
Proving Conditional Termination

Byron Cook1, Sumit Gulwani1, Tal Lev-Ami2,?,
Andrey Rybalchenko3,??, and Mooly Sagiv2

1 Microsoft Research
2 Tel Aviv University

3 MPI-SWS

Abstract. We describe a method for synthesizing reasonable underap-
proximations to weakest preconditions for termination—a long-standing
open problem. The paper provides experimental evidence to demonstrate
the usefulness of the new procedure.

1 Introduction

Termination analysis is critical to the process of ensuring the stability and us-
ability of software systems, as liveness properties such “Will Decode() always
return back to its call sites?” or “Is every call to Acquire() eventually followed
by a call to Release()?” can be reduced to a question of program termina-
tion [8,22]. Automatic methods for proving such properties are now well studied
in the literature, e.g. [1,4,6,9,16]. But what about the cases in which code only
terminates for some inputs? What are the preconditions under which the code
is still safe to call, and how can we automatically synthesize these conditions?
We refer to these questions as the conditional termination problem.

This paper describes a method for proving conditional termination. Our
method is based on the discovery of potential ranking functions—functions over
program states that are bounded but not necessarily decreasing—and then
finding preconditions that promote the potential ranking functions into valid
ranking functions. We describe two procedures based on this idea: PreSynth,
which finds preconditions to termination, and PreSynthPhase, which extends
PreSynth with the ability to identify the phases necessary to prove the termi-
nation of phase-transition programs [3].

The challenge in this area is to find the right precondition: the empty precon-
dition is correct but useless, whereas the weakest precondition [13] for even very
simple programs can often be expressed only in complex domains not supported
by today’s tools (e.g. non-linear arithmetic). In this paper we seek a method
that finds useful preconditions. Such preconditions need to be weak enough to
allow interesting applications of the code in question, but also expressible in
? Supported by an Adams Fellowship through the Israel Academy of Sciences and

Humanities.
?? Supported in part by Microsoft Research through the European Fellowship Pro-

gramme.

the subset of logic supported by decision procedures, model checking tools, etc.
Furthermore, they should be computed quickly (the weakest precondition ex-
pressible in the target logic may be too expensive to compute). Since we are not
always computing the weakest precondition, in this paper we allow the reader to
judge the quality of the preconditions computed by our procedure for a number
of examples. Several of these examples are drawn from industrial applications.

Limitations. In this paper, we limit ourselves to the termination property and
to sequential arithmetic programs. Note that, at the cost of complicating the
exposition, we could use known techniques (e.g., [2] and [8]) to extend our ap-
proach to programs with heap and ω-regular liveness properties. Our technique
could also provide assistance when analyzing concurrent programs via [10], al-
though we suspect that synthesizing environment abstractions that guarantee
thread-termination is a more important problem for concurrent programs than
conditional termination.

Related work. Until now, few papers have directly addressed the problem of au-
tomatically underapproximating weakest preconditions. One exception is [14],
which yields constraint systems that are non-linear. The constraint-based tech-
nique in [5] could also be modified to find preconditions, but again at the
cost of non-linear constraints. In contrast to methods for underapproximating
weakest preconditions, techniques for weakest liberal preconditions are known
(e.g., [7, 17]). Note that weakest preconditions are so rarely considered in the
literature that weakest liberal preconditions are often simply called weakest pre-
conditions, e.g., [17].

2 Example

In this section we informally illustrate our method by applying it to several
examples. The procedures proposed by this paper are displayed in Figures 1
and 2. They will be more formally described in Section 3.

We have split our method into two procedures for presentational convenience.
The first procedure illustrates our method’s key ideas, but fails for the class of
phase-transition programs. The second procedure extends the first with support
for phase-transition programs. Note that phase-change programs and precondi-
tions are interrelated (allowing us to solve the phase-change problem easily with
our tool), as a phase-change program can be thought of as several copies of the
same loop composed, but with different preconditions.

2.1 Finding preconditions for programs without phase-change

We consider the following code fragment:

1 // @requires true;
2 while(x>0){
3 x=x+y;
4 }

2

We assume that the program variables x and y range over integers. The initially
given requires-clause is not sufficient to guarantee termination. For example,
if x=1 and y=0 at the loop entry then the code will not terminate. The weakest
precondition for termination of this program is x ≤ 0 ∨ y < 0.

If we apply an existing termination prover, e.g., Terminator [9] or
ARMC [21], on this code fragment then it will compute a counterexample to
termination. The counterexample consists of 1) a stem η, which allows for ma-
nipulating the values before the loop is reached, and 2) a repeatable cycle ρ,
which is a relation on program states that represents an arbitrary number of
iterations of the loop.

To simplify the presentation, we represent the stem η as an initial condition
θ on the variables of the loop part. (Section 4 describes this step in more detail.)
In our example, the initial condition θ is true and the transition relation of the
loop is defined by

ρ({x, y}, {x′, y′}) ≡ x > 0 ∧ x′ = x + y ∧ y′ = y .

In order to try and prove this counterexample spurious (i.e. to prove it well-
founded, as explained in [9]), we need to find a ranking function f such that
ρ(X, X ′) ⇒ Rf (X, X ′), where Rf is the ranking relation defined by f :

Rf (X, X ′) ≡ f(X) ≥ 0 ∧ f(X ′) ≤ f(X)− 1 .

As the termination prover has returned the above relation ρ as a counterexam-
ple, we can assume that no linear ranking function f exists (note that there
could exist a non-linear ranking function, depending on the completeness of the
termination prover).

Due to the absence of a linear ranking function for ρ, we find a potential rank-
ing function, i.e., a function b such that one of the conjuncts defining Rb(X, X ′)
holds for ρ. We compute a potential ranking function for ρ by finding an expres-
sion on the variables {x, y} that is bound from below. One method for finding
such candiate functions ito consider only the domain (and not the range) of ρ,
i.e., find functions that are bounded when there is a successor. In other words,
consider ∃x′, y′. x > 0∧ x′ = x+ y∧ y′ = y. In practice we achieve this via a the
application of a quantifier elimination procedure, i.e., we have

QELIM(∃x′, y′. x > 0 ∧ x′ = x + y ∧ y′ = y) ≡ x > 0 .

We can normalize the condition x > 0 as x−1 ≥ 0, and thus use the function b =
x − 1. Because ρ({x, y}, {x′, y′}) ⇒ b({x, y}) ≥ 0, which is the first conjunction
required by Rb, we can use b as our potential ranking function.4

Enforcing ranking with a strengthening. The function b = x − 1 that we found
only satisfies part of the requirements for proving termination with Rb (i.e.,
4 In this simple example the result was exactly the loop condition. However, when

translating the cycle returned from the termination prover to a formula, some of the
conditions are not on the initial variables.

3

b(X) ≥ 0 but not b(X ′) ≤ b(X) − 1). We need a strengthening s({x, y}) such
that

s({x, y}) ∧ ρ({x, y}, {x′, y′}) ⇒ Rb({x, y}, {x′, y′}) .

Since b is bounded, we find s({x, y}) as follows:

s({x, y}) ≡ QELIM(∀x′, y′. ρ(x, y, x′, y′) ⇒ b({x′, y′}) ≤ b({x, y})− 1) .

We obtain s({x, y}) = x ≤ 0∨ y < 0. That is, if s were an invariant (and usually
it is not), then ρ would be provably well-founded using b.

Synthesizing a precondition guaranteeing the strengthening. Recall that the orig-
inal problem statement is to find a precondition that guarantees termination of
the presented code fragment. As the strengthening s guarantees termination,
we now need to find a precondition that guarantees the validity of s on every
iteration of ρ. The required assertion is the weakest liberal precondition of s
wrt. the loop statement. We use known techniques for computing underapprox-
imations of weakest liberal preconditions to find the precondition that ensures
that after any number of iterations of the loop s must hold in the next iter-
ation. Using a tool for abstract interpretation of arithmetic programs [15], we
obtain r({x, y}) = x ≤ 0∨ y < 0. In summary, our procedure has discovered the
precondition proposed above.

Note that we can alternate executions of our procedure together with suc-
cessive applications of a termination prover to find a precondition that is strong
enough to prove the termination of the entire program. The interaction between
the tools is based on counterexamples for termination, which are discovered by
the termination prover and are eliminated by the precondition synthesis proce-
dure.

2.2 Finding preconditions for phase-change programs

Consider the following code fragment:

1 // @requires true;
2 while(x>0){
3 x=x+y;
4 y=y+z;
5 }

Again, the given requires-clause is not sufficient to ensure termination. For
example, if x=1, y=0, and z=0 at the loop entry then the code will not terminate.
However, this time, the weakest precondition is given by a non-linear assertion,
which is difficult to construct automatically.

Note that the precondition z < 0 guarantees that the loop terminates, but the
termination may take place after the computation passed through two phases.
The first phase is characterized by the assertion y ≥ 0. In fact, during this phase
the value of x may not decrease towards zero. Nevertheless, eventually the value

4

of y will decrease below zero, i.e., a phase transition takes place. At this point
x will start decreasing towards (and eventually reaching) zero.

In this example, the termination prover returns a stem which is the identity
relation and cycle relation

ρ({x, y, z}, {x′, y′, z′}) ≡ x > 0 ∧ x′ = x + y ∧ y′ = y + z ∧ z′ = z .

The first step of the precondition inference repeats the procedure presented
in the previous subsection. On this example, similarly to the previous one, the
procedure computes b = x − 1 and s = x ≤ 0 ∨ y < 0. However, when com-
puting a precondition that ensures that s in an invariant, we obtain a linear
underapproximation5

x ≤ 0 ∨ x + y ≤ 0 ∨ (y < 0 ∧ x + 2 ∗ y + z ≤ 0) ∨
(y < 0 ∧ x + 3 ∗ y + 3 ∗ z ≤ 0) ∨ (y < 0 ∧ z ≤ 0) .

The first four disjuncts correspond to the cases when the loop terminates after
0, 1, 2, and 3 iterations, respectively, and in which y < 0 holds until possibly the
last iteration. The last disjunct is more interesting, as it states that if y < 0 and
z ≤ 0 then the loop terminates. The expected precondition z < 0 is not included
in the disjunction, since it does not guarantee that y < 0 from the start.

Note that each of these conditions guarantees termination when they are sat-
isfied at any iteration of the loop, not necessarily at the first one. These condi-
tions identify phase transition points. Once they are met, x will start decreasing
until the loop terminates. The solution is to constrain the transition relation
with the negated condition. Termination of the constrained loop ensures that
these conditions are eventually met, and thus the original loop will terminate.
Thus, we call the procedure recursively with the constrained transition relation,
and disjoin the returned preconditions with the existing ones.

For example, constraining the loop with ¬(y < 0 ∧ z ≤ 0) and calling the
procedure recursively yields the additional preconditions x+ 2 ∗ y+ z ≤ 0∨ x+
3 ∗ y + 3 ∗ z ≤ 0 ∨ z < 0. The first two disjuncts are weakenings of the previous
preconditions for the cases in which the loop terminates after 2 or 3 iteration,
removing the condition y < 0. The last disjunct z < 0 is the more interesting,
since it ensures eventual termination.

After simplification the precondition computed by the procedure is

x ≤ 0 ∨ x + y ≤ 0 ∨ x + 2 ∗ y + z ≤ 0 ∨
x + 3 ∗ y + 3 ∗ z ≤ 0 ∨ (y < 0 ∧ z ≤ 0) ∨ z < 0 .

3 Computing preconditions for termination

This section formally describes the two methods for computing preconditions for
termination, PreSynth and PreSynthPhase. We first define basic concepts.
5 Any linear precondition must be an underapproximation, since the weakest liberal

precondition is non-linear.

5

3.1 Preliminaries

We assume a program P = (X, θ, ρ) over a finite set of variables X. For simplic-
ity, we do not single out the program counter variable that ranges over control
locations of the program, and assume that it is included in X. The assertion
θ represents the initial condition of the program. The transition relation ρ is
represented by an assertion over the program variables X and their primed ver-
sions X ′. The primed variables refer to the values after the transition is executed.
For practicality, we assume that the initial condition and the transition relation
are represented using a logical theory for which practical quantifier elimination
procedures exist.6

We refer to valuations of program variables as program states. A program
computation is a finite or infinite sequence of program states s1, s2, . . . such that
s1 is an initial state and each pair of consecutive states si and si+1 follows the
transition relation. Formally, s1 |= θ and for each but final si in the compu-
tation we have (si, si+1) |= ρ. The program terminates from a state s if there
is no infinite computation that starts at s. An assertion r is a precondition for
termination if the program P terminates from each state s that satisfies r and
the initial condition, i.e., s |= θ ∧ r.

Our procedure uses (an under-approximation of) the weakest liberal pre-
condition operator WLP, which we define as usual. Given a transition relation
ρ(X, X ′) and an assertion over program variables ϕ(X), this transformer yields
the following conjunction when applied on the transitive closure of ρ:

WLP(ρ∗(X, X ′), ϕ(X)) ≡
∧
n≥0

∀X ′. ρn(X, X ′) ⇒ ϕ(X ′) .

3.2 The Procedure PreSynth

Figure 1 shows the basic precondition synthesis procedure PreSynth. The input
of PreSynth consists of an initial condition θ and a transition relation ρ. Note
that in the most likely usage scenario, θ and ρ will represent a counterexample
to termination reported by a termination prover. In this case, PreSynth is
applied on a compact code fragment and not the full program, which allows one
to apply precise, automated reasoning-based techniques.

We discuss the major steps of the procedure in more detail. The procedure
takes a formula representing a set of initial states, together with a relation rep-
resenting the transitions. Line 1 in Figure 1 strengthens the transition relation
ρ with (possibly an over-approximation of) the states that are reachable from θ.
This step provides necessary precision for the subsequent computations by tak-
ing into account reachability invariants. Here, we rely on an efficient abstract
interpretation tool based on e.g., the Octagon domain [18]. Thus, we can imple-
ment line 1 using a standard abstract reachability procedure [12] as follows (we

6 If necessary, we can over-approximate the initial condition and the transition relation
using assertions from such a theory.

6

function PreSynth
input

θ(X) : initial condition
ρ(X, X ′) : transition relation

begin

0 r(X) := false

1 ρ(X, X ′) := ρ(X, X ′) ∧QELIM(∃X0. θ(X0) ∧ ρ∗(X0, X))

2 B := Finite({b(X) | ∀X. (∃X ′. ρ(X, X ′)) ⇒ b(X) ≥ 0})
3 foreach b(X) ∈ B do

4 s(X) := QELIM(∀X ′.ρ(X, X ′) ⇒ b(X) ≥ 0 ∧ b(X ′) ≤ b(X)− 1)

5 r(X) := r(X) ∨WLP(ρ∗(X, X ′), s(X))

6 done

7 return “precondition for termination r(X) ”
end.

Fig. 1. The procedure PreSynth synthesizes a precondition for the termination of
a transition relation ρ from initial states θ. The procedure Finite returns a selected
finite subset of its input (i.e. Finite(S) ⊆fin S). Finite may choose, for example, to
return only the linear elements of S.

assume that θ ⇒ θ#, ρ ⇒ ρ#, and lfp is the least fixpoint operator):

ρ(X, X ′) := ρ(X, X ′) ∧ lfp(ρ#, θ#)

Line 2 of PreSynth computes a finite set of expressions B that are bounded
by the (strengthened) transition relation ρ. In theory we could generalize the set
B to include non-linear or lexicographic ranking functions, though in practice
it will be limited to linear ranking functions. We will assume that each b is a
function ranging over simple arithmetic types (i.e., N, Z, R) though in princi-
ple we could generalize the procedure to support any well-order. In practice, to
compute B we apply an existential quantifier elimination procedure to eliminate
the primed variables. Then, we consider the linear inequalities that appear in
the result. Each bound expression b(X) ∈ B is treated as a potential ranking
function, and is used to guide the search for a strengthening s(X) on the domain
of the transition relation ρ that makes ρ well-founded. PreSynth only considers
the well-foundedness arguments constructed using b(X). Line 4 uses a quanti-
fier elimination procedure to construct the strengthening s(X) by imposing the
bounded and decrease conditions

s(X) ∧ ρ(X, X ′) ⇒ b(X) ≥ 0 ∧ b(X ′) ≤ b(X)− 1 .

The assertion s(X) guarantees that b(X) is a ranking function for the given
transition relation.

The strengthening imposed by s(X) is effective if s(X) holds for all states that
are reachable from θ by applying ρ. Line 5 in Figure 1 computes the necessary
precondition that guarantees the invariance of s(X). All preconditions that are
found using the potential ranking functions are accumulated in an assertion
r(X), and reported to the programmer in line 7.

7

Line 5 of PreSynth uses known abstract interpretation-based tech-
niques for under-approximating sets and relations for the computation of
WLP(ρ∗(X, X ′), s(X)). We pass the following program to the Interproc ana-
lyzer [15]:

assume θ(X ′);
while (∗) do

X=X ′;
X ′=∗;
assume ρ(X, X ′);

od
assume ¬s(X);

Using Interproc we first compute an abstract fixpoint using backwards analysis
starting from top element in the abstract domain. Then, the abstract element
at the loop entry location represents an over-approximation of the states that
fail the assertion s(X). The complement of this element, which we obtain by
negating the corresponding assertion, provides an under-approximation of the
initial set of states of the program that guarantees the invariance of s(X).

Theorem 1 (PreSynth correctness). Let r(X) be an assertion computed by
the procedure PreSynth. Then, r is a precondition for termination of a program
with the initial condition θ and the transition relation ρ.

Proof. Let r(X) be computed by PreSynth. For a proof by contradiction, we
assume that there is an infinite computation s1, s2, . . . from an initial state that
satisfies r(X). Let b(X) be a bound expression that contributed a disjunct in
r(X) that holds for the state s1, and s(X) be a corresponding strengthening.
From the definition of WLP, we have that s(X) holds for each state si, where
i ≥ 0. Thus, the value of b(X) decreases after each program step, while being
bounded from below. We reached a contradiction to the assumption that the
computation is infinite. �

3.3 The Procedure PreSynthPhase

See Figure 2. The procedure PreSynthPhase extends the applicability of the
basic procedure from Figure 1 to phase-transition programs (as described in Sec-
tion 2). It removes the condition that the computed strengthening needs to apply
immediately. Instead, we only require that the strengthening applies eventually.
PreSynthPhase implements this eventuality requirement by finding a precon-
dition for termination of an augmented transition relation that avoids visiting
states satisfying the strengthening constraint. The inferred precondition can be
enforced eventually by applying PreSynthPhase recursively.

We discuss the major steps of the procedure in more detail. Line 1 computes
an initial precondition r(X) by applying the procedure PreSynthPhase. If the
precondition r(X) is non-empty, as checked in line 2, then PreSynthPhase
weakens it by a precondition that ensures the eventuality of r(X). Here, we fol-
low a standard technique for the verification of temporal liveness properties [22],

8

function PreSynthPhase
input

θ(X) : initial condition
ρ(X, X ′) : transition relation

begin

1 r(X) := PreSynth(θ, ρ)

2 if ∃X. r(X) then

3 ρ(X, X ′) := ρ(X, X ′) ∧ ¬r(X)

4 r(X) := r(X) ∨ PreSynthPhase(θ, ρ)

5 endif

6 return “precondition for phase termination r(X) ”
end.

Fig. 2. The procedure PreSynthPhase synthesizes a precondition for the phase termi-
nation of a transition relation ρ from initial states θ. It applies the procedure PreSynth
from Figure 1 when recursively identifying computation phases. PreSynthPhase can
be stopped at any time, e.g., by reaching a user-provided upper bound, and it will yield
a sound precondition for phase-transition termination.

and apply a translation to a termination problem. Effectively, line 3 constructs
a new transition relation from ρ that avoids r(X). Thus, we can apply PreSyn-
thPhase recursively on the new transition relation, see line 4.

Theorem 2 (PreSynthPhase correctness). Let r(X) be an assertion com-
puted by the procedure PreSynthPhase. Then, r is a precondition for termi-
nation of a program with the initial condition θ and the transition relation ρ.

Proof. Let r1(X), . . . , rn(X) be a sequence of preconditions that are computed
by applying PreSynth during the execution of PreSynthPhase. We observe
that every computation that starts in an initial state that satisfies ri(X) for i > 1
either terminates or eventually reaches ri−1(X). Hence, eventually every compu-
tation either stops or reaches r1(X). From Theorem 1 follows that the program
terminates on each state reachable from an initial state satisfying r1(X). �

4 Implementation and experiments

We have built a prototype implementation of our method based on the following
collection of tools: for termination proving we use ARMC [20,21], for quantifier
elimination we use Cooper’s procedure [11], and for abstract interpretation we
use the Interproc analyzer [15].

See Figures 3 and 4, which contain example programs (both hand written
and drawn from industrial examples) together with the results of our tool. We
leave it to the reader to judge the usefulness of the synthesized preconditions.
The running times in the figures include the times of iterating the procedure of
Figure 2 and the termination prover. In the remainder of this section we highlight
relevant implementation details.

9

Program fragment Precondition & notes

i = 0;

if (l_var >= 0) {

while (l_var < 1073741824) {

i++;

l_var = l_var << 1;

}

}

l var > 0 ∨ l var < 0 ∨ l var ≥ 1073741824

Example from an audio compression module:
We model shift by multiplication and checked
for overflow with an extra check and subtract.

Time: 22 seconds.

while (cbSrcLength >= cbHeader) {

DWORD dwHeader;

UINT cbBlockLength;

cbBlockLength = (UINT)min(cbSrcLength, nBlockAlignment);

cbSrcLength -= cbBlockLength;

cbBlockLength -= cbHeader;

dwHeader = *(DWORD HUGE_T *)pbSrc;

pbSrc += sizeof(DWORD);

nPredSample = (int)(short)LOWORD(dwHeader);

nStepIndex = (int)(BYTE)HIWORD(dwHeader);

if(!imaadpcmValidStepIndex(nStepIndex)) return 0;

*pbDst++ = (BYTE)((nPredSample >> 8) + 128);

while (cbBlockLength--) {

bSample = *pbSrc++;

nEncSample = (bSample & (BYTE)0x0F);

nSz = step[nStepIndex];

nPredSample =

imaadpcmSampleDecode(nEncSample, nPredSample, nSz);

nStepIndex =

imaadpcmNextStepIndex(nEncSample, nStepIndex);

*pbDst++ = (BYTE)((nPredSample >> 8) + 128);

nEncSample = (bSample >> 4);

nSz = step[nStepIndex];

nPredSample =

imaadpcmSampleDecode(nEncSample, nPredSample, nSz);

nStepIndex =

imaadpcmNextStepIndex(nEncSample, nStepIndex);

*pbDst++ = (BYTE)((nPredSample >> 8) + 128);

}

}

cbSrcLength < cbHeader ∨
(nBlockAlignment > 0 ∧ cbHeader > 0)

Example from another audio application.

Time: 106 seconds.

Fig. 3. Programs drawn from industrial examples, runtimes, and synthesized precon-
ditions. The runtimes include the iteration of the procedure in Figure 2 together with
the termination prover.

Simplification. Both the quantifier elimination and the abstract interpretation
tools do not give minimal formulas. In many cases the formulas have redun-
dant conjuncts or several disjuncts that imply each other. Simplification of these
formulas was important for reducing the size of the result preconditions.

Loop termination after a bounded number of iterations. The recursive call in
PreSynthPhase is problematic in the case that the precondition is the result
of a loop termination in a bounded number of iteration, say 3. The problem is
that the next call will find precondition that come from the loop terminating
after 6 iteration and so on. To solve this problem, before the recursive call, we
check whether the precondition ensures termination in a fixed number of steps,
and if it does then we avoid the recursive call. That is, we unroll the relation
k times (for some threshold k) and then check to see if ρk = ∅, which implies
termination.

10

Program fragment Precondition & notes

// @requires true;
while(x>0){

x=x+y;
y=y+z;

}

x ≤ 0 ∨ x + y ≤ 0 ∨ x + 2y + z ≤ 0 ∨ x + 3y + 3z ≤ 0 ∨ z <
0 ∨ (z ≤ 0 ∧ y < 0)

This is the example from §2. The first four disjuncts cover
the case where the loop terminates after 0, 1, 2, or 3 iter-
ations respectively. The last two disjuncts ensure that the
loop eventually terminates. The condition z ≤ 0 ∧ y < 0
is the case in which the loop starts with y < 0 and z does
not interfere.

Time: 24 seconds.

// @requires true;
while(x<=N){

if (*) {
x=2*x+y;
y=y+1;

} else {
x++;

}
}

x > N ∨ x + y ≥ 0

An example from [3]. We find preconditions that ensure
that the loop is executed 0 times (x > N) and the precon-
dition that ensures termination as it appears in the paper
(x + y ≥ 0).

Time: 4 seconds.

// @requires true;
while(x>=0){

x= -2*x + 10;
}

x > 5 ∨ x < 0

Example (from [19]) of a terminating linear program with
no linear ranking function. Note that the program always
terminates after at least 5 iterations. Our synthesized pre-
condition provides conditions that guarantee termination
after 0 or 1 iterations.

Time: 2 seconds.

// @requires n>200 and y<9;
x = 0;
while (1) {

if (x<n) {
x=x+y;
if (x>=200) break;

}
}

y > 0

Example (from [14]) after translation that allows us to dis-
prove a safety property.

Time: 6 seconds.

while (x!=y) {
if (x>y) {

x = x - y;
} else

y = y - x;
}

}

x = y ∨ (x > 0 ∧ y > 0)

The Euclidean algorithm for GCD. Each case in the if
requires a different ranking function. Demonstrates the in-
teraction with disjunctive well foundedness.

Time: 17 seconds.

Fig. 4. Handwritten programs, runtimes, and synthesized preconditions. The runtimes
include the iteration of the procedure in Figure 2 together with the termination prover.

11

Stems vs. initial conditions. The termination prover returns a cycle and a stem
as a counterexample. The stem is not only an initial condition, but rather a
sequence of primitive statements that manipulate variables. We use existential
quantifier elimination to convert the stem into the initial condition for the proce-
dure. Because there are no control-flow constructs in the stem, a straightforward
application of WLP translates the precondition discovered by the procedure to
a precondition applicable at the beginning of the stem.

Translating paths to formulas. The cycles returned by the termination prover
often contain multiple assignments and conditions. The translation first converts
the path to static single assignment form and then to a path formula (see [9] for
details). The extra temporaries generated are handled in the quantifier elimina-
tion as extra variables to eliminate.

Handling disjunctions. Effective dealing with disjunctions that appear in inter-
mediate formulas manipulated by our algorithm is crucial for its applicability.
Even when applied on conjunctive inputs, the procedure PreSynth creates
additional disjunctions. Its line 1 may split the transition relation ρ when re-
stricting it to reachable states. Although line 5 creates disjunction by iterating
over the set of candidate bound expressions B, they are tamed by the subsequent
negation in PreSynthPhase. On the other hand, line 5 creates a conjunction
representing the weakest liberal precondition that, after its negation in PreSyn-
thPhase, may create disjuncts. Disjunctions in the preconditions are handled by
calling the algorithm separately on each disjunct and accumulating the results.
Disjunctions in the transition relation are handled by iterating the termination
prover as explained below.

Iterating the termination prover. The constrained transition relation generated
in PreSynthPhase can be complicated. We found that calling the termination
prover on this relation and letting the PreSynthPhase only deal with the coun-
terexamples returned improves the preconditions we compute. Thus, there is a
mutual recursion between calling the termination prover and PreSynthPhase.

5 Conclusion

This paper has described an automatic method for finding sound underapproxi-
mations to weakest preconditions to termination. Using illustrative examples we
have shown that the method can be used to find useful underapproximations
(i.e. something larger than false, but in cases smaller than the often complex
weakest precondition). Beyond the direct use of proving conditional termination,
we believe that our method can also be used in several areas of program veri-
fication, including the disproving of safety properties, interprocedural analysis,
interprocedural termination proving, and distributed termination proving.

12

References

1. I. Balaban, A. Pnueli, and L. D. Zuck. Modular ranking abstraction. Int. J. Found.
Comput. Sci., 2007.

2. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs
with lists are counter automata. In CAV, 2006.

3. A. Bradley, Z. Manna, and H. Sipma. The polyranking principle. In ICALP, 2005.
4. A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial programs. In

VMCAI, 2005.
5. A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability. In

CAV, 2005.
6. M. Bruynooghe, M. Codish, J. P. Gallagher, S. Genaim, and W. Vanhoof. Ter-

mination analysis of logic programs through combination of type-based norms.
TOPLAS, 29(2), 2007.

7. C. Calcagno, D. Distefano, P. OHearn, and H. Yang. Footprint analysis: A shape
analysis that discovers preconditions. In SAS, 2007.

8. B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and M. Vardi. Proving that
programs eventually do something good. In POPL, 2007.

9. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI, 2006.

10. B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In PLDI,
2007.

11. D. C. Cooper. Theorem proving in arithmetic without multiplication. Machine
Intelligence, 1972.

12. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

13. E. W. Dikstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer, 1989.

14. S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint
solving. In PLDI, 2008.

15. G. Lalire, M. Argoud, and B. Jeannet. Interproc analyzer.
http://bjeannet.gforge.inria.fr/interproc/, 2008.

16. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. In POPL, 2001.

17. R. Leino. Effecient weakest preconditions. Information Processing Letters, 93(6),
2005.

18. A. Miné. The Octagon abstract domain. Higher-Order and Symbolic Computation,
2006.

19. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI, 2004.

20. A. Podelski and A. Rybalchenko. ARMC: the logical choice for software model
checking with abstraction refinement. In PADL, 2007.

21. A. Rybalchenko. ARMC. http://www.mpi-sws.org/∼rybal/armc/, 2008.
22. M. Y. Vardi. Verification of concurrent programs: The automata-theoretic frame-

work. In LICS, 1987.

13

