
Reasoning about Nondeterminism in Programs

Byron Cook
Microsoft Research Cambridge
& University College London

Eric Koskinen ∗

New York University

Abstract
Branching-time temporal logics (e.g. CTL, CTL∗, modal µ-
calculus) allow us to ask sophisticated questions about the nonde-
terminism that appears in systems. Applications of this type of rea-
soning include planning, games, security analysis, disproving, pre-
condition synthesis, environment synthesis, etc. Unfortunately, ex-
isting automatic branching-time verification tools have limitations
that have traditionally restricted their applicability (e.g. push-down
systems only, universal path quantifiers only, etc).

In this paper we introduce an automation strategy that lifts
many of these previous restrictions. Our method works reliably
for properties with non-trivial mixtures of universal and existential
modal operators. Furthermore, our approach is designed to support
(possibly infinite-state) programs.

The basis of our approach is the observation that existential rea-
soning can be reduced to universal reasoning if the system’s state-
space is appropriately restricted. This restriction on the state-space
must meet a constraint derived from recent work on proving non-
termination. The observation leads to a new route for implemen-
tation based on existing tools. To demonstrate the practical via-
bility of our approach, we report on the results applying our pre-
liminary implementation to a set of benchmarks drawn from the
Windows operating system, the PostgreSQL database server, Soft-
Updates patching system, as well as other hand-crafted examples.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking; Correct-
ness proofs; Reliability; D.4.5 [Operating Systems]: Reliability—
Verification; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Verification, Theory, Reliability

Keywords CTL, branching-time temporal logic, formal verifica-
tion, termination, program analysis, model checking

1. Introduction
Branching-time temporal logics facilitate reasoning about the non-
determinism that exists within the transition relations of systems.
For example we might wish to prove that a program P could (but
is not forced to) terminate from every reachable state, and fur-
thermore if and when termination does occur, p will hold. In the
branching-time logic CTL, we can express this as1

P ⊧ A[EFp W p]

∗ Supported in part by the CMACS NSF Expeditions in Computing award
0926166.
1 We abuse notation slightly; we mean that s ⊧ A[EFp W p] for every
initial state s in program P .

Here we are using two temporal operators:

• A[a W b] specifies that a and b are temporally sequenced in all
executions through the system: either a might happen forever,
or b must happen if a ever ceases to hold. A[a W b] is a
universal temporal operator: it must hold over all executions of
the system, no matter which nondeterministic choices are made.

• EFa specifies that there exist nondeterministic choices that can
be made such that a will eventually hold.

Applications of this type of reasoning include planning, games,
security analysis, disproving, precondition synthesis, environment
synthesis, and many others. In the area of planning, for example,
nondeterministic choices in a system often represent choices that
can be manipulated by a plan. With a proof that P ⊧ A[EFp W p],
we could devise a plan that would cause the system P to termi-
nate in state pwhenever desired [32]. As another example, consider
environment synthesis: Imagine that we would like to find a con-
dition that—if maintained—would guarantee whenever p holds, q
will eventually hold: AG(p ⇒ AF q). Towards this goal we can
prove EG(p ⇒ AF q), which states that it’s possible but not guar-
anteed that whenever p then eventually q. With a proof in hand we
can then work out the conditions required to guarantee such a de-
sired condition, thus giving us a restriction on the state-space such
that AG(p⇒ AF q) would be true.

At first glance the above applications of CTL reasoning look
appealing. Unfortunately, there is a problem: The question of how
to reliably automate proofs in CTL and similar branching-time
logics (e.g. CTL∗, modal µ-calculus) for infinite-state programs
remains an open problem.

In this paper we report on the first known robust automatic
proof method to support both universal and existential branching-
time modal operators for programs. Our approach is based on the
observation that existential reasoning can be reduced to universal
reasoning when an appropriate restriction is placed on the the state-
space of the system. For soundness we require that the restriction
used meets a condition adapted from recent approaches to non-
termination proving [22]. For example, to prove that there exists a
path in a program P such that p holds (i.e. P ⊧ EFp), we search for
a restriction C on P ’s state-space such that in the program restricted
to C-states, for all paths p eventually holds (i.e. P ∣C ⊧ AFp). To
ensure that there still exists at least one path to p in P ∣C we must
check a condition that the restriction C be a recurrent set [22].

The advantage of our approach is that there are known solu-
tions to the problem of universal branching-time, as well proving
non-termination. Thus, to construct a full-fledged CTL prover for
infinite-state programs, we need only develop a method that synthe-
sizes appropriate restrictions C. Towards this goal we give a pro-
cedure that refines candidate restrictions on demand using failed
proof attempts with insufficient restrictions.

To demonstrate the practical viability of our approach we have
built a preliminary unoptimized prover and applied it to toy bench-

marks with a variety of combinations of temporal operators, as well
as examples drawn the PostgreSQL database server, the SoftUp-
dates patch system, the Windows OS kernel.

Limitations. The formal treatment given in this paper is defined
over general transitions systems. Thus, we make no assumption
about the structure of programs (recursive, higher-order, etc). In
practice, however, our implementation uses constraint-based meth-
ods as well as safety and termination proving techniques that limit
the applicability of the tool to non-recursive programs with vari-
ables that range over arithmetic domains. Heap-based programs can
be handled by first constructing a numerical abstraction (e.g. [26],
[29]).

For the purpose of brevity we have limited ourselves here to
the logic CTL, as CTL is a simple logic that supports mixtures of
existential and universal reasoning. Applying these techniques to
more expressive logics (e.g. CTL∗ or modal µ-calculus) is left as
future work.

While the CTL proof rules we develop are sound and complete,
our practical implementation is not complete for several reasons:

• The underlying technique for proving the universal subset of
CTL is not complete.

• Our heuristics for synthesizing restrictions on the state-space is
not complete.

• The refinement procedure for state-space restrictions may make
incorrect choices early during the iterative proof search that
limit the choices available later in the search. In these circum-
stances we a form of backtracking could potentially be used to
consider alternative decisions.

2. Example
In this section we informally discuss a simple example. In the
following sections we develop the approach more rigorously.

1 x = 0;
2 while (true) {
3 ρ1 = *;

4 y = ρ1;
5 x = 1;

6 ρ2 = *;

7 n = ρ2;
8 while (n>0) {
9 n = n - y;

10 }
11 x = 0;
12 }

Here we have made all of the nondeterminism explicit through the
use of variables ρ1 and ρ2. The symbol * represents nondeterminis-
tic choice. Imagine that we would like to prove that it is possible to
maintain the invariant that, whenever x = 1, then eventually x = 0.
In CTL we would express this property as:

EG(x = 1⇒ AF(x = 0))

Here EGp specifies that there exist nondeterministic choices such
that p holds forever. AFp says that in all nondeterministic choices
p eventually becomes true.

Our method is based on the search for a restriction on the
nondeterministic choices made (i.e. the ρ-variables) such that we
can use tools that support only universal reasoning to do the hard
work. In this case, if we restrict the nondeterministic choice ρ1

= *
at line 3 to be positive then the universal variation of original
property, AG(x = 1⇒ AF(x = 0)), holds of a similar program:

1 x = 0;
2 while (true) {
3 ρ1 = *;

::::::::::::::
assume(ρ1

≥ 1);

4 y = ρ1;
5 x = 1;

6 ρ2 = *;

7 n = ρ2;
8 while (n>0) {
9 n = n - y;

10 }
11 x = 0;
12 }

Here we have used a restriction on the state space:

C ≡ (program is at line 3 ⇒ ρ1
≥ 1)

which we have implemented using an assume instruction [31].

ρ1 = *;
:::::::::::::
assume(ρ1

≥ 1);

We have to be careful when choosing restrictions, as we have
done above. For example, the restriction

C ≡ (program is at line 3⇒ false)

would cause the universal reasoning to succeed. However, the
assume(false) command that would appear on Line 3 would cause
there to be no executions of this restricted program. Consequently,
EG does not hold. In this paper we will describe a requirement on
our choice of chute so that we guarantee non-emptiness.

Finding restrictions. To automate the discovery of restrictions
we begin with C ≡ true. We then use failed proof attempts in the
universal subset of CTL to guide where further restrictions need
to be added. In our example we would try proving AG(x = 1 ⇒
AF(x = 0)) using C ≡ true, which fails. As a result we will get the
following counterexample:

A path to (x = 1): x = 0;

ρ1 = *;

y = ρ1;
x = 1;

ρ2 = *;

n = ρ2;

A cyclic path where (x = 0) never occurs: assume(n>0);
n = n - y;

Because the cyclic path is executed forever we can infer that y ≤ 0
is invariant in the cyclic path. That is, we can strengthen the cyclic
path to:

assume(y<=0);
assume(n>0);
n = n - y;

As is standard in tools based on counterexample-guided abstraction
refinement (e.g. [30], [2]) we can represent this command sequence
as a logical formula expressed using static single assignment vari-
ables:

⋀

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

x1 = 0
y1 = ρ

1
1

x2 = 1
n1 = ρ

2
1

y1 ≤ 0
n1 > 0

n2 = n1 − y1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

We would like to compute a condition using one of the ρ variables
that would make this path spurious. Take ρ1

1 as our candidate. We

can compute a condition by performing quantifier elimination on
the variables (x1, y1, x2, n1, n2, ρ2

1) that are not in scope just after
the command ρ1

∶= *. The elimination is thus:

∃y1,x1,x2,n1,n2, ρ
2
1, ρ

0
1.⋀

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

x1 = 0
y1 = ρ

1
1

x2 = 1
n1 = ρ

2
1

y1 ≤ 0
n1 > 0
n2 = n1 − y1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

≡ ρ1
1 ≤ 0

Finally, we can restrict the original program such that this path
is not possible. To this end, we instrument the negation of this
condition ¬(ρ1

≤ 0), after the assignment ρ1
∶= *. Hence, we

strengthen C with

C ∶= C ∧ (program is at line 3 ⇒ ρ1
> 0)

In more complex cases with nested temporal existential operators
we must find families of restrictions, maintaining a set of C re-
strictions, indexed by their use in a CTL proof search. In the next
section we describe our procedure more formally and discuss this
complexity in some detail.

3. Treating the Existential Fragment of CTL
We now turn to a formal description of our technique. We begin
with new proof rules for CTL. These generalize our previous rules
for ∀CTL [10, 11]. Our rules are given in terms of sets of states,
allowing us to partition the state space rather than enumerate the
state space.

In this paper we introduce a new proof rule for existential op-
erators that characterizes the existence of traces as a subset of the
transition relation called a chute. This allows us to apply univer-
sal reasoning to the subset, in order to prove existential properties.
We characterize the side condition of non-emptiness with recur-
rent sets. In later sections, we will describe how proof derivations
(including discovery of chutes) can be obtained automatically.

3.1 Preliminaries
Transition systems. A transition system M = (S,R, I) is a set
of states S, a transition relation R ⊆ S × S, and a set of initial
states I ⊆ S. We use the notation r∣1 to mean the first projection of
relation r. A trace π of a transition system is an infinite sequence
of states (s0, s1, ...) such that s0 ∈ I , ∀i ≥ 0. si ∈ S and
∀i ≥ 0. (si, si+1) ∈ R. We denote by Π(S,R, I) the set of all
such traces. For convenience, we do not allow finite traces. The
transition relation must be such that every state has at least one
successor state: ∀s ∈ S. ∃s′. (s, s′) ∈ R. This is without a loss of
generality, as final states can be encoded as states that loop back to
themselves. The notation πi indicates a suffix of a trace starting at
the ith state in the sequence. We use π0 to denote the first element in
π. The superscript binds tighter than the subscript, i.e. πi0 = (πi)0.
We will use similar notation for a finite path $. Additionally, we
will say that $end denotes the final element of $.

Ranking functions. For a state space S, a ranking function f is
a total map from S to a well-ordered set with ordering relation ≺.
A relation R ⊆ S × S is well-founded if and only if there exists
a ranking function f such that ∀(s, s′) ∈ R. f(s′) ≺ f(s). We
denote a finite set of ranking functions (or measures) asM. Note
that the existence of a finite set of ranking functions for a relation
R is equivalent to containment of R+ within a finite union of
well-founded relations [34]. That is to say that a set of ranking
functions {f1, ..., fn} can denote the disjunctively well-founded
relation {(s, s′) ∣ f1(s

′
) ≺ f1(s) ∨ ... ∨ fn(s

′
) ≺ fn(s)}.

Temporal logic. The syntax of a CTL formula is

Φ ∶∶= p ∣ Φ∨Φ ∣ Φ∧Φ ∣ AFΦ ∣ EFΦ ∣ A[ΦWΦ] ∣ E[ΦWΦ]

Note that AGp can be defined as A[p W false], and EGp can be
defined as E[p W false]. The standard semantics of CTL is given
in Figure 1. p is an atomic proposition. There are two classes of
temporal constructors: constructors that quantify universally over
paths (AF,AW) and constructors that quantify existentially over
paths (EF,EW). The AF and EF constructors specify that a state in
which Φ holds must be reached. The [Φ1WΦ2] operator specifies
that Φ1 holds in every state where Φ2 does not yet hold.

We use F and W as our base temporal operators (as opposed
to the more standard U and R), as each corresponds to a distinct
form of proof: F to termination, and W to safety. We omit the next
state operator X as it is not particularly useful in an imperative
programming language: the next step simply is a transition across
a command and can be supported via F. We assume that formulae
are written in negation normal form, in which negation only occurs
next to atomic propositions, and assume that the domain of atomic
propositions is closed under negation. A formula that is not in
negation normal form can be easily normalized.

Definition 3.1 (CTL machine entailment). For every M =

(S,R, I) and CTL property Φ, M ⊧ Φ ≡ ∀s ∈ I. R, s ⊧ Φ.

Our rules are composed structurally over a CTL formula. In order
to track components of a proof we need to uniquely identify sub-
formulae. To this end, our definition of subformulae maintains a
context path: κ ≡ ε ∣ L κ ∣ R κ that indicates the path from
the root ε (the outermost property Φ), to the particular subproperty
of interest, at each step taking either the left or right subformula
(Lκ or Rκ). For a CTL property Φ, the set of subformulae is a set of
(κ,Φ) pairs as follows:

sub(Φ) ≡ sub(ε,Φ)
sub(κ, p) ≡ {(κ, p)}

sub(κ,Φ ∨Φ′) ≡ {(κ,Φ ∨Φ′)} ∪ sub(Lκ,Φ) ∪ sub(Rκ,Φ′)
sub(κ,Φ ∧Φ′) ≡ {(κ,Φ ∧Φ′)} ∪ sub(Lκ,Φ) ∪ sub(Rκ,Φ′)
sub(κ,AFΦ) ≡ {(κ,AFΦ)} ∪ sub(Lκ,Φ)
sub(κ,EFΦ) ≡ {(κ,EFΦ)} ∪ sub(Lκ,Φ)

sub(κ,A[ΦWΦ′]) ≡ {(κ,A[ΦWΦ′])} ∪ sub(Lκ,Φ) ∪ sub(Rκ,Φ′)
sub(κ,E[ΦWΦ′]) ≡ {(κ,E[ΦWΦ′])} ∪ sub(Lκ,Φ) ∪ sub(Rκ,Φ′)

3.2 A Proof System for CTL
Our proof system given in Figure 2 is a relation between a set of
statesX and a CTL context/formula κ,Φ. Atomic proposition RAP
and conjunction RAND are as expected (note that JpK means the set
of states such that p holds). Disjunction ROR partitions the set of
states into two setsX1 andX2 where Φ1 holds ofX1 and Φ2 holds
of X2.

Quantification operators. In this paper, we generalize the proof
system to encompass the universal and existential temporal opera-
tors. To this end, we decompose the temporal operators based on
quantification, so we have:

γ ∶∶= FΦ ∣ [Φ W Φ]

Φ ∶∶= p ∣ Φ ∨Φ ∣ Φ ∧Φ ∣ Aγ ∣ Eγ

This decomposition allows us to treat universal and existential
temporal operators similarly. When an Aγ or Eγ quantification
operator is reached, a corresponding rule (RA or RE) is used to
identify three key sets of states that will be relevant to γ:

1. The initial states X
2. The chute states C
3. The frontier [10, 11] states F

R, s ⊧ p ⇐⇒ s ∈ JpK
R, s ⊧ Φ1 ∧Φ2 ⇐⇒ R, s ⊧ Φ1 and R, s ⊧ Φ2

R, s ⊧ Φ1 ∨Φ2 ⇐⇒ R, s ⊧ Φ1 or R, s ⊧ Φ2

R, s ⊧ AFΦ ⇐⇒ ∀(s0, s1, ...) ∈ Π(S,R,{s}). ∃i ≥ 0. R, si ⊧ Φ

R, s ⊧ EFΦ ⇐⇒ ∃(s0, s1, ...) ∈ Π(S,R,{s}). ∃i ≥ 0. R, si ⊧ Φ

R, s ⊧ A[Φ1 W Φ2] ⇐⇒ ∀(s0, s1, ...) ∈ Π(S,R,{s}). (∀i ≥ 0. R, si ⊧ Φ1) ∨ (∃j ≥ 0. R, sj ⊧ Φ2 ∧ ∀i ∈ [0, j). R, si ⊧ Φ1)

R, s ⊧ E[Φ1 W Φ2] ⇐⇒ ∃(s0, s1, ...) ∈ Π(S,R,{s}). (∀i ≥ 0. R, si ⊧ Φ1) ∨ (∃j ≥ 0. R, sj ⊧ Φ2 ∧ ∀i ∈ [0, j). R, si ⊧ Φ1)

Figure 1: Standard CTL semantics, a relation from a state to a formula.

X ⊆ JpK
X ⊢ κ, p

RAP
X ⊢ Lκ,Φ1 X ⊢ Rκ,Φ2

X ⊢ κ,Φ1 ∧Φ2
RAND

X =X1 ∪X2 X1 ⊢ Lκ,Φ1 X2 ⊢ Rκ,Φ2

X ⊢ κ,Φ1 ∨Φ2
ROR

X,S,Fκ ⊩ κ, γ

X ⊢ κ,Aγ
RA

(X,Cκ,Fκ) is rcr X,Cκ,Fκ ⊩ κ, γ

X ⊢ κ,Eγ
RE

R
F

κ

C
κ

X
is w.f. Fκ ⊢ Lκ,Φ

X,Cκ,Fκ ⊩ κ,FΦ
RF

R
F

κ

C
κ

X
∣1 ⊢ Lκ,Φ1 F

κ
⊢ Rκ,Φ2

X,Cκ,Fκ ⊩ κ, [Φ1 W Φ2]
RW

(s, t) ∈ R s ∈X s ∉ F s, t ∈ C

R
F

C

X
(s, t)

R
F

C

X
(s, t) (t, u) ∈ R t ∉ F u ∈ C

R
F

C

X
(t, u)

Figure 2: On the left is a proof system for CTL that unifies the temporal treatment of universal A and existential E. There is a side condition
on the existential rule that the relevant states form a recurrent set. The definition ofR is given on the right.

We can think about these as: the start states X , the relevant region
of the transition relation C through which execution is allowed to
pass, and a stopping point at the frontier F . Visually:

Frontier

Initial states

Chute states

The chute C effectively carves out the portion of the state space that
will be relevant to the subproperty. This generalization with chutes
provides a means of treating each quantification fragment of CTL:

1. For a given subformula, existential properties can be treated
by restricting the state space to a chute and applying universal
reasoning on that chute (RE). The non-emptiness side condition
is that this chute must be recurrent, discussed below.

2. For a given subformula, universal properties can be treated by
letting the chute be the entire state space (RA).

The quantification proof rules (Figure 2) each involve a proof
obligation for the temporal operator γ, in terms of this triple:

X,C,F ⊩ κ, γ. In the case of RA, we use the entire state space S as
the chute. In the case of RE, we must identify a chute C and ensure
a special side condition that the triple (X,C,F) be a recurrent set,
defined as follows:

Definition 3.2 (Recurrent set). For sets of states X,C,F and
transition relation R, we say that C is a recurrent set w.r.t. X and
F (denoted (X,C,F) is rcr) provided that X ∩ C ≠ ∅ and:

1. X ∩ C ⊆ F , or
2. For every x ∈ C, there exists x′ such that (x,x′) ∈ R and
x′ ∈ F ∨ x′ ∈ C.

Intuitively, a recurrent set C is such that either: (i) there is a path
from X that either immediately intersects with F , (ii) there is
a path that reaches F by following C at each transition or (iii)
there is a path that remains in C forever, never reaching F . Note
that this is a generalization of a previously described notion of a
recurrent set [22]. For proving non-termination, the simpler notion
of recurrent set is sufficient because there is no frontier. With nested
temporal operators, we must account for a set being recurrent
modulo a frontier, wherein the subproperty is satisfied.

Temporal operators. The quantification operators discussed
above are designed to be compatible with either temporal operator.
First we identify the region (i.e. subset) of the transition relation
that is relevant to a given triple X,C,F via the relationR

F

C

X
, given

on the right-hand side of Figure 2. Notice that R
F

C

X
⊆ R. In the

base case, a transition (s, t) is inR
F

C

X
if s ∈X,s ∈ C, and s ∉ F . In

the inductive case, a transition (t, u) is included in R
F

C

X
whenever

some (s, t) ∈ R
F

C

X
, t ∉ F and u ∈ C. Intuitively, these are all of the

double-line edges in the following diagram:

Frontier

Initial states
Chute state

transition

The proof that X,C,F ⊩ FΦ involves showing that R
F

C

X
is well-

founded. This well-foundedness condition ensures that all traces
through X,C,F reach the frontier F after finitely many steps.
Moreover, the RF rule requires that F ⊢ Φ. The proof rule RW
requires that along every path from X through the chute C, Φ1

holds (by requiring that the first projection of R
F

C

X
satisfies Φ1)

unless the frontier F has been reached at which point Φ2 holds.

Remark: CTL∗. Note that our decomposition of quantification
and temporal operators bares some resemblance to CTL∗ [16].
CTL∗ is a generalization of CTL (and of LTL) that includes state
propositions (E, A) as well as path propositions (F,W). The dif-
ference is that a path proposition F or W is already fixed on a
particular path. By contrast, our treatment relates F or W to the
triple (X,C,F), giving us more structure to work with in the tem-
poral operators. For example, using chutes and frontiers allows us
to characterize eventuality as the well-foundedness of a subset of
the transition relationR

F

C

X
.

Example 1. Consider the following program for which we would
like to prove that the nested property Φ = EF(EG(p > 0)) holds.

assume(p == 0 ∧ x > 0); // Initial state
1 while(x>0) {
2 ρ1 = *;

3 if (ρ1
> 0) {

4 x = x + 1;
5 } else {
6 x = x - 1;
7 }
8 }
9 while(1) {

10 ρ2 = *;

11 if (ρ2
> 0)

12 p = 1;
13 else
14 p = 0;
15 }

Intuitively, the property holds because there is an execution that
exits the first loop, enters the second loop, sets p = 1 and then
forever iterates the second loop, each time avoiding p = 0. If we
restrict the nondeterministic choices, then we can treat EFEGp
like AFAGp. This can be accomplished by constraints on the ρ
variables.

A derivation for this example is given in Figure 3 where I =

Jp = 0 ∧ x > 0K. On the left-hand side is the proof tree, built
syntactically from Φ. Note that we are using EGp which is a special
case: EGp = E[p W false]. On the right-hand side are values

for the chutes and frontiers. (Note that pc is a special variable
containing the value of the program counter, i.e., line number.)
Chute Cε ensures that in the first loop, executions always take
the second branch, and decrement x. Chute Cε also ensures that
once an execution exits the first loop and enters the second loop,
it immediately takes the p=1 branch, satisfying that p > 0. This is
also the point at which frontier Fε is reached.

From this state, we can ensure that EG(p > 0) holds using chute
C
Lε, which specifies that executions of the second loop only take the

p=1 branch. This must hold in every subsequently reachable state
(i.e. the semantics of EG), so we choose FLε

= false. What remains
are the proof obligations:

1. (I,Cε,Fε) is rcr. This triple is recurrent because there is at
least one state in I (in fact, we can choose any initial state),
and whenever we are at the first loop there is at least some
successor in the chute (iterating x=x-1 or proceeding along the
path 8,9,10,11,12) until the frontier Cε is reached at location
12.

2. R
F

ε

C
ε

I
is well-founded. This holds because, when executions are

restricted to the second branch in the first loop, they are well-
founded: x is decremented and bounded from below by 0.

3. (F
ε,CLε,FLε

) is rcr. This set is recurrent because there is
always a successor state in CLε: taking the first branch of the
second loop ad infinitum.

This program appears in the EFEGp benchmark in Figure 6.

Equivalence to CTL semantics. The following theorem shows
that our treatment in Figure 2 is equivalent to CTL. The proof in-
volves representing traces as infinite sequences (i.e streams), and
numerous support lemmas based on coinduction. We also incorpo-
rate recurrent sets and several corresponding lemmas.

Theorem 3.1 (Equivalence to CTL). For all Φ,M = (S,R, I),

I ⊢ ε,Φ ⇐⇒ ∀s ∈ I. R, s ⊧ Φ.

Proof. (sketch) We first expand our proof rules for X ⊢ κ,Aγ
and X ⊢ κ,Eγ for each γ case, obtaining four direct ⊢ rules:
X ⊢ κ,AFΦ, X ⊢ κ,EFΦ, X ⊢ κ,A[Φ1 W Φ2], and X ⊢

κ,E[Φ1 W Φ2] (and no ⊩ rules). The proof then proceeds by
induction on the (negation normal form) CTL property Φ. ◻

4. Automation
In this section we present an algorithm for automatically discover-
ing the chutes necessary for proving a CTL property. Our method
assumes an underlying proof technique for applying universal rea-
soning to CTL verification, such as the one we previously de-
scribed [10, 11]. We extend this underlying prover slightly, by
adding cases for the existential subformulae that are identical to
their universal counterparts, except that the transition relation is
constrained by the per-subformula chute. Our algorithm begins by
assuming that no chute restriction is necessary for proving existen-
tial subformulae. This typically leads to counterexamples from the
underlying prover. From counterexamples, we synthesize chutes by
attempting to eliminate the behaviors witnessed by the counterex-
amples.

We begin with a symbolic treatment of chutes. Chutes, as seen in
Section 3, are (potentially infinite) sets of states. In our refinement
procedure we will work with predicates instead, written in first-
order logic:

Definition 4.1 (Chute predicate cp). A chute predicate cp is a first-
order logic formula over the states of a transition system.

(I,Cε,Fε) is rcr

R
F

ε

C
ε

I
is w.f.

(F
ε,CLε,FLε

) is rcr

R
F
Lε

C
Lε

F
ε

∣1 ⊆ Jp > 0K

R
F
Lε

C
Lε

F
ε

∣1 ⊢ LLε, p

F
ε,CLε,FLε

⊩ Lε,Gp

F
ε
⊢ Lε,EGp

I,Cε,Fε ⊩ ε,FEGp

I ⊢ ε,EFEGp

C
ε

≡ pc = 2⇒ ρ1
≤ 0 ∧ pc = 10⇒ ρ2

> 0

F
ε

≡ pc = 12

C
Lε

≡ pc = 10⇒ ρ2
> 0

F
Lε

≡ false

Figure 3: Derivation for CTL property EF(EG(p > 0)). On the left is the proof tree and on the right are the values for the chutes and
frontiers. Note that we use EG which is a simple case of EW where the second subproperty is simply false.

For a given CTL property Φ, we use the notation C̄ to mean an in-
dexed set of chutes, consisting of a conjunctive chute predicate Cκ

for every (κ,) ∈ sub(Φ). We will abuse notation and sometimes
use Cκ to refer to a chute predicate. When this is then used in the
context of a set of states, we mean the set of all states such that Cκ

holds: JCκK.

Algorithm. Given a CTL property Φ and a program P , our refine-
ment algorithm discovers a proof that P ⊧ Φ by iteratively refining
an indexed set of chute predicates C̄. Our algorithm is given in Fig-
ure 4. It begins by initializing each Cκ to true. We then use an
underlying method for attempting to prove that Φ holds, given the
set C̄:

attempt M ⊢ ε,Φ using C̄

We discuss our implementation of attempt in Section 5. When at-
tempt succeeds, a candidate proof is returned. This candidate in-
cludes an indexed set of frontiers F̄ . Together, C̄ and F̄ specify
the chutes and frontiers in a ⊢ proof tree. Moreover, attempt re-
turns an indexed set of rank functions M̄, which are the proofs of
each well-foundedness obligation in F subformulae. What remains
are the recurrent set proof obligations for Eγ subformulae, accom-
plished in RCRCHECK (Section 5.3).

When attempt fails, it has discovered a counterexample to Φ in
the form of a path $ ∶ list (S × sub(Φ)).2 The path $ is part of a
counterexample to Φ and traverses the S × sub(Φ) state space. (A
discussion of counterexamples is given in [9].) Although attempt
has failed, Φ may still hold of P . Choices may have been made in
Eγ subformulae which exercised a region of the state space where
γ does not hold. For example, consider the property EG(x = 1) and
the program:

1 x = 1; ρ = *; // init
2 if(ρ > 0)
3 while(1) { x = 0 }
4 else
5 while(1) { x = 1 }

Here, attempt may return the path

(pc = 1,x = 1, ρ = 1), (pc = 3,x = 0, ρ = 1), (pc = 3,x = 0, ρ = 1), ...

While this path proves that AG(x = 1) does not hold, it is still
the case that EG(x = 1) does hold. If we restrict the transition
relation’s state space to exclude such paths, alternative decisions
may be possible, leading to an alternative proof that Φ holds of P .
In the case above, if we exclude all of the states where pc = 3 (by

2 In our implementation (see Section 5) this path is represented as a se-
quence of program commands rather than concrete states.

let SYNTHcp($) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(cp, κ) ∃(κ,Eγ) ∈ sub(Φ). ∃i.

1. $i
0 ∈ JCκK × {(κ,Eγ)}

2. $i+1
0 ∈ JCκK × {(κ,Eγ)}

3. $i+1
0 ∉ JCκ ∧ cpK × {(κ,Eγ)}

Not found otherwise

let prove(M,Φ) =
C̄ := {κ↦ true ∣ (κ,Eγ) ∈ sub(Φ)};
loop

match (attempt M ⊢ ε,Φ using C̄) with
∣ Counterexample($, F̄) Ð→

let (cp, κ) = SYNTHcp($) in
C
κ := Cκ ∧ cp

with Not found Ð→ return Fail(F̄ , C̄)

∣ MaybeProof(F̄ ,M̄) Ð→
if (∀κ,Eγ ∈ sub(Φ). RCRCHECK(F ,Cκ,Fκ))
return Succeed

done

Figure 4: Chute-refinement procedure. Counterexamples from
failed proofs using ∀CTL techniques with chutes C are used to help
refine C.

ensuring that ρ is never more than zero) then we are left with a
transition system for which AG(x = 1) holds.

Synthesizing chute predicates. The procedure SYNTHcp is used
to automatically discover predicates such as (ρ ≤ 0), which are
necessary to restrict the transition relation to the states in which the
existential subproperty holds. The path $ returned from attempt
is part of a counterexample to Φ and traverses the S × sub(Φ) state
space. SYNTHcp must discover a predicate cp such that path $ is
not possible. To this end, it examines $ to find regions of $ that
are existential temporal operators. Let (κ,Eγ) be such a region.
SYNTHcp must then look for nondeterministic choices that were
made in that scope within $ where some other alternative choice
was possible. In our implementation we can easily find such cases
because we have automatically lifted all nondeterministic choice
into assignments to special variables denoted ρi.

Theorem 4.1 (Soundness of refinement algorithm). For every tran-
sition system M and CTL property Φ,

prove(M,Φ) ⇒ M ⊧ Φ

Proof. (Sketch) We first argue that prove(M,Φ)⇒M ⊢ ε,Φ and
then use Theorem 3.1. Our algorithm iteratively prunes nondeter-
ministic choices by restricting the transition relation, within a par-
ticular subformula, via chute predicates. When proving that a set of
statesX ⊢ κ,Eγ, it is always sound to remove behaviors and apply
universal reasoning (in attempt), provided that before we conclude
that Eγ holds, we ensure that there is at least one behavior (accom-
plished in RCRCHECK). ◻

In some cases, our refinement algorithm will give an answer that is
not the expected one due to an incorrect refinement choice. In cases
where an incorrect chute is synthesized we can easily backtrack.

5. Implementation
In this section we describe some implementation-level details that
proved important when developing our prototype tool.

5.1 CTL Proof Attempts
Assume for now that we have a set of chute predicates C̄. In
Section 4 we assumed the following method:

attempt (M ⊢ ε,Φ) using C̄

When this procedure fails to prove the property, it returns a path$ ∶

(S×sub(Φ)) list that is part of a counterexample that demonstrates
how Φ can be violated given the current state-space restriction to
chutes C̄.

In our implementation we developed this attempt procedure as
an extension to our previous method [10, 11], which handles the
universal subset of CTL. In our previous work, we introduced a
reduction which, when given a transition system P and an ∀CTL
temporal logic property Φ, generates a procedural program E that
encodes the search for the proof that Φ holds of P [10, 11]. Existing
program analysis tools can then be used to reason about the validity
of the property.

Our encoding E is given in Figure 5 and has been extended with
the two new rules in large shadowed boxes so that we can now
handle full CTL properties. The notation P [c/c′] indicates that the
program P is modified such that each command c is replaced with
a new command c′. When given a program P and a CTL prop-
erty Φ, the new program E encodes the search for the proof that Φ
holds of P . The arguments (⟨s,ψ⟩,M,R) passed to E are a pair
consisting of the state s and a Φ-subformula ψ of interest, a finite
set of ranking functions M, an indexed set of chute predicates C̄
and the program source P . Executions of the procedure E explore
the S × sub(Φ) state space from an initial state s0 ∈ I in a depth-
first manner. At each recursive call, E is attempting to determine
whether ψ holds of s. Rather than explicitly tracking this informa-
tion, however, E returns false (recursively) whenever ψ does not
hold of s. Consequently, if E can be proved to never return false, it
must be the case that the overall property Φ holds of the initial state
s. When a program analysis is applied to E it is implementing what
is needed to prove branching-time behaviors of the original tran-
sition system (e.g. backtracking, eventuality checking, tree coun-
terexamples, abstraction, abstraction-refinement, etc). Formally the
relationship between E and ⊢ is: for a program P (with initial states
I) and CTL property Φ,

∃C̄. ∃M̄. ∀s ∈ I. E(s,Φ,M̄, C̄,R) cannot return false
⇒

∀s ∈ I. R, s ⊧ Φ

What remains is to understand how E determines whether a
subformula ψ holds of a state s. By passing the state on the stack,
we can consider multiple branching scenarios. When a particular ψ
is a ∧ or AW/EW subformula, then E ensures that all possibilities
are considered by establishing feasible paths to all of them. When

E(P,M̄, C̄,Φ) ≡ ⋃(κ,ψ)∈sub(Φ)
{encκψ ∶ s→ B} where

bool encκ
ψ∧ψ′

(state s) {
if (*) return encLκψ (s);

else return encRκ
ψ′

(s);

}
bool encκ

ψ∨ψ′
(state s) {

if (encLκψ (s)) return true;

else return encRκ
ψ′

(s);

}
bool encκp(state s) { return p(s); }

bool encκ
A[ψWψ′]

(state s) {

P [c / [
if (*) return true;

if (¬ encLκψ (s)) return encRκ
ψ′

(s);] ; c]
}

bool encκ
E[ψWψ′]

(state s) {

P [c /
⎡⎢⎢⎢⎢⎢⎣

if (*) return true;

::::::::::
assume(Cκ);
if (¬ encLκψ (s)) return encRκ

ψ′
(s);

⎤⎥⎥⎥⎥⎥⎦
; c]

}

bool encκAFψ(state s) {
bool dup = false; state ‘s;

P [c /

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

if (*) return true;

if (encLκψ (s)) return true;

if (dup && ¬(∃f ∈M. f(s) ≺ f(‘s)))
return false;
if (¬ dup && *) { dup:=true;‘s:=s;}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; c]

}

bool encκEFψ(Cκ)(state s) {
bool dup = false; state ‘s;

P [c /

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

if (*) return true;

::::::::::
assume(Cκ);
if (encLκψ (s)) return true;

if (dup && ¬(∃f ∈ M. f(s) ≺ f(‘s)))
return false;
if (¬ dup && *) { dup:=true; ‘s:=s; }

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; c]

}

Figure 5: Encoding CTL verification as a finite set of procedures.
Universal rules discussed in [10, 11]. The two new existential
rules, which account for (κ,ψ)-subformula indexed sets of chute
predicates are highlighted with shadow-boxes.

a particular ψ is a ∨ or AF/EF subformula, E enables executions to
consider all of the possible cases that might cause ψ to hold of s.
As soon as one is found, true is returned. Otherwise, false will be
returned if none are found.

New existential cases. The encoding has two new cases, in large
shadowed boxes, for the existential operators: the new subformula
encoding encκEFψ which is similar to encκAFψ , as well as encod-
ing encκE[ψ1 W ψ2]

which is similar to encκA[ψ1 W ψ2]
. They are de-

signed such that we can again apply the universal reasoning and try
to prove that encκEFψ (or encκE[ψ1 W ψ2]

) cannot return false. What
is new is that encκEFψ and encκE[ψWψ′] must take care to restrict
possible proofs/counterexamples as specified by the chute predi-
cates we have discovered. This is where the indexed vector of chute
predicates C̄ is used. The encodings for encκEFψ and encκE[ψWψ′] in-

clude wavy underlined assume(Cκ) statements in Figure 5. These
statements restrict the behavior of the transition system to chute Cκ.

5.2 Synthesizing Chute Predicates
Our refinement algorithm, given in Figure 4, then assumes a
method for synthesizing new chute predicates, given counterexam-
ples to proof attempts. In our implementation, when the proof at-
tempt fails a path $ ∶ (c, κ,ψ) list is returned, which is a sequence
of commands in the original program P , annotated with the rele-
vant subformula. Our implementation of SYNTHcp must return a
chute predicate cp and subformula index κ that meets the interface
given in Figure 4. When our implementation of attempt generates
the encoding E , it introduces a variable ρi at each nondeterministic
choice. For example, we would transform nondeterministic assign-
ments as follows:

x := read(); ↝ ρx := *; x := ρx;

We similarly transform nondeterministic branching:

if (read()) then C1 else C2

↝ ρi := *; if (ρi>0) then C1 else C2

These transformations simplify chute predicate synthesis by stan-
dardizing the sources of nondeterminism as values of ρ-variables.
When we are given a path $, we look for a ρ-variable:

..., (ci−1, κi−1, ψi−1), (ρi
:
:=*, κi,Eγi), (ci+1, κi+1, ψi+1), ...

Given such a path, we restrict our attention to the commands that
are annotated with (κi,Eγi), as the other commands are only
relevant to other subformulae. We then build a formula T that
is the conjunction of inequalities in static single-assignment form
that represents the remaining commands. Assume that V is the
variables not in the (κi,Eγi) scope. Using quantifier elimination
we compute T ′ = ∃V.T . Our procedure then ensures that T ′ is in
CNF form: T ′ = ⋀i T

′

i where each T ′i is an inequality . We prune
T ′ ensuring that each conjunct mentions the variable ρ:

Tρ = ¬⋀{T ′i ∣ ρ ∈ FREEVARS(T ′i)}

The new candidate for chute refinement is thus pc = `⇒ Tρ where
` is assumed to be the location of the command ρ ∶= ∗.

Example. Imagine that we have the following path:

(...; , (Rε,Eγ ∨ AFp))
(x:=a; y:=b; v:=c; y:=k; , (LRε,Eγ))
(rho := *; , (LRε,Eγ))
(assume(rho>3); , (LRε,Eγ))
(x := w; , (LRε,Eγ))
(y := y-1; , (LRε,Eγ))
(assume(x<z); , (LRε,Eγ))
(rho := *; , (LRε,Eγ))
(assume(rho>x); , (LRε,Eγ))
(x := x - 1; , (LRε,Eγ))
(v := y; , (LRε,Eγ))
(rho := *; , (LRε,Eγ))
(assume(rho>3); , (LRε,Eγ))

The SSA formula representing this would be:

x1 = a0

y1 = b0
v1 = c0
y1 = k0

rho1 > 3
x2 = w0

y2 = y1 − 1
x2 < z0

rho2 > x2

x3 = x2 − 1
v2 = y1

rho3 > 3
a1 = x3

b1 = y2

c1 = v2

Imagine that we’d like to find a condition from the second rho ∶= ∗.
In this case we quantify out all variables except x2, y2, v1, k0, z0,
and rho2. That leaves us with the condition: rho2 > x2

Thus we might use ¬(rho2 > x2) as the refinement for CLRε.
There are usually many choices available, some of which may lead
to failed proofs due to a violation in RCRCHECK. To filter out
potentially bad chute predicates, our implementation performs a
simple non-termination check of the scope in question. If multiple
candidates still exist we choose the one that appears as the last
assignment in the inner most scope. We have found that these
heuristics for choosing chute predicates was effective at proving a
wide variety of CTL properties, as seen in our experimental results
(Section 6).

5.3 Checking Recurrent Sets
Finally, when a proof attempt succeeds, recall that we must check
that our chutes have not restricted the state space to empty traces.
To this end, we must check that chutes for existential subformulae
are recurrent. This does not necessarily mean that we must check
all subformula. For example, the property (EGp) ∨ (EGq) holds if
EGp holds. In this case, we only need to ensure that the chute CLLε

for the left operator is recurrent. A proof that M ⊢ ε,Φ involves
indexed sets C̄ and F̄ . For each recurrent set obligation, we can use
a simple reduction to satisfiability.

Inside our implementation of attempt, for every subformula
(κ,Eγ), there is an encoding of the relevant subset of the transition
relation, restricted by chute predicate Cκ. Our implementation uses
known non-termination proving techniques to prove, in the case of
EG, that there is at least one non-terminating execution and, in the
case of EF that there at least one execution to a place where the
subproperty may hold.

6. Evaluation
Using our prototype implementation we performed two sets of
experiments. First, we ran the tool on a series of small benchmarks
crafted to explore the various combinations of temporal operators.
We then used the tool on a set of examples drawn from industrial
code bases. In both cases, we generated the encoding and ran our
algorithm on an Intel x64-based 2.8 GHz single-core processor.
The sources of our experiments are available—please contact the
authors. As discussed in Section 1, our tool is the first to handle
mixtures of universal and existential quantifiers. Thus at this time
there are no competing tools to compare against. Note that, as our
tool is not especially optimized, the purpose of these experiments
is only to demonstrate the promise of the approach.

For our small benchmarks, we wrote example programs in C.
For each example, we wrote down corresponding CTL properties.
The results of these experiments are given in Figure 6. Some of
the CTL properties are meant to hold (denoted ✓) and others are
meant not to hold (denoted χ). We report the time it took to prove
or discover a counterexample in the Time column. In each case,
we constructed another benchmark for the corresponding negated
property (using the same program). For example, in the benchmark
22 where EGAGp holds, we ensure that AFEF¬p does not hold of
benchmark 49. The EFEGp benchmark is displayed in Example 1.

In all but two cases we were able to prove that the property
held or discover a counterexample in less than a minute, often
in seconds or less. Benchmark #20 ran out of memory during
abstraction refinement in the underlying safety proof. In benchmark
#24 of Figure 6, our tool failed to report the correct answer for
the property EG(q ⇒ EFp). This is because our tool made the
wrong choice about synthesizing chute, but restricting execution to
a particular set of paths (via a predicate on ρ). However, a more
mature version of our tool can simply backtrack and make other

SMALL BENCHMARKS
Property Result Time

Exp. Act. (s)
1. AFp ✓ ✓ 1.2
2. AFp χ χ 0.8
3. AGp ✓ ✓ 0.3
4. AGp χ χ 0.5
5. EFp ✓ ✓

6. EFp χ χ 1.7
7. EGp ✓ ✓ 0.9
8. EGp χ χ 0.9
9. AGAFp ✓ ✓ 10.8

10. AGAFp χ χ 1.9
11. AGEFp ✓ ✓ 29.0
12. AGEGp ✓ ✓ 1.2
13. AFEGp ✓ ✓ 55.8
14. AFEFp ✓ ✓ 3.7s
15. AFAGp ✓ ✓ 1.3
16. AFAGp χ χ 11.0
17. EFEGp ✓ ✓ 44.3
18. EFEGp χ χ 54.7
19. EFAGp ✓ ✓ 0.6
20. EFAFp ✓ ? mem
21. EGEFp χ χ 10.4
22. EGAGp ✓ ✓ 0.8
23. EGAFp ✓ ✓ 12.5
24. EG(q⇒ EFp) ✓ χ 33.9
25. EG(q⇒ AFp) χ χ 150.2
26. AG(q⇒ EGp) ✓ ✓ 2.2
27. AG(q⇒ EFp) ✓ ✓ 29.5
28. EG ¬p χ χ 0.8
29. EG ¬p ✓ ✓ 0.9
30. EF ¬p χ χ 0.5
31. EF ¬p ✓ ✓ 0.6
32. AG ¬p χ χ 0.8
33. AG ¬p ✓ ✓ 2.0
34. AF ¬p χ χ 0.5
35. AF ¬p ✓ ✓ 0.4
36. EFEG¬p χ χ 1.9
37. EFEG¬p ✓ ✓ 3.6
38. EFAG¬p χ χ 3.9
39. EFAF¬p χ χ 6.3
40. EGAF¬p χ χ 10.9
41. EGAG¬p χ χ 37.7
42. EGEF¬p χ χ 2.7
43. EGEF¬p ✓ ✓ 5.8
44. AGAF¬p χ χ 3.6
45. AGAF¬p ✓ ✓ 10.2
46. AGEF¬p χ χ 23.8
47. AGEG¬p χ χ 7.5
48. AFAG¬p ✓ ✓ 40.3
49. AFEF¬p χ χ 0.9
50. AFEG¬p χ χ 13.8
51. AF(q ∧AG¬p) χ χ 2.0
52. AF(q ∧ EG¬p) χ χ 13.8
53. EF(q ∧AF¬p) χ χ 6.3
54. EF(q ∧AG¬p) χ χ 3.9

Figure 6: The performance of our tool when ap-
plied to small benchmarks. We report the property
proved/disproved, the expected/actual result, and the
time. For each property (1–27) we have also at-
tempted to prove/disprove the negated property (28–
54). Benchmarks 28–54 are the same as 1–27 but with
the property negated.

INDUSTRIAL EXAMPLES
Example LOC Property shape Result Time

Exp. Act. (s)
1 OS frag. 1 29 AG(p⇒ AFq) ✓ ✓ 4.6
2 OS frag. 1 29 AG(p⇒ AFq) χ χ 9.1
3 OS frag. 1 29 AG(p⇒ EFq) ✓ ✓ 9.5
4 OS frag. 1 29 AG(p⇒ EFq) χ χ 1.5
5 OS frag. 2 [8] 58 AG(p⇒ AFq) ✓ ✓ 2.1
6 OS frag. 2 [8] 58 AG(p⇒ AFq) χ χ 1.8
7 OS frag. 2 [8] 58 AG(p⇒ EFq) ✓ ✓ 3.7
8 OS frag. 2 [8] 58 AG(p⇒ EFq) χ χ 1.5
9 OS frag. 3 370 AG(p⇒ AFq) ✓ ✓ 38.9

10 OS frag. 3 370 AG(p⇒ AFq) χ χ 18.0
11 OS frag. 3 370 AG(p⇒ EFq) ✓ ✓ 90.0
12 OS frag. 3 370 AG(p⇒ EFq) χ χ 107.8
13 OS frag. 4 370 AFq ∨AFp ✓ ✓ 34.3
14 OS frag. 4 370 AFq ∨AFp χ χ 18.8
15 OS frag. 4 370 EFq ∧ EFp ✓ ✓ 1261
16 OS frag. 4 370 EFq ∧ EFp χ ? mem
17 OS frag. 5 43 AGAFp ✓ ✓ 569.7
18 OS frag. 5 43 AGAFp χ χ 65.1
19 OS frag. 5 43 AGEFp ✓ ? time
20 OS frag. 5 43 AGEFp χ ? mem
21 PgSQL arch 90 AGAFp ✓ ? mem
22 PgSQL arch 90 AGAFp χ χ 38.1
23 PgSQL arch 90 AGEFp ✓ ? mem
24 PgSQL arch 90 AGEFp χ χ 42.7
25 S/W Updates 36 p⇒ AFq ✓ ✓ 70.2
26 S/W Updates 36 p⇒ AFq χ χ 32.4
27 S/W Updates 36 p⇒ EFq ✓ ✓ 18.5
28 S/W Updates 36 p⇒ EFq χ χ 1.3
29 OS frag. 1 29 EF(p ∧ EG¬q) χ χ 12.5
30 OS frag. 1 29 EF(p ∧ EG¬q) ✓ ✓ 3.5
31 OS frag. 1 29 EF(p ∧AG¬q) χ χ 18.1
32 OS frag. 1 29 EF(p ∧AG¬q) ✓ ✓ 105.7
33 OS frag. 2 [8] 58 EF(p ∧ EG¬q) χ χ 6.5
34 OS frag. 2 [8] 58 EF(p ∧ EG¬q) ✓ ✓ 1.2
35 OS frag. 2 [8] 58 EF(p ∧AG¬q) χ χ 8.7
36 OS frag. 2 [8] 58 EF(p ∧AG¬q) ✓ ✓ 5.6
37 OS frag. 3 370 EF(p ∧ EG¬q) χ χ 1930.9
38 OS frag. 3 370 EF(p ∧ EG¬q) ✓ ✓ 1680.7
39 OS frag. 3 370 EF(p ∧AG¬q) χ ? mem
40 OS frag. 3 370 EF(p ∧AG¬q) ✓ ? mem
41 OS frag. 4 370 EG¬p ∧ EG¬q χ χ 61.3
42 OS frag. 4 370 EG¬p ∧ EG¬q ✓ ✓ 7.6
43 OS frag. 4 370 AF¬q ∨AF¬p χ χ 0.9
44 OS frag. 4 370 AF¬q ∨AF¬p ✓ ✓ 0.6
45 OS frag. 5 43 EFEG¬p χ χ 1471.7
46 OS frag. 5 43 EFEG¬p ✓ ✓ 351.1
47 OS frag. 5 43 EFAG¬p χ χ 85.5
48 OS frag. 5 43 EFAG¬p ✓ ✓ 255.8
49 PgSQL arch 90 EFEG¬p χ χ 45.3
50 PgSQL arch 90 EFEG¬p ✓ ✓ 35.2
51 PgSQL arch 90 EFAG¬p χ ? mem
52 PgSQL arch 90 EFAG¬p ✓ ✓ 30.2
53 S/W Updates 36 p ∧ EG¬q χ χ 0.4
54 S/W Updates 36 p ∧ EG¬q ✓ ✓ 4.5
55 S/W Updates 36 p ∧AG¬q χ χ 0.5
56 S/W Updates 36 p ∧AG¬q ✓ ✓ 0.3

Figure 7: The results of applying our refinement algorithm on a variety
of examples from industrial code. In each case, we report the shape of the
property, the expected/actual result returned by our tool, and the time it took to
prove the property or discover a counterexample. Benchmarks 29–56 are the
same as 1–28 but with the property negated.

choices. Understanding these tradeoffs is an important direction for
future work.

In Figure 7 we report the results of applying our tool to CTL
challenge problems drawn from industrial code bases. The exam-
ples were taken from code models of the I/O subsystem of the
Windows kernel, the back-end infrastructure of the PostgreSQL
database server, and the SoftUpdates patch system [25]. Line
counts are given in the third column. In many of these cases, heap-
commands from the original sources have been abstracted away
using the approach due to Magill et al. [29]. This abstraction in-
troduces new arithmetic variables that track the sizes of recursive
predicate found as a byproduct of a successful memory safety anal-
ysis using an abstract domain based on separation logic. Note that
this abstraction often allows us to reason about nondeterminism re-
lated to data-structures (e.g. a subroutine that increases the length
of a list by some nondeterministic amount).

For each benchmark, we considered a meaningful property.
Many are standard acquire/release or malloc/free-style properties
(AG[p ⇒ AFq]) and, for example, the OS frag. 4 property (Fig-
ure 7, #13) says that either an I/O completion occurs successfully
or else a failure code is returned. Figure 7 reports the shape of these
properties (eliding the details of the atomic propositions p, q, etc.).

The final columns of Figure 7 report the expected/actual result
returned by our tool, and the time it took to prove the property or
discover a counterexample. In the vast majority of the cases, we
were able to prove/disprove the property, often very quickly. In
some cases, our implementation ran out of memory (mem) while
performing SYNTHcp. We believe that these examples could be
proved if we applied program slicing on the encoding E . In one
case our implementation timed out (time) after 24 hours.

In summary, we can prove CTL properties of C functions
that have hundreds of lines of code. For example, OS frag. 3 is
370 LOC. The majority of the examples (both the small bench-
marks in Figure 6 and industrial code in Figure 7) were exam-
ples that previously could not be proved. The exceptions are the
single-temporal-operator small benchmarks (which reduce to sim-
ple safety/liveness) and the strictly-universal industrial examples
such as #21, which can be treated by previous work [11].

It is reasonable to ask about a comparison between our tool on
the property AFfalse (which encodes termination) and a termina-
tion prover, or EGtrue and a non-termination prover. In fact, in our
system the encoding of AFfalse is isomorphic to the reduction used
in tools such as TERMINATOR [12], similarly EGtrue in our sys-
tem reduces immediately to the identical techniques used in current
non-termination provers. Thus, the experimental results are essen-
tially identical, with the variability in the performance only due to
the level of optimizations implemented in the underlying tools.

7. Related Work
Temporal property verification (and related problems such as find-
ing winning strategies in games) have been extensively studied for
finite-state systems (e.g. [1, 4, 6, 7, 28, 37]). Temporal property
verification for some limited types of infinite-state systems have
also been studied (e.g. pushdown systems [36, 39, 40], parameter-
ized systems [17], etc). In limited cases we can abstract programs
to finite-state systems and apply these known methods, but existing
abstraction methods usually do not allow us to reliably prove prop-
erties that mix universal and existential modal operators in non-
trivial ways. Methods for proving linear-time properties of infinite-
state programs have been studied in recent work (e.g. [8, 9, 13, 33]).
These techniques do not, however, facilitate reasoning about the
nondeterminism in systems (see [9] for a discussion on this).

Methods of proving branching-time properties with only univer-
sal path quantifiers are known (e.g. [5, 10, 11, 13]). Techniques are
also known for proving AF false (a.k.a. termination [3, 12, 18]) as

well as EG true (a.k.a. non-termination [22]). In this work we build
on these known techniques.

Previous tools based on fixed a priori abstractions are known
for CTL. The abstraction used by YASM [23] is aimed primarily
at the unnested existential subset of CTL. The work of Song and
Touili [36] abstracts the program to pushdown systems. The dif-
ference here is that we reduce the problem of CTL (in a way that
information is not lost) to different problems, which allows abstrac-
tions to be computed by refinement later using known techniques.

Although we solve a problem more general than termination,
our iterative algorithm for finding restrictions on the state-space
shares some similarity with the idea of alternation used in Harris et
al. [24]. Related approaches are also seen in Godefroid et al. [19]
and Gulavani et al. [20] for proving safety properties.

Our work characterizes CTL verification in a way that is
complete upto a certain parameter (chutes) and gives a method
and implementation for discovering these parameters automati-
cally. In this sense it may be applicable to discovering focus
sets [14] or the necessary ingredients in a games-based abstrac-
tion framework [15]. Our paper also might contribute towards
novel approaches to the known problem of supporting mixtures of
may/must [19]. Specifically we contribute a reduction that facil-
itates existing successful universal techniques (e.g. predicate ab-
straction, interpolation, etc) and gives a more general underap-
proximation for existential properties than previously known ap-
proaches to may/must abstraction.

Kesten and Pnueli [27] describe a proof system for CTL∗. Due
to our desire for full automation, ours differs in significant ways.
For example, while a proof of eventuality (AFq or EFq) in our
case involves reasoning along paths until q, we do not decom-
pose into path assertions in the proof system. Instead, we identify
the appropriate fragment of the transition relation (i.e. R

F

C

X
) and

a general property that must hold of this transition relation (well-
foundedness). In this way, we leave the details of eventuality prov-
ing to underlying abstraction techniques such as interpolation or
abstraction refinement. This simplifies the proof system and lends
itself many different forms of reasoning overR

F

C

X
.

There are a few other connections to existing work. Pruning
paths (as we do in chute refinement) appears in many static analy-
sis techniques [21, 41]. Second, in our work we synthesize program
variables that correspond to properties of the transition system (or
of the desired system). The success of similar techniques in other
contexts [35] reinforces the practical potential and experimental re-
sults of our paper. Finally, Vardhan and Viswanathan [38] describe
tool called Lever which uses language inference to discover fixed
points. These fixed points could potentially be used in conjunction
with our method once we have discovered the appropriate state re-
strictions.

8. Concluding Remarks
Until now, the question of how to reliably automate proofs in
branching-time logics (such as CTL, CTL∗ and the modal µ-
calculus) for infinite-state programs remained an open problem. In
this paper we have reported on the first known robust automatic
proof method to support both universal and existential branching-
time temporal operators (in CTL) for programs. In our approach ex-
istential reasoning is reduced to universal reasoning together with
the search for a restrictions on the program’s state-space. The ad-
vantage of the approach is that there are known solutions for uni-
versal reasoning. To demonstrate the practical viability of our ap-
proach we discussed the outcome of an experimental evaluation
with a prototype implementation using examples drawn the Post-
greSQL database server, the SoftUpdates patch system, the Win-
dows OS kernel.

There are a few open problems left as future work. It would be
helpful to have a more extensive evaluation considering, for exam-
ple, performance of properties that have high levels of nesting in
the temporal operators. Further, one might bring these techniques
to the interprocedural level, investigating the use of temporal lem-
mas to optimize the performance of the proof search. Finally, these
techniques could be extended to more expressive logics such as
CTL∗ and the modal µ-calculus.

Acknowledgments
We thank Carsten Fuhs, Peter O’Hearn, John Wickerson, and the
anonymous reviewers for their valuable feedback.

References
[1] BERNHOLTZ, O., VARDI, M. Y., AND WOLPER, P. An automata-

theoretic approach to branching-time model checking (extended ab-
stract). In CAV’94 (1994), D. L. Dill, Ed., vol. 818, Springer, pp. 142–
155.

[2] BEYER, D., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R.
The software model checker blast. STTT 9, 5-6 (2007), 505–525.

[3] BRADLEY, A., MANNA, Z., AND SIPMA, H. The polyranking prin-
ciple. Automata, Languages and Programming (2005), 1349–1361.

[4] BURCH, J., CLARKE, E., ET AL. Symbolic model checking: 1020

states and beyond. Information and computation 98, 2 (1992), 142–
170.

[5] CHAKI, S., CLARKE, E. M., GRUMBERG, O., OUAKNINE, J.,
SHARYGINA, N., TOUILI, T., AND VEITH, H. State/event soft-
ware verification for branching-time specifications. In IFM’05 (2005),
J. Romijn, G. Smith, and J. van de Pol, Eds., vol. 3771, pp. 53–69.

[6] CLARKE, E., JHA, S., LU, Y., AND VEITH, H. Tree-like counterex-
amples in model checking. In LICS (2002), pp. 19–29.

[7] CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. Automatic
verification of finite-state concurrent systems using temporal logic
specifications. TOPLAS 8 (April 1986), 244–263.

[8] COOK, B., GOTSMAN, A., PODELSKI, A., RYBALCHENKO, A.,
AND VARDI, M. Y. Proving that programs eventually do something
good. In POPL’07 (2007), pp. 265–276.

[9] COOK, B., AND KOSKINEN, E. Making prophecies with decision
predicates. In POPL’11 (2011), T. Ball and M. Sagiv, Eds., ACM,
pp. 399–410.

[10] COOK, B., KOSKINEN, E., AND VARDI, M. Temporal verification as
a program analysis task [extended version]. FMSD (2012).

[11] COOK, B., KOSKINEN, E., AND VARDI, M. Y. Temporal prop-
erty verification as a program analysis task. In CAV’11 (2011),
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806, Springer, pp. 333–
348.

[12] COOK, B., PODELSKI, A., AND RYBALCHENKO, A. Termination
proofs for systems code. In PLDI’06 (2006), M. I. Schwartzbach and
T. Ball, Eds., pp. 415–426.

[13] COUSOT, P., AND COUSOT, R. An abstract interpretation framework
for termination. In POPL’12 (2012), ACM, pp. 245–258.

[14] DAMS, D., AND NAMJOSHI, K. S. The existence of finite abstractions
for branching time model checking. In LICS (2004), pp. 335–344.

[15] DE ALFARO, L., GODEFROID, P., AND JAGADEESAN, R. Three-
valued abstractions of games: Uncertainty, but with precision. In LICS
(2004), pp. 170–179.

[16] EMERSON, E. A., AND HALPERN, J. Y. “sometimes” and “not never”
revisited: on branching versus linear time temporal logic. J. ACM 33,
1 (1986), 151–178.

[17] EMERSON, E. A., AND NAMJOSHI, K. S. Automatic verification of
parameterized synchronous systems (extended abstract). In CAV’96
(1996), vol. 1102, pp. 87–98.

[18] GIESL, J., SCHNEIDER-KAMP, P., AND THIEMANN, R. Aprove
1.2: Automatic termination proofs in the dependency pair framework.
Automated Reasoning (2006), 281–286.

[19] GODEFROID, P., NORI, A. V., RAJAMANI, S. K., AND TETALI, S.
Compositional may-must program analysis: unleashing the power of
alternation. In POPL’10 (2010), ACM, pp. 43–56.

[20] GULAVANI, B. S., HENZINGER, T. A., KANNAN, Y., NORI, A. V.,
AND RAJAMANI, S. K. SYNERGY: a new algorithm for property
checking. In FSE’06 (2006), ACM, pp. 117–127.

[21] GULWANI, S., JAIN, S., AND KOSKINEN, E. Control-flow refine-
ment and progress invariants for bound analysis. In PLDI’09 (2009),
pp. 375–385.

[22] GUPTA, A., HENZINGER, T. A., MAJUMDAR, R., RYBALCHENKO,
A., AND XU, R.-G. Proving non-termination. SIGPLAN Not. 43
(January 2008), 147–158.

[23] GURFINKEL, A., WEI, O., AND CHECHIK, M. Yasm: A software
model-checker for verification and refutation. In CAV’06 (2006),
vol. 4144, pp. 170–174.

[24] HARRIS, W. R., LAL, A., NORI, A. V., AND RAJAMANI, S. K.
Alternation for termination. In SAS (2010).

[25] HAYDEN, C. M., MAGILL, S., HICKS, M., FOSTER, N., AND FOS-
TER, J. S. Specifying and verifying the correctness of dynamic soft-
ware updates. In VSTTE’12 (2012), vol. 7152, pp. 278–293.

[26] IOSIF, R., BOZGA, M., BOUAJJANI, A., HABERMEHL, P., MORO,
P., , AND VOJNAR, T. Programs with lists are counter automata. In
CAV (2006).

[27] KESTEN, Y., AND PNUELI, A. A compositional approach to ctl*
verification. Theor. Comput. Sci. 331, 2-3 (2005), 397–428.

[28] KUPFERMAN, O., VARDI, M., AND WOLPER, P. An automata-
theoretic approach to branching-time model checking. Journal of the
ACM 47, 2 (2000), 312–360.

[29] MAGILL, S., TSAI, M.-H., LEE, P., AND TSAY, Y.-K. Automatic
numeric abstractions for heap-manipulating programs. In POPL’10
(2010), ACM, pp. 211–222.

[30] MCMILLAN, K. L. Lazy abstraction with interpolants. In CAV’06
(2006), T. Ball and R. B. Jones, Eds., vol. 4144, pp. 123–136.

[31] NELSON, G. A generalization of Dijkstra’s calculus. TOPLAS 11, 4
(1989), 517–561.

[32] PISTORE, M., AND TRAVERSO, P. Planning as model checking for
extended goals in non-deterministic domains. In IJCAI’01 (2001),
Springer.

[33] PNUELI, A., AND ZAKS, A. Psl model checking and run-time verifi-
cation via testers. In FM (2006), pp. 573–586.

[34] PODELSKI, A., AND RYBALCHENKO, A. Transition invariants. In
LICS (2004), pp. 32–41.

[35] SOLAR-LEZAMA, A., TANCAU, L., BODÍK, R., SESHIA, S. A., AND
SARASWAT, V. A. Combinatorial sketching for finite programs. In
PLDI (2006), ACM, pp. 404–415.

[36] SONG, F., AND TOUILI, T. Pushdown model checking for malware
detection. In TACAS (2012).

[37] STIRLING, C. Games and modal mu-calculus. In TACAS (1996),
vol. 1055, pp. 298–312.

[38] VARDHAN, A., AND VISWANATHAN, M. Learning to verify branch-
ing time properties. FMSD 31, 1 (2007), 35–61.

[39] WALUKIEWICZ, I. Pushdown processes: Games and model checking.
In CAV (1996), vol. 1102, pp. 62–74.

[40] WALUKIEWICZ, I. Model checking ctl properties of pushdown sys-
tems. In FSTTCS (2000), S. Kapoor and S. Prasad, Eds., vol. 1974,
pp. 127–138.

[41] YANG, Z., AL-RAWI, B., SAKALLAH, K. A., HUANG, X.,
SMOLKA, S. A., AND GROSU, R. Dynamic path reduction for soft-
ware model checking. In IFM (2009), vol. 5423, pp. 322–336.

