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Abstract

We describe a simple and efficient algorithm for proving

the termination of a class of loops with nonlinear assign-

ments to variables. The method is based on divergence test-

ing for each variable in the cone-of-influence of the loop’s

termination condition. The analysis allows us to automati-

cally prove the termination of loops that cannot be handled

using previous techniques. The paper closes with experi-

mental results using short examples drawn from industrial

code.

1 Introduction

From the very beginnings of the formal analysis of soft-

ware [12, 14], the task of formally verifying the correctness

of a program has been decomposed into the tasks of prov-

ing correctness if the program terminates, and separately

proving termination. Deciding termination, in general, is

obviously undecidable, but thanks to considerable research

progress over the years (e.g., [9, 20, 5, 23, 3, 6, 13, 4, 16,

18, 21, 8, 7]), a variety of techniques and heuristics can now

automatically prove termination of many loops that occur in

practice.

Today’s automatic program termination provers, how-

ever, are temperamental. While most provers can, for ex-

ample, prove the termination of

if (x > 3) {

while (x < y) {

x = x + x;

}

}

until now, no automatic tool could prove the termination of

a nonlinear example like

if (x > 3) {
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while (x < y) {

x = pow(x,3) - 2*pow(x,2) - x + 2;

}

}

This paper outlines a new proof procedure for cases of this

sort. Using combination techniques described in [1] and [2],

our intention for this proposed procedure is to be combined

with the existing termination analysis techniques—making

future termination provers a little less temperamental.

The proposed technique is based on divergence testing:

the transition system of each program variable is indepen-

dently examined for divergence to plus- or minus-infinity.

The approach is limited to loops containing only polyno-

mial update expressions with finite degree, allowing highly

efficient computation of certain regions that guarantee di-

vergence. Like all automated termination provers, the tech-

nique can’t handle all loops. However, it is very fast, it

is sound, and it can prove termination in cases that previ-

ously could not be handled or could be handled only by a

much more expensive analysis. Our hope is that, in prac-

tice, this restricted analysis (and some extensions) will han-

dle the termination of the majority of loops in which a non-

linear analysis is required. In our investigations, we have

found that this simple type of nonlinear loop appears in in-

dustrial numerical computations and nonlinear digital fil-

ters. Such loops can also be found in the code that handles

multi-dimensional matrices and nonlinear time-outs.

2 Termination by Divergence

This section starts with some basic definitions. Then, we

proceed with the definition and examples of regions of guar-

anteed divergence, a key concept in the paper. Section 2.3

explains how we test for divergence. Section 2.4 presents

how we use the divergence information to prove termina-

tion, and gives the overall algorithm.

2.1 Basic Definitions

Two types of variables are differentiated by our analysis

— symbolic constants and induction variables. The sym-



bolic constants are not modified in the loop body and the

set of symbolic constants will be denoted as S. Individ-

ual symbolic constants will be represented with capital let-

ters X,Y, Z and are assumed to be bounded on both sides

(e.g.−32 ≤ X ≤ 32). The set of variables V that are mod-

ified within the loop body will be called the set of induction

variables. The induction variables will be denoted by lower-

case letters x, y, z. Both types of variables are considered to

be ideal rationals We will assume that the loop test is a con-

junction of a finite number of (in)equality relations of the

form1 φ ⊲⊳ 0, where ⊲⊳∈ {<,>,≤,≥,=}. Each induction

variable x is updated within the loop. The update expres-

sion is of the form x = f(x)+X , where f(x) is a univariate

finite degree polynomial with constant rational coefficients

andX is a symbolic constant that represents the cumulative

effect of all the symbolic constants in the expression. The

polynomial f(x) will be called an update function. The ini-

tial value of x, before entering the loop, will be denoted as

x0. Let x+ stands for the result (e.g., ±∞, some constant,

a cycle, etc.) obtained by applying f infinitely many times

to x (informally, · · · f ◦ f ◦ f(x)). Let f̂ = f ◦ f be a

composition of f with itself. The value obtained by apply-

ing f̂ to x infinitely many times will be denoted as x++.

The set of univariate polynomials with constant coefficients

over Q (the set of rationals) will be denoted as Q[x], while

the set of multivariate polynomials over Q as Q[V ]. Let

supp (ψ) be the finite set of names in a logical expression

ψ, e.g. supp (x · y + z > 0) = {x, y, z}.
The algorithm described in this paper is designed such

that it can be used as a back-end within the frameworks de-

scribed in [2] or [1]. Both [2] and [1] convert the termina-

tion problem for a program with an arbitrary control-flow

graph into a sequence of well-foundedness queries for rela-

tions composed as the conjunction of inequalities, or sim-

ple loops. If each simple loop produced is well-founded,

then the original program is guaranteed to terminate. A

multitude of techniques can be used to prove the well-

foundedness of these simple loops.

Our goal in this paper is to provide support for non-

linear reasoning when trying to prove the well-foundedness

of these simple loops. Our technique handles simple loops

with the following properties:

1. A set of bound constraints B = {v ⊲⊳ q ∈ Q} over

symbolic constants and induction variables v ∈ V ∪ S
represents the initial conditions. Symbolic constants

must be from a closed finite interval.

2. There are no data or control dependencies between in-

duction variables, i.e., the dependency relation is an

antichain. In other words, all update statements within

the loop body must be executable in parallel. (Sym-

bolic execution and other analysis/optimization tech-

1The constraints on φ() will be given soon.

niques can, of course, be used to eliminate false de-

pendencies between induction variables.)

3. The loop termination condition is a conjunction of re-

lations φ(V ∪ S) ⊲⊳ 0 such that each φ() is a finite

degree multivariate polynomial from Q[V ∪ S]. Only

the constant term (i.e. the one associated with the ex-

ponent zero) is allowed to be a symbolic constant (or

a linear function of symbolic constants). For simplic-

ity, this paper will focus on a single conjunct. With

multiple conjuncts, if any conjunct can be proven to be

eventually false, the loop must terminate.

4. Update functions fi () are univariate polynomials of

finite degree from Q[xi].

5. Given a linear function g : Sn → Q of symbolic

and numeric constants, each assignment can have the

form xi ← fi(xi) + gi(Y1, Y2, . . . ). The second term

can be represented with a single symbolic constant Xi

because symbolic constants do not change within the

loop. It is assumed that the symbolic constant Xi can

take any value between the worst case min and max

values of the replaced symbolic constant expression

gi(Y1, Y2, . . . ).

If a loop in the sequence does not fit into this criteria, then

other techniques must be used in order to establish well-

foundedness.

A loop with such properties will be called a NAW (Non-

linear Antichain While) loop. The properties of the NAW

loop enable us to analyze the limit behavior of each in-

duction variable independently. Given the limit behavior of

each induction variable v ∈ supp (φ), we try to prove that

the left-hand side value of the loop test will eventually cross

the given bound, terminating the loop. Obviously, it suf-

fices to consider only the variables that are in the cone-of-

influence of the loop termination condition. Standard slic-

ing techniques [22] can be used to remove the unnecessary

code. We will assume that the NAW loops have been pre-

processed so as to eliminate assignments to variables that

are not in the cone-of-influence of the loop test.

Several examples are given in Figure 1. The generic

form of the NAW loop 1(a) starts with range constraints for

induction variables and symbolic constants. The range con-

straints can be computed by range analysis, which is a sim-

ple forward dataflow analysis [10]. The left column (Fig-

ures 1(b),1(d),1(f)) contains examples of loops that are not

NAW loops. The loop test of 1(b) does not fit the NAW loop

requirements because the symbolic constant Y is from a

half-open interval. The other two loops in the same column

are not NAW loops either, as the symbolic constantB is not

a constant term (Figure 1(d)) and the induction variable x

(Figure 1(f)) depends on the induction variable n. The right



Range constraints

while φ(V ∪ S) ⊲⊳ 0, ⊲⊳∈ {<,>,≤,≥,=} do

x1 ← f1(x1) +X1;
x2 ← f2(x2) +X2;
x3 ← f3(x3) +X3;
· · ·
xn ← fn(xn) +Xn;

end while
(a) Generic form of NAW loops

x < −17;−32 < Y ;
while x 6= Y do

x← 3x− 1
end while

(b) Non-NAW loop – Symbolic constant Y is only

single-side bounded

e← 0.00001; a← 1− e;x← 0.5;
while e ≤ x ∧ x ≤ 1 do

x← −a · x2 + a · x;
end while

(c) Terminating NAW loop

x← 5;−10 < B < 10;
while x < 1000 do

x← x2 −B · x− 7
end while

(d) Non-NAW loop – Symbolic constant B is not a

constant term

q ← 0; r ≥ 0; 1 ≤ Y ≤ 65535;
while y ≤ r do

r ← r − Y
q ← q + 1

end while

(e) Terminating NAW loop

n← 0;x← 1; 1 < N < 1000;
while x ≤ N do

n← n+ 1
x← n · x

end while

(f) Non-NAW loop – Dependency between induction

variables

x < −2;
while x < 10 do

x← x3 − 2x2 − x+ 2;
end while

(g) Non-terminating NAW loop

Figure 1. General NAW-form together with some examples



column contains three examples of NAW loops. Examples

1(c) and 1(e) are adapted from Cousot’s paper [9].

The overall divergence analysis algorithm takes a loop

condition φ, a set of bound constraints B, and a set of up-

date functions fi, and indicates either that it cannot prove

termination, or that it can prove termination, with a mapping

from induction variables to limits that demonstrates that the

termination condition must eventually become false. The

algorithm has three main steps. The first task is a fast anal-

ysis to find regions where iterated application of the update

functions fi () can easily be proven to diverge. Once some

“regions of guaranteed divergence” have been found, the

next task, divergence analysis, tries to find the limit behav-

ior of each induction variable. Finally, termination analy-

sis conservatively uses the limit behaviors to prove that the

loop condition must be violated eventually, which proves

termination.

2.2 Regions of Guaranteed Divergence

Definition 1 (Stable Point) A value x is a stable point if

x = f(x). If x0 is a stable point, then x = x0 is a loop

invariant.

Definition 2 (Region of Guaranteed Divergence (RGD))

A region of guaranteed divergence of an update function

f is a (possibly unbounded) interval such that iterated

application of f to any element from the interval diverges.

A brief synopsis of our approach is as follows. We use

a fast polynomial factoring algorithm [15, 17] to compute

the stable points of the update function. Let rmin and rmax

denote the minimal and maximal stable points. Then, de-

pending on characteristics of the update function, we con-

clude that (−∞, rmin) and/or (rmax,∞) (subject to some

side conditions) are RGDs.2 We can strengthen the analy-

sis by applying the update function a finite number of times

(currently exactly once in certain cases) before checking to

see if the induction variable has entered an RGD. We now

present the details.

The shape of the update function determines how the

RGD is computed. Update functions are univariate poly-

nomials that can be drawn in the two-dimensional Carte-

sian coordinate system, which has four quadrants, num-

bered counter-clockwise from the top right (Figure 2). In

the limit, finite degree polynomials diverge in two out of

four quadrants. The pair of quadrants in which the function

diverges determines the shape of the curve. Our analysis

case splits on the four possible shapes:

2In floating-point arithmetic, the RGDs must be safely under-

approximated. This is done by rounding the computed stable points to

reduce the size of the RGD, i.e., rounding rmax toward ∞, and rmin to-

ward −∞.

Case 1: Divergence in Quadrants I and III This is the

most straightforward case. The update function f must

be a polynomial of odd degree, with a positive lead-

ing coefficient. If the degree is greater than 1, then

(−∞, rmin) and (rmax,∞) are both RGDs, because

the update function must have a slope greater than 1

in those regions (Figure 2). If the degree of the up-

date function is 1 (linear), then the key is the leading

coefficient (the slope) of the update function. If the

slope is strictly greater than 1, we have the same RGDs

as above (with rmin = rmax). If the slope is strictly

less than 1 (and it must be greater or equal to 0), then

there is no RGD — the iteration converges to the stable

point. If the slope is exactly 1, then all of (−∞,∞) is

an RGD (except in the degenerate case when the up-

date function is the identity function).

Case 2: Divergence in Quadrants I and II In this case,

the update function must be a polynomial of even de-

gree, with a positive leading coefficient. If there are no

stable points, all of (−∞,∞) is an RGD. Otherwise,

as in Case 1, (rmax,∞) is an RGD. We cannot say any-

thing about (−∞, rmin), but for sufficiently small ini-

tial value x0, we know that f(x0) must be positive and

in the RGD. In particular, let r′
min

be the smallest solu-

tion of f(x) = rmax. Then for all x < r′
min

, we know

that f(x) > rmax, so (−∞, r′
min

) is also an RGD.

Case 3: Divergence in Quadrants III and IV This is the

dual of Case 2; the update function has even degree,

but a negative leading coefficient. If there are no sta-

ble points, (−∞,∞) is an RGD. Otherwise, the re-

gion (−∞, rmin) is an RGD, as is the region (r′max,∞),
where r′

max
is the largest solution of f(x) = rmin.

Case 4: Divergence in Quadrants II and IV This is the

most complex case because when iterated application

of the update function diverges, it will alternate sign

on each iteration. Happily, in this case, f̂ = f ◦ f is an

update function that follows Case 1. So, we compute

the stable points of x = f̂(x) instead, and analyse f̂ as

in Case 1.

In this paper, we prove termination by divergence of induc-

tion variables. In general, the termination analysis can be

much smarter. For example, if an induction variable always

cycles or converges to a constant, the termination analysis

might exploit that knowledge for the termination proof.

Example: The polynomial plotted in Figure 2 will serve

as our working example. Since the update function has de-

gree 3 and positive leading coefficient, it diverges in the

quadrants I and III. Therefore, we compute the stable points

from x = f(x). By solving x = x3 − 2x2 − x+ 2, we get

rmin = −1.1700086 . . . and rmax = 2.481194 . . ., which



Equations Roots Quadrants

x = x3 − 2x2 − x+ 2 −1.170086 . . ., 0.688892 . . ., 2.481194 . . . I,III

Table 1. Real roots of the update function f(x) = x

f(x)=x

Figure 2. f(x) = x3 − 2x2 − x + 2. Quadrants

are denoted by the Roman numerals I,II,. . .

we can round conservatively (for brevity here, to two dec-

imal places) to get RGDs of (−∞,−1.18), where iterated

function application diverges towards −∞, and (2.49,∞),
where iteration diverges towards∞. If range analysis tells

us that x0 > 2.49 in the loop below:

while (x < 10) {

x = pow(x,3) - 2*pow(x,2) - x + 2;

}

then the induction variable x diverges towards +∞ and

therefore will eventually overshoot the given bound in the

loop test. Alternatively, if x0 < −1.18, then x diverges

towards −∞ and the loop certainly doesn’t terminate. For

x0 ∈ (−1.18, 2.49), our analysis makes no attempt to deter-

mine the outcome. Indeed, if x0 = 0, x will cycle through

the set {0, 2} taking values {0, 2, 0, 2, 0, 2, · · · }.
An important question is what happens when the con-

stant term3 in the polynomial f(x) is a symbolic con-

stant. Let’s assume a symbolic constant 0 ≤ Z ≤ 30,

the previously given loop test, and the assignment x =

pow(x,3) - 2*pow(x,2) - x + 2 + Z. The en-

tire curve in Figure 2 can shift upwards by Z . The diver-

gence analysis is the same, but the shift caused by symbolic

constants must be taken into account.

Definition 3 (Safe Region of Guaranteed Divergence)

An RGD of a polynomial assignment containing symbolic

3By definition of NAW loops, only the constant term of the update

function is allowed to be a symbolic constant.

constant terms is said to be safe if the effect of worst-case

shifts of the polynomial caused by symbolic constants are

taken into account.

Going back to our working example, Z can shift the

entire curve by Z ∈ [0, 30]. If the shift is equal to 30,

by solving x3 − 2x2 − 2x + 32 = 0, we get a single

real root −2.7990 . . ., yielding RGDs (−∞,−2.80) and

(−2.79,∞). From the previous analysis, we know that

(−∞,−1.18) and (2.49,∞) were RGDs when Z = 0.

Thus, the safe RGDs are the intersection of these two shifts,

yielding (−∞,−2.80) and (2.49,∞) as safe RGDs.4

Computing safe RGDs doubles the amount of work, as it

requires two factorizations of the polynomial. However, due

to the efficiency of our algorithm, the computational over-

head is negligible compared to the benefits of being able to

handle some degree of non-determinism. In order to keep

the exposition simple, further on we will not explicitly dis-

cuss the safe regions. The algorithm and the proofs can be

trivially extended to handle them.

2.3 Divergence Analysis

Once we have RGDs, if any, for all update functions, we

can test whether we can easily prove divergence for each

induction variable. The basic computation is whether the

range bound on the initial value of some induction variable

x0 is wholly contained in an RGD. If so, the induction vari-

able must diverge eventually.

In a general, more elaborate computation of RGDs, in

which we apply the update function a bounded number of

times in order to compute more RGDs, we would tag each

RGD with whether it leads to divergence to +∞, −∞, or

alternating±∞. In our current, fast-and-lightweight imple-

mentation, however, we determine the direction of diver-

gence easily by checking, for an arbitrarily chosen point x

in the RGD, whether f(x) > x, which gives divergence to

+∞, or f(x) < x, which gives divergence to −∞:

Case 1 (Quadrants I,III) We label an induction variable

as diverging if the bound constraints of the initial value

of the induction variable are contained in an RGD.

We determine the direction of divergence by checking

4The only exception to this procedure occurs in the special case that

the update function is linear and has leading coefficient 1, and the sym-

bolic constant shift allows the update to be the identity function. In this

degenerate case, the safe RGD is empty, since there is no RGD when the

induction variable keeps the same value on each iteration. This special

case can be easily identified and handled separately.



whether f(x) < x or f(x) > x for an arbitrarily cho-

sen point x in the RGD.

Case 2 (Quadrants I,II) We label an induction variable as

diverging if the bound constraints of the initial value

of the induction variable are contained in an RGD. Di-

vergence is always to +∞.

Case 3 (Quadrants III,IV) We label an induction variable

as diverging if the bound constraints of the initial value

of the induction variable are contained in an RGD. Di-

vergence is always to −∞.

Case 4 (Quadrants II,IV) We label an induction variable

as diverging if the bound constraints of the initial value

of the induction variable are contained in an RGD. Di-

vergence is always to alternately ±∞.

Notice that at most two quadrants are relevant in each case.

In Cases 2 and 3, executing the update assignment once will

move all the action to a single quadrant, rendering the diver-

gence analysis easy.

2.4 Termination Analysis

The termination analysis boils down to computing a limit

of the multivariate polynomial in the loop test condition.

Note that we cannot compute this limit by haphazardly ap-

plying the limits computed for each variable independently,

or by focusing only on the highest-degree terms in the poly-

nomial. For example, consider the loop in which one induc-

tion variable (y) changes much faster than the others:

while (y - pow(x,2) > 100) {

y = pow(y,10) + 1000;

x--;

}

Obviously, x → −∞ and y → +∞. Considering only the

highest-degree term in the test condition −x2 would incor-

rectly compute that the left side of the loop test diverges

towards−∞ and that the loop terminates.

Instead, we make a safe, conservative evaluation of

the test condition given the information we have. Essen-

tially, the computation is the straightforward abstract in-

terpretation [10] of the termination condition, where the

induction variables have values in the abstract domain

{−∞,+∞,±∞,⊥}, depending on the result of the diver-

gence analysis. (The abstract value ⊥ denotes no informa-

tion about the divergence behavior, and ±∞ denotes that

the induction variable diverges, with alternating sign on

each iteration.) For example, for the preceding loop, we

would assign x = −∞ and y = +∞. Then, we would

evaluate x2 = +∞, and y − x2 = +∞− (+∞) = ⊥. The

test⊥ > 100 is not provably false, so we do not claim termi-

nation. By expanding the abstract domain (e.g., to indicate

different growth rates, convergence to constants, etc.), we

can straightforwardly improve the accuracy of the termina-

tion analysis, but this was not needed for the examples we

studied.

The outline of the overall algorithm we implemented is

given below:

1. If each v ∈ supp (φ()) has a unique value and φ() ⊲⊳
0 evaluates to FALSE, report “THE LOOP TERMI-

NATES”.

2. Find the RGDs for each induction variable.

3. For each induction variable determine its divergence

behavior.

4. Evaluate the loop test condition using the divergence

information conservatively. If the loop test is

φ() < 0 and φ() evaluates to +∞, or

φ() ≤ 0 and φ() evaluates to +∞, or

φ() ≥ 0 and φ() evaluates to −∞, or

φ() > 0 and φ() evaluates to −∞, or

φ() = 0 and φ() evaluates to −∞ or +∞, or

φ() ⊲⊳ 0 and φ() evaluates to ±∞,

report “THE LOOP TERMINATES”. Otherwise, re-

port “CAN’T PROVE TERMINATION”.

Note that the algorithm does not execute the loop, but

soundly abstracts the limit behaviour of the induction vari-

ables, substitutes the computed limits in the loop test ex-

pressions, and determines whether the loop test is TRUE or

FALSE. The FALSE outcome implies that the loop termi-

nates.

3 Correctness

In this section, we discuss the correctness of the algo-

rithm for proving termination of NAW loops. The proof of

correctness consists of two parts. First, we need to prove

that the divergence analysis is correct. Then, we need to

prove the correctness of the termination analysis.

Lemma 1 If the initial value of an induction variable x0

is in an RGD, and f(x0) > x0, then x+ diverges to +∞.

(For a Quadrant II,IV update function f , the lemma checks

f̂(x0) > x0 instead, and concludes x++ diverges to +∞.)

Proof 1 As usual, we case-split on the shape of the update

function f :



Case 1 (Quadrants I,III) When there are two RGDs, they

are (−∞, rmin) and (rmax,+∞). Only in the latter re-

gion is f(x) > x, and the inequality holds throughout

the region. Since rmax is the largest stable point, and

f(x) is always greater than x, we have x+ diverging

to +∞. When all of (−∞,∞) is the RGD, then f(x)
is linear with leading coefficient 1 and a non-zero ad-

ditive constant, so if f(x) > x, then divergence to +∞
is obvious.

Case 2 (Quadrants I,II) When there are two RGDs, they

are (−∞, r′
min

) and (rmax,+∞). For the RGD

(rmax,+∞), the same argument as in Case 1 ap-

plies. For the RGD (−∞, r′
min

), we recall that r′
min

was the smallest solution of f(x) = rmax. Since

in this case, limx→−∞ f(x) = +∞, we know that

∀x ∈ (−∞, r′
min

) . f(x) > rmax. Therefore, after

one iteration, the induction variable will map to the

(rmax,+∞) RGD, and hence diverge to +∞ as well.

When there is only the single RGD (−∞,∞), then

f(x) > x for all x. Furthermore, since f is a finite-

degree polynomial, f(x) − x ≥ ǫ for some ǫ > 0. So,

on each iteration, the induction variable must increase

by at least ǫ, and hence diverges to +∞.

Case 3 (Quadrants III,IV) This is analogous to Case 2.

Case 4 (Quadrants II,IV) In this case, f is an odd-degree

polynomial with a negative leading coefficient. There-

fore, f̂ = f ◦f will have odd degree as well, but with a

positive leading coefficient, which means f̂ falls under

Case 1.

Lemma 2 If the initial value of an induction variable x0

is in an RGD, and f(x0) < x0, then x+ diverges to −∞.

(For a Quadrant II,IV update function f , the lemma checks

f̂(x0) < x0 instead, and concludes x++ diverges to −∞.)

Proof 2 The proof is the same (mutatis mutandis) as for

Lemma 1.

Lemma 3 If the abstract evaluation of the termination con-

dition described in Section 2.4 evaluates to FALSE, the loop

must terminate.

Proof 3 The termination condition is a conjunction of com-

parisons of the form φ ⊲⊳ 0, where ⊲⊳∈ {<,>,≤,≥,=}.
Only if some conjunct provably must become false does the

overall termination condition abstractly evaluate to FALSE.

In that case, during program execution, that conjunct in the

loop termination condition must eventually become false at

some iteration, making the loop terminate.

We assume standard, conservative evaluation with the

abstract domain. Therefore, if we conclude φ evaluates to

+∞, −∞, or ±∞, we know that φ must diverge in the

positive direction, negative direction, or alternating sign

on each iteration, respectively. We evaluate the test to be

FALSE only when the test condition is of the form:

φ < 0 and φ evaluates to +∞, or

φ ≤ 0 and φ evaluates to +∞, or

φ ≥ 0 and φ evaluates to −∞, or

φ > 0 and φ evaluates to −∞, or

φ = 0 and φ evaluates to −∞ or +∞, or

φ ⊲⊳ 0 and φ evaluates to ±∞.

In each case, the divergence of φ forces the condition to

eventually be false at some iteration.

Theorem 1 From Lemmas 1, 2 and 3, it follows that the

proposed algorithm is sound, i.e., it will never falsely report

that a loop terminates if it doesn’t.

4 Complexity

Univariate (and multivariate) polynomials can be fac-

tored in polynomial time O(n12 + n9(log |f |3)), where

n is the degree of the polynomial f and
∣

∣

∑

i
aiX

i
∣

∣ =
√

(
∑

i
a2

i
) using a well-known LLL algorithm [15, 17].

Each additional test can be performed by evaluating the up-

date function at specific points, hence these tests are per-

formed in time linear with the size of the update polynomial.

The simple, abstract evaluation of a multivariate polynomial

f ∈ Q[V ] over our abstract domain can also be computed in

linear time. Therefore, the overall complexity of the analy-

sis is polynomial. The number of induction variables is in

general small and the experiments confirm that the compu-

tational cost of the approach is negligible.

5 Experimental Results

To test our approach, we have prototyped our analysis

in Maple [19]. Our prototype, called ZIGZAG, is designed

to accept inputs of the form described in Figure 1(a). We

ran ZIGZAG on both hand-crafted and real-life examples of

linear and nonlinear NAW loops given in Figure 3. Because

of nonlinearity, tools which are restricted to linear cases,

such as RANKFINDER, can’t handle most of these loops.

Our initial results are encouraging (see Figure 4). Note

that performance is currently not an issue— all examples

are handled in less than 0.03 seconds. ZIGZAG was able to

prove that all the loops, except for the last one, terminate.

The last loop does not terminate because the induction vari-

able x diverges towards −∞, and therefore the loop test

never evaluates to FALSE.



x← 1;
−32768 ≤ LIMIT ≤ 32767;
while x > 0 ∧ x < LIMIT do

. . .

x← 5x;
end while

(a) Linear walking of an array

i← 0; j ← 0;
−32768 ≤ MAX ≤ 32767;
while i · j ≤ MAX do

. . .

i← i+ 1;
. . .

j ← j + 1;
end while

(b) Walking the diagonal of a 2D array

place ← 1;
base ← 10;
−32768 ≤ SRC ≤ 32767;
while −base

place + SRC ≥ 0 do

. . .

place ← place + 1;
. . .

end while
(c) Finding maximal exponent

60 ≤ TOUT ≤ 300;
rto ← 3;
while rto < TOUT do

. . .

rto ← 2rto;
end while

(d) Model of TCP’s retransmission timer

x← 4; 2 ≤ Y ≤ 1024
while x ≥ −264 do

x← −2x5 + 4x4 − 8x+ Y ;
end while

(e) Hand-crafted example

x < −2;
while x < 10 do

x← x3 − 2x2 − x+ 2;
end while

(f) Hand-crafted example

Figure 3. Examples of NAW loops used for testing our approach. The symbol “· · · ” indicates where

program slicing has been performed. For the examples 3(a), 3(b), 3(c), 3(d), and 3(e) our algorithm re-
ported “THE LOOP TERMINATES”, while for the example 3(f) the algorithm reported “CAN’T PROVE

TERMINATION”.



Loop a b c d e f

Time (s) 0.03 0.03 0.02 0.03 0.03 0.03

Result X X X X X ⊘

Figure 4. Results of experiments using
ZIGZAG on both hand-crafted and TERMINA-

TOR-produced NAW-loops. The symbol X in-

dicates that ZIGZAG was able to prove the
loop terminates. The symbol ⊘ means that

ZIGZAG hasn’t been able to prove termina-

tion.

6 Related Work

A number of techniques are available for proving termi-

nation of programs (e.g. [9, 20, 5, 23, 3, 6, 13, 4, 16, 18, 21,

8, 7]). With the exception of [3] and [9] these tools are all

limited to linear arithmetic.

The analysis described in [3] supports nonlinear multi-

path polynomial programs. The algorithm is based on build-

ing finite difference trees for expressions. In some cases

which we can handle (see Figures 3(a), 3(c), 3(d), and 3(e)

for examples) this can’t be done as the trees are infinite.

Cousot [9] presents a general framework for proving

termination (and invariants) and synthesizing polynomial

ranking functions of nonlinear loops. First, the standard

Floyd-style verification conditions are abstracted into a

(user-chosen) parametric form. If it is still possible to prove

termination within the parametric abstraction, then verifica-

tion reduces to solving for the parameters. The constraints

on the parameters are then further abstracted to a conjunc-

tion of inequalities by Lagrangian relaxation, which can in

turn be solved using semidefinite programming, if the con-

straints are quadratic. The framework is very general and

can handle interactions between variables that our analysis

cannot. On the other hand, semi-definite programming is

limited to quadratic functions, so the framework can han-

dle polynomial updates of higher degree only if they can

be expressed (or further conservatively approximated) by a

sum of squares. Furthermore, the framework depends on

extensive numerical computation, making it vulnerable to

numerical errors and complicating its use in practice. (For

example, a synthesized rank function in the paper [9, Exam-

ple 9] is actually non-monotonic when n is large, apparently

due to numerical errors in the solver.)

7 Conclusion

We have described an automatic tool, called ZIGZAG,

that can be used to prove the termination of loops with non-

linear assignments to variables. ZIGZAG uses divergence

testing on variables that are relevant to the loop’s termina-

tion condition. ZIGZAG can automatically prove the termi-

nation of loops that are not supported with previously re-

ported techniques.

Future work. ZIGZAG could be extended in several di-

rections. In addition to divergence, x+ might also converge

to a stable point. The analysis can be extended to handle

such cases, for example:

while (x > 0.5) {

x = 0.8 * x;

}

This is just an application of the Banach fixed point theorem

[11]. Since this is a well known result, we do not consider

it explicitly in our approach.

For low-order polynomials (which have only a small

number of real roots) with only constant coefficients, the

analysis could search for RGDs (or regions of guaranteed

convergence) between each pair of adjacent stable points.

This extension would make the analysis much more power-

ful, as currently our analysis only finds the most apparent

RGDs. Since most of the nonlinear functions that appear in

practice are low-order polynomials, this might be an inter-

esting direction for the future research.

We are currently investigating methods for supporting

interdependent induction variables. Another possible exten-

sion is to allow nonlinear functions of symbolic constants

in update functions. Finding minimums and maximums of

such functions is NP-complete in general.
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