
Ranking Function Synthesis
for Bit-Vector Relations?

Byron Cook1, Daniel Kroening2, Philipp Rümmer2, and
Christoph M. Wintersteiger3

1 Microsoft Research, UK
2 Oxford University, UK

3 ETH Zurich, Switzerland

Abstract. Ranking function synthesis is a key aspect to the success of
modern termination provers for imperative programs. While it is well-
known how to generate linear ranking functions for relations over (math-
ematical) integers or rationals, efficient synthesis of ranking functions for
machine-level integers (bit-vectors) is an open problem. This is partic-
ularly relevant for the verification of low-level code. We propose several
novel algorithms to generate ranking functions for relations over ma-
chine integers: a complete method based on a reduction to Presburger
arithmetic, and a template-matching approach for predefined classes of
ranking functions based on reduction to SAT- and QBF-solving. The util-
ity of our algorithms is demonstrated on examples drawn from Windows
device drivers.

1 Introduction

Modern termination provers for imperative programs compose termination ar-
guments by repeatedly invoking ranking function synthesis tools. Such synthesis
tools are available for numerous domains, including linear and non-linear sys-
tems, and data structures. Thus, complex termination arguments can be con-
structed that reason simultaneously about the heap as well as linear and non-
linear arithmetic.

Efficient synthesis of ranking functions for machine-level bit-vectors, how-
ever, has remained an open problem. Today, the most common approach to
create ranking functions over machine integers is to use tools actually designed
for rational arithmetic. Because such tools do not faithfully model all properties
of machine integers, it can happen that invalid ranking functions are generated
(both for terminating and for non-terminating programs), or that existing rank-
ing functions are not found. Both phenomena can lead to incompleteness of
termination provers: verification of actually terminating programs might fail.

? Supported by the Swiss National Science Foundation grant no. 200021-111687, by
the Engineering and Physical Sciences Research Council (EPSRC) under grant
no. EP/G026254/1, by the EU FP7 STREP MOGENTES, and by the EU ARTEMIS
CESAR project.

This paper considers the termination problem as well as the synthesis of rank-
ing functions for programs written in languages like ANSI-C, C++, or Java. Such
languages typically provide bit-vector arithmetic over 16, 32, or 64 bit words,
and usually support both unsigned and signed datatypes (represented using the
2’s complement). We present two new algorithms to generate ranking functions
for bit-vectors: (i) a complete method based on a reduction to Presburger arith-
metic, and (ii) a template-matching approach for predefined classes of ranking
functions, including an extremely efficient SAT-based method. We quantify the
performance of these new algorithms using examples drawn from Windows device
drivers. Our algorithms are compared to the linear ranking function synthesis
engine Rankfinder, which uses rational arithmetic.

Programs using only machine integers can also be proved terminating without
ranking functions. Therefore, we also compare the performance of our methods
with one approach not based on ranking functions, the rewriting of termination
properties to safety properties according to Biere et al. [1].

Our results indicate that, on practical examples, the presented new methods
clearly surpass the known methods in terms of precision and performance.

This paper is organised as follows: in Sect. 2, we provide motivating ex-
amples, briefly explain the architecture of termination provers and define the
set of considered programs. In Sect. 3, a known, linear programming based ap-
proach for ranking function synthesis is analysed. Subsequently, a new extension
to this method is presented that handles bit-vector programs soundly. Sect. 3.3
presents two approaches based on template-matching for predefined classes of
ranking functions. In Sect. 4, the results of an experimental evaluation of all new
methods are given and compared to results obtained through known approaches.

unsigned char i;

while (i!=0)

i = i & (i-1);

Fig. 1. Code fragment of Windows driver kernel/agplib/init.c
(#40 in our benchmarks).

unsigned long ulByteCount;

for (int nLoop = ulByteCount;

nLoop; nLoop -= 4) { [...] }

Fig. 2. Code fragment of Windows device driver audio/gfxswap.xp/filter.cpp
(#14 in our benchmarks).

2

2 Termination of Bit-Vector Programs

We start by discussing two examples extracted from Windows device drivers that
illustrate the difficulty of termination checking for low-level code. Both examples
will be used in later sections to illustrate our methods.

The first example (Fig. 1) iterates for as many times as there are bits set in
i. Termination of the loop can be proven by finding a ranking function, which
is a function into a well-founded domain that monotonically decreases in each
loop iteration. To find a ranking function for this example, it is necessary to take
the semantics of the bit-wise AND operator & into account, which is not easily
possible in arithmetic-based ranking function synthesis tools (see Sect. 3.1). A
possible ranking function is the linear function m(i) = i, because the result of
i & (i-1) is always in the range [0, i− 1]: the value of m(i) decreases with
every iteration, but it can not decrease indefinitely as it is bounded from below.

The second program (Fig. 2) is potentially non-terminating, because the
variable nLoop might be initialised with a value that is not a multiple of 4,
so that the loop condition is never falsified. For a correct analysis, it is neces-
sary to know that integer underflows do not change the remainder modulo 4.
Ignoring overflows, but given the information that the variable nLoop is in the
range [−231, 231 − 1] and is decremented in every iteration, a ranking function
synthesis tool might incorrectly produce the ranking function nLoop.

2.1 Syntax and Semantics of Bit-Vector Programs

In order to simplify presentation, we abstract from the concrete language and
datatypes and introduce a simpler category of bit-vector programs. Real-world
programs can naturally be reduced to our language, which is in practice done
by the Model Checker (possibly also taking care of data abstractions, etc).

We assume that bit-vector programs consist of only a single loop (endlessly
repeating its body), possibly preceded by a sequence of statements (the stem).4

Apart from this, our program syntax permits guards (assume (t)), sequential
composition (β; γ), choice (β 2 γ), and assignments (x := t). Programs oper-
ate on variables x ∈ X , each of which ranges over a set Bα(x) of bit-vectors of
width α(x) > 0. The width is statically declared for each variable and does not
change during program execution. The syntactic categories of programs, state-
ments, and expressions are defined by the following grammar:

〈Prog〉 ::= 〈Stmt〉 repeat { 〈Stmt〉 }

〈Stmt〉 ::= skip || assume (〈Expr〉) || 〈Stmt〉; 〈Stmt〉 || 〈Stmt〉 2 〈Stmt〉 || x := 〈Expr〉

〈Expr〉 ::= 0n || 1n || · · · || ∗n || x || castn(〈Expr〉) || ¬〈Expr〉 || 〈Expr〉 ◦ 〈Expr〉

Expressions 0n, 1n, . . . are bit-vector literals of width n, ∗n non-deterministically
returns an arbitrary bit-vector of width n, and the operator castn changes the
width of a bit-vector (cutting off the highest-valued bits, or filling up with zeros
4 This is not a restriction, as will become clear in the next section.

3

as highest-valued bits). The semantics of bitwise negation ¬, and of the binary
operators ◦ ∈ {+,×,÷,=, <s, <u, & , | ,�,�} is as usual.5 When evaluating
the arithmetic operators +,×,÷,�,�, both operands are interpreted as un-
signed integers. In the case of <s (resp., <u) the operands are interpreted as
signed in 2’s complement format (resp., unsigned).

We write t : n to denote that the expression t is correctly typed and denotes
a bit-vector of width n. In the rest of the paper, we always assume that programs
are type-correct. (For the complete typing rules see Appendix A.)

The state space of programs defined over a (finite) set X of bit-vector vari-
ables with widths α is denoted by S, and consists of all mappings from X to bit-
vectors of the correct width: S = {f ∈ X → B+ | f(x) ∈ Bα(x) for all x ∈ X}.
The transition relation defined by a statement β is denoted by Rβ ⊆ S × S.
In particular, we define the transition relation for sequences as Rβ1;β2(s, s′) ≡
∃s′′ . Rβ1(s, s′′) ∧Rβ2(s′′, s′).

Example. We consider the program given in Fig. 2. Using unsigned arithmetic
(and −4 ≡ 232 − 4 mod 232), the bit-vector program for a single loop iteration
is

assume (nLoop 6= 0); nLoop := nLoop + (232 − 4) (1)

Complexity. We say that a bit-vector program β repeat { γ } terminates if there is
no infinite sequence of states a0, a1, a2, . . . ∈ S such thatRβ(a0, a1) andRγ(ai, ai+1)
for all i > 0. The termination problem for bit-vector programs is decidable (a
proof is given in Appendix B):

Lemma 1. Deciding termination of bit-vector programs is PSPACE-complete
in the sum of the program size and the size of the program’s available memory
(the sum of the bit-widths of the declared variables).

Practically, the most successful termination provers are based on incomplete
methods that try to avoid this high complexity, by such means as the generation
of specific kinds of ranking functions (like functions that are linear in program
variables). The general strategy of such provers is described in the next section.

2.2 Binary Reachability Analysis and Ranking Functions

Definition 1 (Ranking function). Suppose (D,≺) is a well-founded, strictly
partially ordered set, and R ⊆ U × U is a relation over a non-empty set U . A
ranking function for R is a function m : U → D such that:

for all a, b ∈ U : R(a, b) implies m(b) ≺ m(a).

Of particular interest in the context of this paper is the well-founded domain of
natural numbers (N, <). In general, we can directly conclude:

5 Adding further operations, e.g., bit-vector concatenation, is straightforward.

4

Lemma 2. If a (global) ranking function exists for the transition relation R of
a program β, then β terminates.

The problem of deciding termination of a program may thus be stated as a
problem of ranking function synthesis. By the disjunctive well-foundedness the-
orem [2], this is simplified to the problem of finding a ranking function for every
path through the program. The ranking functions found for all n paths are used to
construct a global, disjunctive ranking relation M(a, b) =

∨n
i=1mi(b) ≺ mi(a).

A technique that puts this theorem to use is Binary Reachability Analy-
sis [3,4]. In this approach, termination of a program is first expressed as a safety
property [1], initially assuming that the program does not terminate. Conse-
quently, a (software) Model Checker is applied to obtain a counterexample to
termination, i.e., an example of non-termination. This counterexample contains
a stem, that is an example of how to reach the loop, and a cycle that follows
a path π through the loop, finally returning to the entry location of the loop.
What follows is an analysis solely concerned with the stem and π, which is why
we may safely restrict ourselves to single-loop programs here.

The next step in the procedure is to synthesise a ranking function for π. This
path constitutes a new, smaller, and loop-free program, which does not contain
choice operators. Trivially, π is equivalent to a relation Rπ(x, x′), where x and
x′ are states of the program. If a ranking function mπ is found for this relation,
the original safety property is weakened to exclude all paths of the program that
satisfy the ranking relation mπ(x′) ≺ mπ(x), and the process starts over. If no
further non-terminating paths are found, termination of the program is proven.

3 Ranking Functions for Bit-Vector Programs

We introduce three new methods to synthesise ranking functions for given paths
in a bit-vector program: one based on integer linear programming techniques,
and two methods that are based on propositional reasoning using SAT- and
QBF-solvers. Before that, we give a short overview of the derivation of ranking
functions using linear programming, which is the starting point for our methods.

3.1 Synthesis of Ranking Functions by Linear Programming

The approach to generate ranking functions that is used in binary reacha-
bility engines like Terminator [4] and ARMC [5] was developed by Podelski
et al. [6]. In this setting, ranking functions are generated for transition rela-
tions R ⊆ Qn ×Qn that are described by systems of linear inequalities:

R(x, x′) ≡ Ax+A′x′ ≤ b (A,A′ ∈ Qk×n, b ∈ Qk)

where x, x′ ∈ Qn range over vectors of rationals. Bit-vector relations have to
be encoded into such systems, which usually involves an over-approximation
of program behaviour. The derived ranking functions are linear and have the
codomain D = {z ∈ Q | z ≥ 0}, which is ordered by y ≺ z ≡ y + δ ≤ z for some

5

rational δ > 0. Ranking functions m : Qn → D are represented as m(x) = rx+ c,
with r ∈ Qn a row vector and c ∈ Q. Such a function m is a ranking function
with the domain (D,≺) if and only if the following condition holds:

for all x, x′ ∈ Qn : R(x, x′) implies rx+ c ≥ 0 ∧ rx′ + c ≥ 0 ∧ rx′ + δ ≤ rx (2)

Coefficients r for which this implication is satisfied can be constructed using
Farkas’ lemma, of which the ‘affine’ form given in [7] is appropriate (Lem. 5
in the appendix). Using this lemma, a necessary and sufficient criterion for the
existence of linear ranking functions can be formulated:

Theorem 1 (Existence of linear ranking functions [6]). Suppose that
R(x, x′) ≡ Ax+A′x′ ≤ b is a satisfiable transition relation. R has a linear rank-
ing function m(x) = rx+ c iff there are non-negative vectors λ1, λ2 ∈ Qk s.t.:

λ1A
′ = 0, (λ1 − λ2)A = 0, λ2(A+A′) = 0, λ2b < 0.

In this case, m can be chosen as λ2A
′x+ (λ1 − λ2)b.

This criterion for the existence of linear ranking functions is necessary and
sufficient for linear inequalities on the rationals, but only sufficient over the
integers or bit-vectors: there are relations R(x, x′) ≡ Ax+A′x′ ≤ b for which
linear ranking functions exist, but the criterion fails, e.g.:

R(x, x′) ≡ x ∈ [0, 4] ∧ x′ ≥ 0.2x+ 0.9 ∧ x′ ≤ 0.2x+ 1.1 .

Restricting x and x′ to the integers, this is equivalent to x = 0 ∧ x′ = 1 and can
be ranked by m(x) = −x+ 1. Over the rationals, the program defined by the
inequalities does not terminate, which implies that no ranking function exists
and the criterion of Theorem 1 fails.

3.2 Synthesis of Ranking Functions by Integer Linear Programming

We extend the linear programming approach from Sect. 3.1 to fully support
bit-vector programs. To this end, we first generalise Theorem 1 to disjunctions
of systems of inequalities over the integers. We then define a complete algo-
rithm to synthesise linear ranking functions for programs defined in Presburger
arithmetic, which subsumes bit-vector programs.

Linear ranking functions over the integers. In order to faithfully encode
bit-vector operations like addition with overflow (describing non-convex transi-
tion relations), it is necessary to consider also disjunctive transition relations R:

R(x, x′) ≡
l∨
i=1

Aix+A′ix
′ ≤ bi

where l ∈ N, Ai, A′i ∈ Zk×n, bi ∈ Zk, and x, x′ ∈ Zn range over integer vectors.
Linear ranking functions for such relations can be constructed by solving an

6

implication like (2) for each disjunct of the relation. There is one further com-
plication, however: Farkas’ lemma, which is the main ingredient for Theorem 1,
is in general not complete for inequalities over the integers.

Farkas’ lemma gives a complete criterion for integral systems, however: a sys-
temAx+A′x′ ≤ b is called integral if the polyhedron {

(
x
x′

)
∈ Q2n | Ax+A′x′ ≤ b}

coincides with its integral hull (the convex hull of the integer points contained in
it), see Lem. 6 in Appendix C. Each system of inequalities can be transformed
into an integral system with the same integer solutions, although this might
increase the size of the system exponentially [7].

Lemma 3. Suppose R(x, x′) ≡
∨l
i=1Aix+A′ix

′ ≤ bi is a transition relation in
which each disjunct is satisfiable and integral. R has a linear ranking func-
tion m(x) = rx+ c if and only if there are non-negative vectors λi1, λ

i
2 ∈ Qk for

i ∈ {1, . . . , l} such that:

λi1A
′
i = 0, λi2(Ai +A′i) = 0, λi2bi < 0, (λi1 − λi2)Ai = 0, λi2A

′
i = r. (3)

A proof and an algorithm for strengthening transition disjuncts and applying
this lemma is given in Appendix C.

Ranking functions for Presburger arithmetic. Presburger arithmetic (PA)
is the first-order theory of integer arithmetic without multiplication [8]. We de-
scribe a complete procedure to generate linear ranking functions for PA-defined
transition relations by reduction to Lem. 3. The procedure can also derive rank-
ing functions that contain integer division expressions b tεc for some ε ∈ Z, but
it is not complete for such functions.

PA allows quantifier elimination by means of introducing divisibility con-
straints, which implies that we can always represent PA-defined transition rela-
tions in the form

R(x, x′) ≡
l∨
i=1

Aix+A′ix
′ ≤ bi ∧Di (4)

where each Di is a conjunction of divisibility constraints ε | (cx+ dx′). Divisi-
bility constraints have to be introduced in certain situations during quantifier
elimination, and state that the value of the term cx+ dx′ is a multiple of the nat-
ural number ε ∈ N+. To obtain form (4), it is necessary to rewrite equations s = t
as conjunctions s ≤ t ∧ t ≤ s of inequalities, and to turn negated divisibility con-
straints ε - t into disjunctions (ε | t+ 1) ∨ (ε | t+ 2) ∨ · · · ∨ (ε | t+ ε− 1).

Divisibility constraints have to be eliminated in order to apply Lem. 3, which
is possible in two ways:

(i) The inequalities of a disjunct may imply lower and upper bounds on the value
of cx+dx′ in a constraint ε | (cx+ dx′) in Di, i.e., for some a, b ∈ Z it is the
case that Aix+A′ix

′ ≤ bi implies a ≤ cx+ dx′ ≤ b. Under this assumption,
ε | (cx+ dx′) can equivalently be written as a finite disjunction:∨

i=d aε e,...,b
b
ε c

i = cx+ dx′

7

In particular, this is always the case for transition relations of bit-vector
programs, because all variables range over finite domains.

(ii) In general, fresh variables can be used to turn divisibility constraints into
equations (this can also lead to fewer considered cases than (i)). Given a
constraint ε | (cx+ dx′), we introduce new pre-state variables yc, yd and post-
state variables y′c, y

′
d, which are defined by adding conjuncts to R(x, x′):

R′(x, yc, yd, x′, y′c, y
′
d) ≡ R(x, x′)∧ 0 ≤ cx− εyc < ε ∧ 0 ≤ dx− εyd < ε

∧ 0 ≤ cx′ − εy′c < ε ∧ 0 ≤ dx′ − εy′d < ε

Intuitively, yc represents the expression b cxε c, and yd the expression bdxε c.
With the new variables, ε | (cx+ dx′) can be rewritten to the equivalent
constraint ε | (cx− εyc + dx′ − εy′d), which can then be replaced with a dis-
junction of equations as described in (i).

Iterating these steps eventually leads to a transition relation R′(x, y, x′, y′)
without divisibility judgments, such that ∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′) (the
vectors y, y′ contain the variables introduced in step (ii)). We can then apply
Lem. 3 to R′ to derive a linear ranking function m′(x, y). New variables yc from
(ii) that might occur in m′(x, y) can now be interpreted as a division expres-
sion b cxε c, so that m′(x, y) can equivalently be written as a ranking function m(x)
(but not always as a linear function). If no division expressions are supposed to
occur in m(x), it is also possible to add further constraints to Eq. (3).

Lemma 4. The procedure described above decides the existence of linear ranking
functions for transition relations R(x, x′) defined in Presburger arithmetic.

Representation of bit-vector operations in PA. Presburger arithmetic is
expressive enough to capture the semantics of all bit-vector operations defined
in Sect. 2, so that ranking functions for bit-vector programs can be generated
using the method from the previous section. For instance, the semantics of a
bit-vector addition s+ t can be defined in weakest-precondition style as:

wp(x := s+ t, φ) = wp
(
y1 := s; y2 := t,
∃x.(0 ≤ x < 2n ∧ 2n | (x− y1 − y2) ∧ φ)

)
where s : n, t : n denote bit-vectors of length n, and y1, y2 are fresh variables. The
existentially quantified formula assigns to x the remainder of y1 + y2 modulo 2n.

A precise translation of non-linear operations like × and & can be done by
case analysis over the values of their operands, which in general leads to formulae
of exponential size, but is well-behaved in many cases that are practically relevant
(e.g., if one of the operands is a literal). Such an encoding is only possible because
the variables of bit-vector programs range over finite domains, of course.

Example We consider the bit-vector program (1) corresponding to Fig. 2. An
encoding of the program in PA is:

nLoop 6= 0 ∧ 232 | (nLoop′ − nLoop − 232 + 4)

∧ 0 ≤ nloop < 232 ∧ 0 ≤ nloop′ < 232

8

From the side conditions, we can derive that the term nLoop′ − nLoop − 232 + 4
has the range [5− 233, 3], so that the divisibility constraint can be split into two
cases. With some further simplifications, we obtain:(

nLoop′ = nLoop − 4 ∧ 0 ≤ nloop′ ∧ nloop < 232
)

∨
(
nLoop′ = nLoop + 232 − 4 ∧ 0 < nloop ∧ nloop′ < 232

)
It is now easy to see that each disjunct is satisfiable and integral, which means
that Lem. 3 is applicable. Because the conditions (3) are not simultaneously
satisfiable for all disjuncts, no linear ranking function exists for the program.

3.3 Synthesis of Ranking Functions from Templates

A subset of the ranking functions for bit-vector programs can be identified by
templates of a desired class of functions with undetermined coefficients. In order
to find the coefficients, we consider two methods: (i) an encoding into quantified
Boolean formulas (QBF) to check all suitable values, and (ii) a propositional
SAT-solver to check likely values.

We primarily consider linear functions of the program variables. Let x =
(x1, . . . , x|X |) be a vector of program variables and associate a coefficient ci with
each xi ∈ X . The coefficients constitute the vector c = (c1, . . . , c|X |). We can
then construct the template polynomial

p(c, x) :=
|X |∑
i=1

(ci × castw(xi))

with the bit-width w ≥ maxi(α(xi)) + dlog2(|X |+ 1)e and α(ci) = w, chosen
such that no overflows occur during summation. The following theorem provides
a bound on w that guarantees that ranking functions can be represented for all
programs that have linear ranking functions.

Theorem 2. There exists a linear ranking function on path π with transition
relation Rπ(x, x′), if

∃c ∀x, x′ . Rπ(x, x′)⇒ p(c, x′) <s p(c, x) . (5)

Vice versa, if there exists a linear ranking function for π, then Eq. (5) must be
valid for n = maxi(α(xi)) and

w ≥ n · (|X | − 1) + |X | · log2 |X |+ 1 .

For a proof of this theorem, see Appendix D.
It is straightforward to flatten Eq. (5) into QBF. Thus, a QBF solver that

returns an assignment for the top-level existential variables can compute suit-
able coefficients. Examples of such solvers are Quantor [9], sKizzo [10], and
Squolem [11]. In our experiments, we use an experimental version of QuBE [12].

9

Despite much progress, the capacity of QBF solvers has not yet reached the
level of propositional SAT solvers. We therefore consider the following simplistic
way to enumerate coefficients: we restrict all coefficients to α(ci) = 2 and we
fix a concrete assignment γ(c) ∈ {0, 1, 3} to the coefficients (corresponding to
{−1, 0, 1} in 2’s complement). Negating and applying γ transforms Equation 5
into

¬∃x, x′ . Rπ(x, x′) ∧ ¬(p(γ(c), x′) <s p(γ(c), x)) , (6)

which is a bit-vector (or SMT-BV) formula that may be flattened to a purely
propositional formula in the straightforward way. The formula is satisfiable iff
p is not a genuine ranking function. Thus, we enumerate all possible γ until
we find one for which Equation 6 is unsatisfiable, which means that p(γ(c), x)
must be a genuine ranking function on π. Even though there are 3|X | possible
combinations of coefficient values to test, this method performs surprisingly well
in practice, as demonstrated by our experimental evaluation in Sect. 4.

Example We consider the program given in Fig. 1. The only variable in the pro-
gram is i, and it is 8 bits wide. We thus obtain the polynomial p(c, i) = c× cast9(i)
with α(c) = 9. For the only path through the loop in this example, the transition
relation Rπ(i, i′) is i 6= 0 ∧ i′ = i & (i− 1). Solving the resulting formula

∃c∀i, i′ . Rπ(i, i′)⇒ p(c, i′) <s p(c, i)

with a QBF-Solver does not return a result within an hour. We thus rewrite the
formula according to Equation 6 and obtain

¬∃i, i′ . Rπ(i, i′) ∧ ¬(p(c, i′) <s p(c, i))

which we solve (in a negligible amount of runtime) for all choices of c ∈ {0, 1, 3}.
The formula is unsatisfiable for c = 1, and we conclude that cast9(i) is a suitable
ranking function. In this particular example, it is possible to omit the cast.

4 Experiments

4.1 Large-scale benchmarks

Following Cook et al. [4], we implemented a binary reachability analysis engine
to evaluate our ranking synthesis methods. Our implementation uses SATABS as
the reachability checker [13], which implements SAT-based predicate abstraction.
Our benchmarks are device drivers from the Windows Driver Development Kit
(WDK).6 The WDK already includes verification harnesses for the drivers. We
use goto-cc7 to extract model files from a total of 87 drivers in the WDK.

Most of the drivers contain loops over singly and doubly-linked lists, which
require an arithmetic abstraction. This abstraction can be automated by existing
shape analysis methods (e.g., the one recently presented by Yang et al. [16]).
6 Version 6, available at http://www.microsoft.com/whdc/devtools/wdk/
7 http://www.cprover.org/goto-cc/

10

1 2 3 4 5 6 7 8 9 10 11 12 13 Loop

list list unr. i++ unr. unr. unr. unr. wait unr. unr. i++ list Type

126 85 687 248 340 298 253 844 109 375 333 3331 146 CE Time [sec]

0.5 0.1 – 0.7 – – – – 0.4 – – 2.2 0.4 Synth. Time [sec]

× × X MO X X X X × X X MO × Terminates?
Table 1. The behaviour on the loops of a keyboard driver.

Slicing the input. Just like Cook et al. [4], we find that most of the runtime is
spent in the reachability checker (more than 99%), especially after all required
ranking functions have been synthesised and no more counterexamples exist. To
reduce the resource requirements of the Model Checker, our binary reachability
engine analyses each loop separately and generates an inter-procedural slice [17]
of the program, slicing backwards from the termination assertion.8 With the
slicer in place, we find that absolute runtime and memory requirements are
reduced dramatically.

As our complete data on Windows drivers is voluminous, we present a typical
example in detail. The full dataset is available online.9 The keyboard class driver
in the WDK (kbdclass) contains a total of 13 loops in a harness (SDV FLAT
HARNESS) that calls all dispatch functions nondeterministically.

Table 1 describes the behaviour of our engine on this driver. For every loop
we list the type (list iteration, i++, unreachable, or ‘wait for device’), the time it
takes to find a potentially non-terminating path (‘CE Time’), the time required
to find a ranking function using our SAT template from Sect. 3.3 (‘Synth. Time’,
where applicable), and the final result. In the last row, ‘MO’ indicates a memory-
out after consuming 2 GB of RAM while proving that no further counterexamples
to termination exist. The entire analysis of this driver requires 2 hours.10

We were able to isolate a possible termination problem in the USB driver
bulkusb that may result in the system being blocked. The driver requests an
interface description structure for every device available by calling an API func-
tion. It increments the loop counter if this did not return an error. The API
function, however, may return NULL if no interface matches the search criteria,
resulting in the loop counter not being incremented. Since numberOfInterfaces is
a local (non-shared) variable the loop, the problem would persist in a concur-
rent setting, where a device may be disconnected while the loop is executed. An
excerpt of the source code of the driver is in Appendix F.

8 We remove all instructions that the loop does not (syntactically) depend on, while
keeping the control flow graph intact. Following the hypothesis that loop termination
seldom depends on complex variables that are possibly calculated by other loops,
our slicing algorithm replaces all assignments that depend on five or more variables
with non-deterministic values, and all loops other than the analysed one with pro-
gram fragments that havoc the program state (non-deterministic assignments to all
variables that might change during the execution of the loop).

9 http://www.cprover.org/satabs/termination/
10 All experiments were run on 8-core Intel Xeon 3 GHz machines with 16 GB of RAM.

11

4.2 Experiments on smaller examples

The predominant role of the reachability engine on our large-scale experiments
prevents a meaningful comparison of the utility of the various techniques for
ranking function synthesis. For this reason, we conducted further experiments
on smaller programs, where the behaviour of the reachability engine has less
impact. We manually extracted 61 small benchmark programs from the WDK
drivers. Most of them contain bit-vector operations, including multiplication,
and some of them contain nested loops. All benchmarks were manually sliced
by removing all source code that does not affect program termination (much
like an automated slicer, but more thoroughly). All but ten of the benchmark
programs terminate. The time limit in these benchmarks was 3600 s, and the
memory consumption was limited to 2 GB.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Manual Insp. L L L L N N N L T N T L L N T L L L L L T L L L L L L N T L T
SAT # # # # # # # # # # # #
Seneschal – # – – # # # # # – # – – # # – –
Rankfinder # # # # # G# # # # G# G# G# # G# # # # G# G# # – # #
QBF [-1,+1] – – # # – # # – – – – – – – – – – – – – – # – – #
QBF P (c, x) –
Biere et al. [1] – – – – – – – – # – – – – – – – – – – – – # – –
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
Manual Insp. T L L N L T L L L L L L N T L L T T T L T L N L L L L L N T
SAT # – # # # # # # # # # # # #
Seneschal # – – # – – # # # # # – # – – # –
Rankfinder # G# – # G# # # # # G# # # # G# # – G# # # #
QBF [-1,+1] – – – – – – – – – # – – – # # – # – – – – – # –
QBF P (c, x) – – –
Biere et al. [1] – – – # – – – – – – # – – – – – – – – – – #

 – Termination was proven T – Terminating (non-linear)
– (Possibly) Non-terminating L – Terminating, and linear
G# – Incorrect under bit-vector semantics ranking functions exist.
– – Memory or time limits exhausted N – Non-terminating

Table 2. Experimental Data

To evaluate the integer linear programming method described in Sect. 3.2, we
developed the prototype Seneschal.11 It is based on the prover Princess [18] for
Presburger arithmetic with uninterpreted predicates and works by (i) translating
a given bit-vector program into a PA formula, (ii) eliminating the quantifiers in
the formula, (iii) flattening the formula to a disjunction of systems of inequalities,
and (iv) applying Lem. 3 to compute ranking functions. Seneschal does currently
not, however, transform systems of inequalities to integral systems, which means
that it is a sound but incomplete tool.

Table 2 summarizes the results. The first column indicates the result ob-
tained by manual inspection, i.e., if a specific benchmark is terminating, and if
so whether there is a linear ranking function to prove this. The other columns
represent the following ranking synthesis approaches: SAT is the coefficient enu-
meration approach from Sect. 3.3; Seneschal is the integer linear programming
11 http://www.philipp.ruemmer.org/seneschal.shtml

12

approach from Sect. 3.2; Rankfinder is the linear programming approach over ra-
tionals from Sect. 3.1; QBF [-1,+1] is a QBF template approach from Sect. 3.3
with coefficients restricted to [−1,+1], such that the template represents the
same ranking functions as the one used for the SAT enumeration approach.
QBF P (C,X) is the unrestricted version of this template.

Comparing the various techniques, we conclude that the simple SAT-based
enumeration is most successful in synthesising useful ranking functions. It is able
to prove 35 out of 51 terminating benchmarks and reports 25 as non-terminating.
It times out on only a single instance, after reaching a suitable template instan-
tiation, because the SAT solver requires too much time to determine unsatisfia-
bility.

Seneschal shows the second best performance: it proves 27 programs as ter-
minating, almost as many as the SAT-based template approach. It reports 18
benchmarks as non-terminating and times out on 16.

For the experiments using Rankfinder12, the bit-vector operators +, × with
literals, =, <s and <u are approximated by the corresponding operations on the
rationals, whereas nonexistence of ranking functions is reported for programs
that use any other operations. Furthermore, we added constraints restricting the
range of pre-state variables to the input, i.e., constraints of the form 0 ≤ v < 2n,
where n is the bit-width of v. The ranking functions returned by Rankfinder
do not contain any information about the bit-widths to be used, and we there-
fore use a typing that avoids overflows. This results in 18 successful termina-
tion proofs, and 28 cases of alleged non-termination. In three cases, the Model
Checker times out on proving the final property, and in 12 cases Rankfinder
returns an unsuitable ranking function. The runtimes of the SAT coefficient
enumeration, Seneschal, and Rankfinder are relatively small (more detail is in
Appendix G).

For the two QBF techniques we used an experimental version of QuBE, which
performed better than sKizzo, Quantor, and Squolem. The constrained template
(QBF [−1,+1]) is still able to synthesise some useful ranking functions within
the time limit. The unconstrained approach (QBF P (C,X)), however, proves
only a single program terminating, with the QBF-Solver timing out on all other
benchmarks.

We also implemented the approach suggested by Biere et al. [1] (rightmost
column of Table 2), which does not require a ranking function, but instead proves
an assertion that an entry state of the loop is never reached again. Generally,
these assertions are difficult for SATABS. While this method is able to show
only 14 programs terminating, there are four benchmarks (#31, #45, #50, and
#61) that none of the other methods can handle as they require non-linear
ranking functions.

Our benchmark suite, all results with added detail, and additional experi-
ments are available online at http://www.cprover.org/satabs/termination/.

12 http://www.mpi-inf.mpg.de/~rybal/rankfinder/

13

5 Related work

Numerous efficient methods are now available for the purpose of finding ranking
functions (e.g., [6, 19–21]). Some tools are complete for the class of ranking
functions for which they are designed to search (e.g., [6]), others employ a set of
heuristics (e.g., [21]). Until now, no known tool supported machine-level integers.

Bradley et al. [19] give a complete search-based algorithm to generate linear
ranking functions together with supporting invariants for programs defined in
Presburger arithmetic. We propose a related constraint-based method to syn-
thesise linear ranking functions for such programs. It is worth noting that our
method is a decision procedure for the existence of linear ranking functions in
this setting, while the procedure in [19] is sound and complete, but might not
terminate when applied to programs that lack linear ranking functions. An ex-
perimental comparison with Bradley et al’s method is future work.

Ranking function synthesis is not required if the program is purely a finite-
state system. In particular, Biere, Artho and Schuppan describe a reduction
of liveness properties to safety by means of a monitor construction [1]. The
resulting safety checks require a comparison of the entire state vector whereas the
safety checks for ranking functions refer only to few variables. Our experimental
results indicate that the safety checks for ranking functions are in most cases
easier. Another approach for proving termination of large finite-state systems
was proposed by Ball et al. [22]; however, we would need to develop a technique
to find suitable abstractions. Furthermore, since neither one of these techniques
leads to ranking functions, it is not clear how they can be integrated into systems
whose aim is to prove termination of programs that mix machine integers with
data-structures, recursion, and/or numerical libraries with arbitrary precision.

6 Conclusion

The development of efficient ranking function synthesis tools has led to more
powerful automatic program termination provers. While synthesis methods are
available for a number of domains, efficient procedures for programs over machine-
level integers have until now not been known. We have presented two new al-
gorithms solving the problem of ranking function synthesis for bit-vectors: (i) a
complete method based on a reduction to quantifier-free Presburger arithmetic,
and (ii) a template-matching method for finding ranking functions of specified
classes. Through experimentation with examples drawn from Windows device
drivers we have shown their efficiency and applicability to systems-level code.
The bottleneck of the methods is the reachability analysis engine. We will there-
fore consider optimizations for this engine specific to termination analysis as
future work.

Acknowledgements. We would like to thank M. Narizzano for providing us with
an experimental version of the QuBE QBF-Solver that outputs an assignment for
the top-level existentials and H. Samulowitz for discussions about QBF encodings
of the termination problem and for evaluating several QBF solvers.

14

References

1. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In:
FMICS. Number 66 in ENTCS, Elsevier (2002)

2. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, IEEE (2004) 32–41
3. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.

In: SAS. Number 3672 in LNCS, Springer (2005) 87–101
4. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:

PLDI, ACM (2006) 415–426
5. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model

checking with abstraction refinement. In: PADL. Number 4354 in LNCS, Springer
(2007) 245–259

6. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: VMCAI. Number 2937 in LNCS, Springer (2004) 239–251

7. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
8. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Sprawozdanie z I Kongresu metematyków slowiańskich, Warszawa 1929, Warsaw,
Poland (1930) 92–101,395

9. Biere, A.: Resolve and expand. In: SAT. Number 3542 in LNCS, Springer (2005)
59–70

10. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: CADE. Number
3632 in LNCS, Springer (2005) 369–376

11. Jussila, T., Biere, A., Sinz, C., Kroening, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: SAT. Number 4501 in LNCS, Springer
(2007) 201–214

12. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: an efficient QBF solver.
In: FMCAD. Number 3312 in LNCS (2004) 201–213

13. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. FMSD 25 (2004) 105–127

14. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: EuroSys, ACM (2006) 73–85

15. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: CAV. Volume 2102 of LNCS.,
Springer (2001) 260–264

16. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: CAV. Volume 5123 of LNCS.,
Springer (2008) 385–398

17. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. In: PLDI, ACM (1988) 35–46

18. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: LPAR. Number 5330 in LNCS, Springer (2008) 274–289

19. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear
loops. In: CONCUR. Volume 3653 of LNCS., Springer (2005) 488–502

20. Encrenaz, E., Finkel, A.: Automatic verification of counter systems with ranking
functions. In: INFINITY. ENTCS, Elsevier (2009) To appear.

21. Babic, D., Hu, A.J., Rakamaric, Z., Cook, B.: Proving termination by divergence.
In: SEFM, IEEE Computer Society (2007) 93–102

22. Ball, T., Kupferman, O., Sagiv, M.: Leaping loops in the presence of abstraction.
In: CAV. Number 4590 in LNCS, Springer (2007) 491–503

15

A Typing Rules for Bit-Vector Programs

We write t : n to denote that the expression t is correctly typed and denotes a
bit-vector of length n. Given a statement or program β, we write β : ⊥ to express
that β is correctly typed. In the following rules, x ∈ X ranges over variables,
n ∈ N+ over positive natural numbers, s, t over expressions, β, γ over statements:

k ∈ N+

kn : n ∗n : n
t : n
¬t : n

s : n t : n
s ◦ t : n ◦ ∈ {+,×,÷, & , | }

α(x) = n
x : n

s : n t : k
s ◦ t : n ◦ ∈ {�,�}

α(x) = n t : n
x := t : ⊥

t : k
castn(t) : n

s : n t : n
s ◦ t : 1 ◦ ∈ {=,≤} t : 1

assume (t) : ⊥

skip : ⊥
β : ⊥ γ : ⊥
β; γ : ⊥

β : ⊥ γ : ⊥
β 2 γ : ⊥

β : ⊥ γ : ⊥
β repeat { γ } : ⊥

B Termination of Bit-Vector Programs is
PSPACE-complete

Bit-vector programs (as defined in the previous section, i.e., not providing heap
or recursion) belong to the class of constant memory programs, which means
that the memory consumption is defined upfront and does not depend on pro-
gram inputs. The termination of such programs is decidable, more precisely, it
is PSPACE-complete: polynomial memory is needed in the size of the program
and the size of the program’s available memory.

Termination is PSPACE-hard. We first show that the termination problem for
bit-vector programs is PSPACE-hard by polynomial reduction of the satisfiabil-
ity problem of QBF-formulae (which is the canonical PSPACE-complete formal-
ism [1]). Suppose φ = Q1x1. · · ·Qnxn.ψ is a closed QBF-formula in prenex form,
where Qi ∈ {∀,∃} and ψ is quantifier-free. We will write a program of polyno-
mial size and memory consumption (in the size of φ) that terminates if and
only if φ is satisfiable. To this end, we assume that x1, . . . , xn are also declared
as program variables of bit-width 1, i.e., α(xi) = 1 for i ∈ {1, . . . , n}. Further-
more, we assume that the matrix ψ is an expression in the grammar defined
in Table ??, which is no restriction because the language provides the boolean
operators & , | ,¬.

We need further variables to write the program to check satisfiability of φ: a
variable num with α(num) = dlog2(n+ 2)e, variables r1, . . . , rn with α(ri) = 1,
and variables num1, . . . ,numn with α(numi) = 2.

16

The satisfiability checker has the following form (for sake of brevity, we omit
the bit-widths of literals like 53):

num := 1; num1 := 0; · · · ; numn := 0
repeat { assume (num = 0 & ¬r1)

2 loop1 2 loop2 2 · · · 2 loopn
2
(
assume (num = n+ 1); rn+1 := φ; num := n

)
}

Each of the blocks loopi is responsible for enumerating the possible values of xi
and evaluating the quantifier Qi:

assume (num = i);(
(assume (numi = 0); numi := 1; num := i+ 1; xi := 0)

2 (assume (numi = 1); numi := 2; num := i+ 1; ri := ri+1; xi := 1)

2 (assume (numi = 2); numi := 0; num := i− 1; ri := ri ◦ ri+1)
)

where ◦ = & for Qi = ∀, and ◦ = | for Qi = ∃.
We can observe that the size of each loopi is logarithmic in n (because num-

bers in the range 0, . . . , n + 1 need to be encoded). The size of all loopi blocks
together is therefore in O(n log n), and the size of the whole satisfiability checker
is in O(s log s), where s is the size of the formula φ.

The memory consumption of the satisfiability checker is

n variables xi
+ dlog2(n+ 2)e variable num
+ n variables ri
+ 2n variables numi

= 4n+ dlog2(n+ 2)e ∈ O(n)

Finally, it can be observed that the transformation of QBF-formulae into
prenex form, as well as the generation of the satisfiability checker can be done
in polynomial time.

Termination is in PSPACE. To prove that the termination of bit-vector pro-
grams is in PSPACE, we encode the termination of a program α into a QBF-
formula of polynomial size in the size of α and α’s available memory. Because
the satisfiability of QBF-formulae is in PSPACE [1], this shows that program
termination is in PSPACE as well (and therefore, together with the previous
paragraphs, termination is PSPACE-complete). The construction is based on the
classical proof that QBF is PSPACE-complete [1] and uses a technique called
“squaring abbreviation.”

We first assume that the transition relations Rβ , Rγ of a bit-vector pro-
gram β repeat { γ } are encoded as quantifier-free boolean formulae φβ(x, x′) and
φγ(x, x′) (note, that the encoding can be chosen such that the size of φβ(x, x′)

17

and φγ(x, x′) is polynomial in the size of β, γ). We then recursively define a
predicate reach(a, b, n) with the intended semantics “the statement γ can reach
the state b from state a in at most 2n steps.” A naive recursive definition of
reach(a, b, n) is:

reach(a, b, 0) ≡ a = b ∨ φγ(a, b)
reach(a, b, n) ≡ ∃c.reach(a, c, n− 1) ∧ reach(c, b, n− 1)

Expanding reach(a, b, n) in this way will obviously lead to a formula that is
exponential in size, but that only contains existential quantifiers.

Alternatively, we can choose the definition:

reach(a, b, 0) ≡ a = b ∨ φγ(a, b)

reach(a, b, n) ≡ ∃c.∀a′, b′.
(
a′ = a ∧ b′ = c ∨ a′ = c ∧ b′ = b
→ reach(a′, b′, n− 1)

)
Because there is no right-hand side with more than one occurrence of reach, this
leads to a QBF-formula whose size is polynomial in n and the size of γ defining
reach(a, b, n).

The predicate reach can now be used to encode termination as a QBF-
formula: due to the finiteness of the state space, it is sufficient to construct
a formula that states the absence of lassos in the transition graph. Assuming
that the state space has 2n elements (i.e., n is the sum of the bit-widths of the
variables declared in the program), this formula is:

¬∃a, b, c, d. (φβ(a, b) ∧ reach(b, c, n) ∧ φγ(c, d) ∧ reach(d, c, n))

Altogether, the size of the formula is polynomial in n and the size of β, γ, and
the formula can obviously be generated from β, γ in polynomial time.

Note that this encoding is equivalent to expressing the termination property
as a safety property (e.g, according to [2]), and subsequent application of the
QBF-based Bounded Model Checking technique introduced in [3].

C Ranking Functions for Disjunctive Integer Transition
Relations

The mathematical result underlying both Podelski and Rybalchenko’s method [4]
and our method described in Sect. 3.2 is Farkas’ lemma [5]:

Lemma 5 (Farkas’ lemma). Suppose A ∈ Qn×k is a matrix, b ∈ Qn a vector
such that the system Ax ≤ b of inequalities is satisfiable, c ∈ Qk is a (row) vector,
and δ ∈ Q is a rational. Then

{x ∈ Qk : Ax ≤ b} ⊆ {x ∈ Qk : cx ≤ δ} (7)

if and only if there is a non-negative (row) vector γ ∈ Qn such that γA = c and
γb ≤ δ.

18

The equivalence does not hold if x in (7) ranges over the integers; implied
inequalities in this case can in general not be represented as non-negative lin-
ear combinations. Farkas’ lemma still works, however, in the special case of
integral systems of inequalities. A system Ax ≤ b is called integral if the poly-
hedron {x ∈ Qn | Ax ≤ b} coincides with its integral hull (the convex hull of the
integer points contained in it).13

Lemma 6 (Integral version of Farkas’ lemma). Suppose A ∈ Qn×k is a
matrix, b ∈ Qn a vector such that the system Ax ≤ b of inequalities is satisfiable
and integral, c ∈ Qk is a (row) vector, and δ ∈ Q is a rational. Then

{x ∈ Zk : Ax ≤ b} ⊆ {x ∈ Zk : cx ≤ δ} (8)

if and only if there is a non-negative (row) vector γ ∈ Qn such that γA = c and
γb ≤ δ.

Proof. We show that (7) if and only if (8) in the case of an integral system
Ax ≤ b. The conjecture then follows by Lem. 5.

(7) ⇒ (8): holds because of Z ⊂ Q.
(8) ⇒ (7): suppose (8) holds. This implies that the convex hull of the set

{x ∈ Zk : Ax ≤ b} is contained in the half-space {x ∈ Qk : cx ≤ δ}. The convex
hull of {x ∈ Zk : Ax ≤ b} is the same as the integral hull of {x ∈ Qk : Ax ≤ b},
which coincides with {x ∈ Qk : Ax ≤ b} because Ax ≤ b is integral. Therefore
(7).

Derivation of integral systems One approach to transform an arbitrary sys-
tem Ax ≤ b of inequalities into an integral system with the same integer solutions
is as follows: first, we derive an equivalent total dual integral system A′x ≤ b′
from Ax ≤ b such that A′ ∈ Zn′×k. A system A′x ≤ b′ is total dual integral if
the duality equation

max {x ∈ Qk : A′x ≤ b′} = min {yb : y ≥ 0, yA′ = c}

has an integral optimum solution y for each integral vector c for which the
minimum is finite [5]. A′x ≤ b′ can then be strengthened to A′x ≤ bb′c without
losing integer solutions. Iterating this procedure eventually leads to an integral
system of inequalities.

Linear ranking functions over the integers We are now in the position to give a
proof for Lem. 3:

Proof. Suppose R(x, x′) ≡
∨l
i=1Aix+A′ix

′ ≤ bi is a transition relation in which
each disjunct is satisfiable and integral. We show the two directions of the equiv-
alence:
13 This deviates from the terminology in [5], where integrality is attributed to polyhe-

dra, and not to systems of inequalities. We choose to speak of integral systems of
inequalities for sake of brevity.

19

Input: Transition relation R(x, x′) ≡
∨l

i=1
Aix+A′

ix
′ ≤ bi

Output: Ranking function m(x) = rx− c, or answer “No linear ranking
function exists”

foreach integral disjunct Aix+A′
ix

′ ≤ bi do1

if Aix+A′
ix

′ ≤ bi has no ranking function according to Theorem 1 then2

return No linear ranking function exists;3

while true do4

if there are non-negative vectors λi
1, λ

i
2 ∈ Qk such that (3) holds then5

c← min{rx′ : ∃x.R(x, x′)};6

return m(x) = rx− c is a ranking function;7

if all disjuncts Aix+A′
ix

′ ≤ bi are integral then8

return No linear ranking function exists;9

Pick a non-integral disjunct Aix+A′
ix

′ ≤ bi;10

Strengthen Aix+A′
ix

′ ≤ bi as in Sect. C;11

if Aix+A′
ix

′ ≤ bi is integral and has no ranking function according to12

Theorem 1 then
return No linear ranking function exists;13

Algorithm 1: Ranking functions for disjunctive integer transition relations
with iterative strengthening

⇒: Assume the relation R(x, x′) has a linear ranking function m(x) = rx+ c.
Arguing as in the proof [4, Theorem 2], this means that for some δ > 0 and all
i ∈ {1, . . . , l} we have:

for all x, x′ ∈ Zn : Aix+A′ix
′ ≤ bi implies

rx+ c ≥ 0 ∧ rx′ + c ≥ 0 ∧ rx′ + δ ≤ rx (9)

By Lem. 6, this implies that there are non-negative vectors λi1, λ
i
2 ∈ Qk such

that for i ∈ {1, . . . , l}:

λi1Ai = −r, λi1A
′
i = 0, λi1bi ≤ c,

λi2Ai = −r, λi2A
′
i = r, λi2bi ≤ −δ

It is now easy to see that (3) is implied by these equations and inequalities.
⇐: Assume (3) holds for non-negative vectors λi1, λ

i
2 ∈ Qk for i ∈ {1, . . . , l}.

By Theorem 1, for each i ∈ {1, . . . , l} the disjunct Aix+A′ix
′ ≤ bi has a linear

ranking function of the form mi(x) = rx+ ci, which implies that

m(x) = rx+ min{ci : i ∈ {1, . . . , l}}

is a ranking function for R(x, x′).

Linear ranking functions for programs in Presburger arithmetic We give a proof
for Lem. 4:

20

Proof. Suppose R(x, x′) is a formula in Presburger arithmetic. By eliminat-
ing quantifiers, negated equations, negated divisibility constraints, and divisi-
bility constraints in R by means of new variables, we derive a transition rela-
tion R′(x, y, x′, y′) with:

R′(x, y, x′, y′) ≡
l∨
i=1

Ai

(
x

y

)
+A′i

(
x′

y′

)
≤ bi

∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′) (10)

We can assume that every disjunct Ai
(
x
y

)
+A′i

(
x′

y′

)
≤ bi is satisfiable and integral,

because unsatisfiable disjuncts can be detected and left out, and because non-
integral disjuncts can be transformed into integral disjuncts.

Because of (10), every linear ranking function of R(x, x′) is also a ranking
function of R′(x, y, x′, y′). This means that we can apply Lem. 3 to R′(x, y, x′, y′)
and simply impose the additional constraints

rn+1 = rn+2 = · · · = 0

where r = (r1, r2, . . .)t is the coefficient vector to be determined in Lem. 3, and
n = |x| is the length of the x and x′ vector. This ensures that the resulting
ranking functions m′(x, y) = r

(
x
y

)
+ c = m(x) only depends on x and not on y.

D Synthesis of Ranking Functions from Templates

We investigate the maximal size of template coefficients needed in Sect. 3.3 in
order to obtain a complete procedure, i.e., the number of bits to be reserved as
stated in Theorem 2.

A lower bound To show that our upper bound is reasonably tight, we first give
a lower bound on the number of bits required. Consider terminating programs
(for which linear rank functions exist) of the following form:

i=1;1

while i 6= 0 ∨ j 6= 0 ∨ k 6= 0 . . . do2

. . .3

k := k + (i÷ 255)× (j ÷ 255);4

j := j + i÷ 255;5

i := i+ 1;6

where the width of all variables is n. Programs built after this scheme require
ranking functions that order variables lexicographically. A suitable ranking func-
tion is of the form

· · ·+ ck × k + cj × j + ci × i ,

where ci = −1, cj = −2n, ck = −22n, etc. This means that the corresponding
bit-widths of the coefficients are α(ci) = 2, α(cj) = n + 2, and α(ck) = 2n + 2.
Note that the constant 2 arises from the fact that each coefficient is of the form

21

−2x for some x, which is not contained in [0, 2x), and we thus need an extra bit
to represent a coefficient of this size and its sign.

The total number of bits required to represent all coefficients is thus

|X |−1∑
i=0

i · n+ 2 = 2 · |X |+ n ·
|X |−1∑
i=0

i ,

which we can also write as

2 · |X |+ n · |X | · (|X | − 1)
2

.

I.e., we require O(|X |2 · n) bits.

An upper bound In the following, we consider a transition relation R(s, s′) over
a vocabulary X of variables. For sake of simplicity, it is assume that the bit-
width of all |X | = m variables is n, i.e., α(x) = n for all x ∈ X (this means
that all variables range over [0, 2n)). States s ∈ S are identified with elements of
the vector space Q|X |, for an arbitrary but fixed enumeration x1, . . . , xm of the
variables X . The candidates for ranking functions are the elements of the vector
space V = Q|X | → Q of rational linear functions over the program variables X .

Every function f ∈ V determines an order ≺f on the state space S:

s ≺f s′ ≡ f(s) < f(s′)

If ≺f is a (strict) total order, we say that f is perfectly separating. If two func-
tions f, f ′ determine the same order, i.e., ≺f=≺f ′ , we call them equivalent.
Obviously, as S is finite, V is partitioned into finitely many equivalence classes
in this way. We make the following observations:

– Because functions f, f ′ in the same equivalence class can prove the termina-
tion of exactly the same loops, it is sufficient to consider ranking function
templates that represent at least one function from each equivalence class.

– The classes of perfectly separating functions subsume the classes of non-
perfect functions, in the sense that every loop that can be proven terminat-
ing using the latter can also be proven terminating by perfectly separating
functions.

When choosing the bit-width of coefficients in ranking function templates, it
is therefore only necessary to ensure that the template represents at least one
function in each class of perfectly separating functions.

The geometry of equivalence classes There is a simple geometric interpretation of
equivalence classes. A non-perfect function f has the property that f(s) = f(s′)
for some states s 6= s′. Because states are interpreted as vectors, this is equiv-
alent to f(s− s′) = 0. For any two states s 6= s′ ∈ S, we can observe that the

22

set Es,s′ = {f ∈ V : f(s− s′) = 0} is a hyperplane of the vector space V , which
altogether means that the set of non-perfect functions is the finite union

E =
⋃

s6=s′∈S

Es,s′

of hyperplanes. The inverse P = V \ E is then a finite union of open convex sets,
each of which forms the interior of a convex (but unbounded) polyhedron.

These polyhedra coincide with the equivalence classes of perfectly separating
functions. To see this, note that for each state s ∈ S the function vs : V → Q,
vs(f) = f(s) is continuous. This implies that if f, f ′ ∈ V are perfectly separating
functions that are not equivalent, every continuous path from f to f ′ in V has to
cross E. Furthermore, the classes belonging to different polyhedra are distinct:
for each hyperplane Es,s′ , it holds that f(s− s′) > 0 for the functions f on
one side of the hyperplane, and f ′(s− s′) < 0 for the functions f ′ on the other
(because f(s− s′) is linear in f), which implies s ≺f s′ and s′ ≺f ′ s.

Choosing representatives from equivalence classes To distinguish a basis of the
vector space V , we first define states s1, . . . , sm ∈ S by:

si(xj) =

{
1 i = j

0 otherwise

The basis {b1, . . . , bm} ⊆ V of V is then defined (as the dual basis) by:

bi(sj) =

{
1 i = j

0 otherwise

This allows to represent functions in f ∈ V in the form α1b1 + · · ·+ αmbm, which
intuitively can be understood as

f(x1, . . . , xm) = α1x1 + · · ·+ αmxm

In the sequel, we consider linear combinations with integer coefficients α1, . . . , αm,
and derive bounds on the absolute values of the coefficients such that still ele-
ments from each class of perfectly separating functions can be represented. These
bounds determine the number of bits needed in ranking function templates.

We fix a non-empty class A ⊆ V of perfectly separating functions, and assume
that E′ ⊆ E is the union of all hyperplanes Es,s′ that bound A. Each intersection
of m− 1 such hyperplanes (provided that no two of them are parallel) is a
straight line l that is adjacent to A. Now we can observe:

(i) Each such line l is generated by a function

fl = α1b1 + · · ·+ αmbm

where |αi| ≤ 2n(m−1) · (m− 1)! for i ∈ {1, . . . ,m}.

23

(ii) The set A contains a function

fA = β1b1 + · · ·+ βmbm

where |βi| ≤ 2n(m−1) ·m! for i ∈ {1, . . . ,m}.

To see that (i) holds, note that each hyperplane Es,s′ is described by a linear
equation f(s− s′) = 0 that can be expanded to(

s(x1)− s′(x1)
)
γ1 + · · ·+

(
s(xm)− s′(xm)

)
γm = 0

if the representation f = γ1b1 + · · ·+ γmbm is chosen. Coefficients s(x1)− s′(x1)
in such an equation are in the range [−2n + 1, 2n − 1]. In order to find a vector
in the intersection of m− 1 hyperplanes, we therefore need to solve a system of
m− 1 linear equations:

v1
1γ1 + · · · + v1

mγm = 0
...

vm−1
1 γ1 + · · · + vm−1

m γm = 0

By elementary algebra, an integer solution to this system can be found by com-
puting the following determinant (Sm is the group of permutations of {1, . . . ,m},
and the parity sgn(σ) is +1 for even and −1 for odd permutations σ):∣∣∣∣∣∣∣∣

v1
1 . . . v1

m

.
vm−1

1 . . . vm−1
m

b1 . . . bm

∣∣∣∣∣∣∣∣ =
m∑
i=1

∑
σ∈Sm
σ(m)=i

sgn(σ)
(m−1∏
j=1

vjσ(j)

)
bi

Because of |vji | < 2n and |Sm| = m!, the absolute value of the coefficient of each
basis vector bi on the right-hand side is bounded by 2n(m−1) · (m− 1)!.

For (ii), we assume that there are m linearly independent lines l1, . . . , lm (as
in (i)) that are adjacent to A. In this case, because A is convex, there is a sum

fA = c1fl1 + · · ·+ cmflm ∈ A

with ci ∈ {−1,+1} for each i ∈ {1, . . . ,m}. The bounds on the absolute values
of coefficients follow from (i). A similar argument can be used in the case that
no m linearly independent lines exist.

From (i), we can derive the number of bits needed for Theorem 2:

log2(2n(m−1) ·m!) = n(m− 1) + log2m! ≤ n(m− 1) +m log2m

Because both positive and negative coefficients have to be represented, we need
a further bit for the sign, which yields the bound n(m− 1) +m log2m+ 1 given
in Theorem 2.

24

E Bitwise Synthesis of Ranking Functions

Since ranking functions for bit-vector programs may naturally be expressed as
bit-vector functions, i.e., f : Bσ → Bm, where σ =

∑
x∈X α(x) is the width

of the program state, the question for the minimal required width m of the
ranking function for a given Rπ arises naturally. This gives rise to an incremental
algorithm, which tries to synthesise ranking functions of increasing width m =
1, 2, . . . σ, exploiting the fact that it is easier to find smaller functions.

Let s be a bit-vector of size σ, representing the program state. We can then
think of bitwise templates for ranking functions of various types. For example,
we define four function classes:

– Affine: (c1 & s1) ⊕ (c2 & s2) ⊕ · · · ⊕ (cσ & sσ) ⊕ k
– Conjunctive: (c1 | s1) & (c2 | s2) & · · · & (cσ | sσ) & k
– Disjunctive: (c1 & s1) | (c2 & s2) | · · · | (cσ & sσ) | k
– Projective: (c1)?s1 : (c2)?s2 : · · ·?sσ−1 : sσ, where a?b : c is the if-then-else

operator.

This allows us to synthesise 1-bit ranking functions. For n-bit functions, we
simply concatenate n templates, i.e., we use the tuple (f1(s), f2(s), . . . , fn(s)),
where each fi is a template of the same function class. We interpret the result as
an element of Z2n . The construction above enables the construction of ‘narrow’
ranking functions, but also allows us to choose a class of functions from Post’s
lattice of Boolean functions [6]. As an example, if we find (heuristically) that
searching for k+ 1-bit projections is unlikely to be fruitful, we may increase the
expressiveness of the template instead of increasing the bit-width (or vice versa).

Concatenated functions are not necessarily from the same function class as
their components, and thus may allow us to synthesise ranking functions that
we would not have found using linear templates. In particular, the concatenation
(f1(s), f2(s)) of affine functions f1, f2 is not necessarily affine in Z4. In general,
however, this approach allows us to generate arbitrary ranking functions, if we
allow each fi to be drawn from the top of Post’s lattice, and the size of the
concatenation is σ.

While the general idea of the algorithm is appealing, our implementation
based on QBF-Solving (using templates as in Sec. 3.3) performs rather poorly in
an experimental evaluation on our benchmarks: No useful results were obtained
due to the QBF solver timing out on virtually all examples. On those where it
does return a ranking function, the reachability checker times out subsequently.

F A practical termination problem

In module bulkpnp of the WDK sample USB driver (bulkusb) the driver requests
an interface description structure to be searched within a ConfigurationDescrip-
tor for every device available. It increments the loop counter if this did not
return an error. The function USBD ParseConfigurationDescriptorEx, however, is
an API function for which no implementation is available. According to the API

25

while(iNumber < numberOfInterfaces) {
iDesc = USBD_ParseConfigurationDescriptorEx(

ConfigurationDescriptor ,
ConfigurationDescriptor ,
iIndex ,
0, -1, -1, -1);

if(iDesc) {
/* ... */
iNumber ++;

}
iIndex ++;

}

Fig. 3. Code fragment from usb/bulkusb/sys/bulkpnp.c (simplified)

documentation, it may return NULL if no interface matches the search criteria (
iIndex, 0, -1, -1, -1 in Fig. 3), resulting in iNumber not being incremented.
Since numberOfInterfaces is a local (non-shared) variable the loop, the problem
would persist in a concurrent setting, where the device may be disconnected
while the loop is executed.

G Full Experimental Data

Table 3 presents our experimental results including timing information.

References

1. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (prelim-
inary report). In: STOC, ACM (1973) 1–9

2. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In: FMICS.
Number 66 in ENTCS, Elsevier (2002)

3. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. ENTCS 174 (2007)
45–56

4. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking
functions. In: VMCAI. Number 2937 in LNCS, Springer (2004) 239–251

5. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
6. Post, E.L.: The two-valued iterative systems of mathematical logic. Annals of

Mathematics Studies (1941) 201–213

26

#Manual SAT SeneschalRankfinderQBF [-1,+1]QBF P (C,X)Biere et al. [2]
1 L 64.77 M/O – 0.09 # T/O – T/O – T/O –
2 L 706.98 41.45 13.26 T/O – T/O – T/O –
3 L 2.76 11.96 0.08 # 9.65 T/O – T/O –
4 L 9.32 9.39 1.00 150.56 T/O – 28.46
5 N 0.53# 14.12 # 0.06 # 0.82 # T/O – T/O –
6 N 4.19# M/O – 0.06 # 2.13 # T/O – T/O –
7 N 19.53# M/O – 0.08 # T/O – T/O – T/O –
8 L 9.29 8.12 1.05 567.73 T/O – T/O –
9 T 0.28# 7.17 # 0.12 G# 1129.88 # T/O – T/O –

10 N 19.95# 9.52 # 0.07 # 2.89 # T/O – 0.06 #
11 T 19.53# 21.06 # 0.08 # T/O – T/O – T/O –
12 L 2.03 7.83 0.84 6.97 T/O – 93.12
13 L 6.70 9.14 0.08 # T/O – T/O – 213.23
14 N 0.80# 7.65 # 0.12 G# T/O – T/O – T/O –
15 T 0.85# 7.43 # 0.62 G# T/O – T/O – M/O –
16 L 193.72 M/O – 0.68 G# T/O – T/O – T/O –
17 L 7.18 17.83 0.07 # T/O – T/O – T/O –
18 L 26.84 130.60 1.68 T/O – T/O – T/O –
19 L 4.10 5.48 0.15 G# T/O – T/O – T/O –
20 L 0.96 6.39 0.07 # 10.51 T/O – 3.21
21 T 23.63# 0.21 # 0.20 # T/O – T/O – T/O –
22 L 0.98 T/O – 0.07 # 24.27 T/O – T/O –
23 L 13.76 23.97 12.99 T/O – T/O – 7.25
24 L 4.85 11.96 1.98 T/O – T/O – T/O –
25 L 1.07 5.84 0.12 G# T/O – T/O – T/O –
26 L 9.13 5.65 0.16 G# T/O – T/O – T/O –
27 L 162.40 M/O – 672.55 T/O – T/O – T/O –
28 N 0.26# 6.47 # 0.05 # 0.24 # T/O – 26.64 #
29 T 0.79# 7.21 # T/O – T/O – T/O – T/O –
30 L 1.88 T/O – 0.08 # T/O – T/O – T/O –
31 T 1.39# T/O – 0.07 # 0.66 # T/O – 9.37
32 T 7.62# 0.27 # 0.23 # T/O – T/O – T/O –
33 L 1.03 7.54 0.13 G# T/O – T/O – T/O –
34 L T/O – M/O – T/O – T/O – T/O – T/O –
35 N 173.28# M/O – 0.70 # T/O – T/O – 0.33 #
36 L 1.03 7.75 0.41 T/O – T/O – 7.84
37 T 0.80# 7.53 # 0.17 G# T/O – T/O – T/O –
38 L 2.19 8.73 0.96 T/O – T/O – T/O –
39 L 9.06 T/O – 5.59 T/O – T/O – M/O –
40 L 0.37 97.15 0.07 # 0.61 T/O – 48.29
41 L 0.99 8.12 0.07 # 14.56 T/O – T/O –
42 L 7.02 23.22 4.10 T/O – T/O – T/O –
43 L 11.95 12.15 9.58 11.06 T/O – T/O –
44 N 18.96# M/O – 0.11 # 2.87 # T/O – 0.10 #
45 T 0.85# 9.50 # 0.07 # T/O – T/O – 2.67
46 L 0.89 7.40 0.76 T/O – T/O – 0.61
47 L 0.33 5.76 0.11 G# 0.66 T/O – 138.02
48 T 4.17# 8.23 # 0.07 # T/O – T/O – T/O –
49 T 0.72# 8.01 # 0.08 # 0.76 # T/O – T/O –
50 T 0.71# 7.01 # 0.04 # 0.78 # T/O – 1941.30
51 L 40.49 61.27 42.67 T/O – T/O – 93.40
52 T 0.77# 6.63 # 0.14 G# 1.00 # T/O – T/O –
53 L 43.34# M/O – 0.12 # T/O – T/O – T/O –
54 N 0.81# 7.22 # M/O – T/O – T/O – T/O –
55 L 0.76 8.31 0.82 2617.80 T/O – T/O –
56 L 53.39 6.22 2.44 T/O – T/O – T/O –
57 L 7.90 23.71 8.76 T/O – T/O – M/O –
58 L 84.43 T/O – 0.63 G# T/O – T/O – T/O –
59 L 0.52 T/O – 0.08 # 575.37 816.13 T/O –
60 N 0.78# 9.78 # 0.05 # 0.83 # T/O – 0.05 #
61 T 79.19# T/O – 0.13 # T/O – T/O – 1.51

L Terminating, and linear T Terminating (non-linear)
ranking functions exist. N Non-terminating

 Termination was proven G# Incorrect under bit-vector semantics
(Possibly) Non-terminating ‘–’Memory or time limits exhausted

Table 3. Experimental Data

27

