in theory, require the reachability engine to perform lots of unnecessary
work. In the future we should explore other options. For example, we could
simply add a standard constraint at the beginning of the function body where
today we place an enforce constraint. This would mean that the constraint
would not be maintained as an invariant by the reachability module, but would
in many cases be maintained by the abstraction instead. Another alternative
would be to add the time-invariant as a constraint at each transition along the
trace passed to CONSTRAIN.

CONSTRAIN currently only supports forward passes through traces. However,
in principle, CONSTRAIN could be run backwards along a trace. It could then
quickly return only a small subset of constraints generated from the last spurious
transitions. We have not yet investigated this approach. One complication to this
method is that a backwards analysis of a trace by CONSTRAIN will have to handle
procedure calls and returns in a special way. The problem is that, at the point
where the return is being analyzed, we must know the state of the abstraction
at which the procedure was called. In the forward-based analysis this is natural
to track. But, in order to support a backwards-based analysis, we would need
to add a forward pre-pass of the trace in which the states of the program just
before procedure calls are recorded.

7 Conclusion

Predicate-abstraction tools do not scale without the use of some approxima-
tions. However, with increased imprecision, predicate-abstraction based refine-
ment loops are not always able to make progress. In this paper we have described
an application of and extension to Das & Dill’s method, called CONSTRAIN,
which selectively recovers precision in cases where it is needed. CONSTRAIN han-
dles the characteristics of software, including procedures, threads, and pointer
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aliasing. Our experimental results demonstrate that with CONSTRAIN, SLAM
benefits from C2BP’s fast approximations in the cases where they work, and re-
covers precision in the cases where the precision is needed to make progress. In
practice, this strategy has tremendously improved the usability of SLAM, making
it a predictable and usable tool for the validation of device driver correctness.
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