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Abstract. In this paper we introduce the basic concepts behind the
problem of proving program termination, including well-founded rela-
tions, well-ordered sets, and ranking functions. We also connect notion
of termination of computer programs with that of well-founded relations.
This paper introduces no original concepts, nor does it propose solutions
towards the the problem of automating termination proofs. It does, how-
ever, provide a foundation from which the reader can then peruse the
more advanced literature on the topic.

1 Introduction

The program termination problem, also known as the uniform halting problem,
can be defined as follows:

Using a finite amount of time: determine whether a given program will
always finish running or could potentially execute forever.

This problem rose to prominence before the invention of programs or computers,
in the era of Hilbert’s Entscheidungsproblem1: the challenge to formalize all of
mathematics into logic and use mechanical means to determine the validity of
mathematical statements. After Hilbert’s challenge, a number of logicians and
mathematicians began finding instances of undecidable problems which showed
the ideal of the Entscheidungsproblem to be impossible. Turing [18]2, for exam-
ple, proved the halting problem undecidable.

Turing’s result is now perhaps the most frequently covered topic in introduc-
tory university-courses in the areas of logic and theoretical computer science.
This popularization of Turing’s result has, unfortunately, had the effect of giv-
ing birth to a frequently held misconception that we are always unable to prove
termination: many believe that it is impossible to prove program termination
of any program; many others believe that program termination is too hard a
problem to tackle. Thus, little effort was expended to automate termination
1 In English: “decision problem”
2 There is some controversy as to whether or not Turing proved the undecidability in

[18] Technically he did not, but termination’s undecidability is an easy consequence
of the result that is proved.



proving—those who suggest solutions to termination or related problems were
usually derided by their peers.

The true consequence of Turing’s proof, in contrast, is the much more be-
nign fact that we are unable to always prove termination—meaning that we can
potentially prove termination in most cases, but no matter how sophisticated a
termination prover we build, there will always be at least one terminating pro-
gram that cannot be proved terminating. The program termination problem has
now found new life in the 21st century (as reported in Scientific American [16],
for example): as our society increasingly depends more on computers, the need
for for practical tools that automatically prove the correctness of software (as
opposed to simply finding bugs) is becoming clear (see, for example, [1]). Prac-
tical and powerful industrial tools are now emerging that allow us to express
and automatically prove properties of computer programs. It turns out that the
program termination problem is at the foundation of many of the properties that
we might want to prove of software: a liveness property such as “Every call to
AcquireLock is eventually followed by a call to ReleaseLock” amounts proving the
termination of the code occurring between calls to AcquireLock and ReleaseLock.
Several advanced prototype tools have recently emerged that attempt to auto-
matically prove program termination. Since termination is formally undecidable,
the modern challenge is to show the problem to be “effectively decidable”—i.e.
to build robust termination provers that work in all “interesting cases”, or maybe
even all known cases.

As of the writing of these notes, these new termination tools can automati-
cally prove or disprove termination of many famous complex examples (e.g. Ack-
ermann’s function, McCarthy’s 91 function), as well as moderately-sized indus-
trial examples (e.g. Windows OS device drivers). Perhaps, as the tools improve,
we will one day be able prove liveness properties of most industrial programs.

Currently the techniques for automating program termination proofs are
known perhaps to only a handful of people. Furthermore, there is no single good
source for those interested in learning more: knowledge on how to automate
termination proofs must today be synthesized from obscure research papers in
tandem with voluminous foundational texts (each of which used distinct nota-
tions and required different levels of sophistication).

These notes are designed to accompany lectures I will present at the Markto-
berdorf summer school. My goal in giving these lectures is to provide advanced
students with an understandable and uniform introduction to the foundations of
the program termination problem and the modern approaches for automation.
The first lecture will be based on this paper. The material in the remaining
lectures will be drawn primarily from the research papers written during the
development of the Terminator termination prover: [2, 3, 5–9, 12].

2 Defining termination

For the purpose of these notes it is convenient to think of a computer program
as its possible initial configurations paired together with a relation that speci-



fies the possible transitions that the program can make between configurations
during execution. Program executions can be thought of as traversals starting
from one of the program’s initial configurations through the various changes of
configuration allowed by the program’s transition relation. We say a program is
terminating if all of its executions are finite. A program is called non-terminating
if there exists at least one infinite execution.

When trying to prove termination, formally we are trying to prove that the
program’s transition relation is well-founded. In a sense, termination is the user’s
experience, whereas well-foundedness is a mathematical property the holds of
transition relations of terminating programs. Despite their differences, we shall
use the two terms interchangeably throughout these notes.

Before attempting to automate the search for proofs of termination (as hap-
pens in the advanced literature) we first must ground ourselves with some basic
concepts and notation—e.g. states, programs, ranking functions and well-founded
relations. We also describe a representation for computer programs, define a
mapping from programs to the mathematical relations that they represent, and
develop several preliminary methods for proving program termination.

3 States, sets and relations

Throughout these notes we will be concentrating on program configurations. We
call these configurations states. States are encoded as partial finite mappings
from variables to values. Let S be the set of all such mappings. We will assume
that the set of variables, Var, is infinite, and formed of strings expressed in sans-
serif font (e.g. x ∈ Var). The set of values, Val, will be an under-specified set of
values which can include Z and other arithmetic constants. Later we will discuss
techniques for supporting programs with dynamically allocated heap-based data
structures.

Depending on the context we will use two forms of notation interchangeably
when describing relations over states: sets of pairs of states, and formulae drawn
from quantifier-free first-order logic with pre- and post-variables. When using
formulae, unprimed variables will represent the pre-variables and primed vari-
ables will represent the post-variables. We define the usual semantic mapping
from formulae to the underlying sets of pairs of states that they represent, e.g.
[[x < x′]] = {(s, t) | s(x) < t(x)}. If Q is a set of states using unprimed variables,
we use the notation Q′ to mean a set expressed using primed variables such that
Q ∼= Q′. Note that many of the definitions and results described in these notes
hold over all sets and relations, not just those over states.

Definition 1 (Relational application, composition, closure). Assume
that R ⊆ S × T and I ⊆ S, we define the image of R on I (notationally,
R(I)) as:

R(I) , {b | a ∈ I ∧ (a, b) ∈ R}
Note that R(I) ⊆ T . If a ∈ S and R ⊆ S × T then we define R(a) ⊆ T as

R(a) , {b | (a, b) ∈ R}



Let ; be relational composition where

R;Q , {(a, b) | ∃c. (a, c) ∈ R ∧ (c, b) ∈ Q}

We define R0 , {(a, b) | a = b}. When k > 0, Rk , R;Rk−1. The non-reflexive
and reflexive transitive closure of R are defined respectively:

R+ , {(a, b) | ∃n > 0.(a, b) ∈ Rn}

R∗ , {(a, b) | ∃n ≥ 0.(a, b) ∈ Rn}

We define relational inverse and projection as follows:

R−1 , {(a, b) | (b, a) ∈ R}

Π1(R) , {a | ∃b. (a, b) ∈ R}

Π2(R) , {b | ∃a. (a, b) ∈ R}

If Q is a set of states (i.e. Q ⊆ S) then ¬Q , S −Q

4 Well-ordered sets and well-founded relations

In this section we describe what it means for a set to be well ordered, and a
relation to be well founded.

Definition 2 (Total-order). The structure (S,≥) forms a total order iff for all
a, b, c ∈ S

– a ≥ a (reflexive),
– a ≤ b and a ≥ b then a = b (antisymmetry),
– If a ≥ b and b ≥ c then a ≥ c (transitivity),
– a ≤ b or a ≥ b (totality),

Definition 3 (Well order). (S,≥) forms a well order iff it is a total order and
every nonempty subset of S has a least element.

Example 1. The natural numbers, N, are a well-ordered set, as in the worst
case 0 is the least element of any subset. The integers, Z, are not well ordered
because there is no least element. However, for any integer constant b ∈ Z, the
set {x | x ∈ Z ∧ x ≥ b} is a well-ordered set.

Example 2. The non-negative real numbers with relation ≥ are not a well-
ordered set because there there is no least element in the open interval (0,1).
The non-negative real numbers can be made into a well-ordered set when paired
with the alternative comparison relation ≥w, which we define x ≥w y , x ≥
y + 1 ∨ x = y.



Definition 4 (Sequences). We say that s is an S-sequence if s = s1, s2, . . .
and each si ∈ S. A finite sequence will have a last index last(s). Let R ⊆ S×S. A
finite sequence is said to be permitted by R iff ∀i ∈ {1, . . . last(s)−1}. R(si, si+1).
An infinite sequence is permitted by R iff ∀i. i > 0 ⇒ R(si, si+1). Let I ⊆ S.
We say that s is permitted by (I,R) iff s is permitted by R and s1 ∈ I.

Definition 5 (Well-founded relations). A binary relation R ⊆ S×S is well-
founded iff it does not permit infinite sequences.

Example 3. The relation x > x′∧x′ > 0 is a well-founded relation if the variables
range over the integers or natural numbers, but not if the variables range over
the reals. The reason is that, if we apply the relation point-wise to any sequence
of naturals or integers, we’ll see that the values along the sequence are forced to
go down towards (and eventually pass) a bound. Thus no permitted sequence
can be infinite. In the reals the constraint x > x′ does not require the value to go
down enough to guarantee eventual progress to 0. The relation x ≥ x′+1∧x′ > 0,
on the other hand, is well founded in all three interpretations.

Theorem 1. Assume that (S,≥) is a total order. (S,≥) is a well order iff the
relation x > y (defined as x > y , x ≥ y∧x 6= y) is well founded on S-sequences.

Proof. Well-ordered set ⇒ Well-founded relation: By a contrapositive argu-
ment, assume that > is not well founded, meaning in this case that there
is an infinitely descending chain of S-elements. In this case there can be no
least element. X

Well-ordered set ⇐ Well-founded relation: Again, by a contrapositive argu-
ment. Assume that the infinite S-subset S′ has no least element (the fact
that every finite set has a least element can be established using the fact
that S is a total order). Let s1 ∈ S′. Since s1 cannot be minimal we know
that there exists an s2 ∈ S′ such that s1 > s2, and an s3 ∈ S′ such that
s2 > s3, etc. Therefore, using the somewhat controversial axiom of depen-
dent choice we can show that there exists an infinite sequence of S′-elements
that is permitted by > X

Observation 1 If Q is well founded and R ⊆ Q, then R is well founded.

Proof. Assume that R is not well founded. Therefore there exists an infi-
nite sequence s such that ∀i.(si, si+1) ∈ R. Because R ⊆ Q, we know that
∀i.(si, si+1) ∈ Q, thus contradicting the claim that Q is well founded.

Corollary 1. If R is not well founded and R ⊆ Q, then Q is not well founded.

Remark on Cantor’s ordinal numbers. We often see Cantor’s ordinal numbers [4]
used in the literature discussing well-ordered sets. Cantor’s ordinals are a canon-
ical representation for sets of well-ordered sets who are all related in size. (e.g.
the natural numbers and any isomorphic set can be represented by the ordinal
number ω). In these notes we avoid the ordinals for the reason that, although
they can make a fundamental discussion more concise, they come at a great
initial cost. Many distracting ideas and notation would need to be introduced.



5 Ranking functions and ranking relations

The most popular method of proving a relation R ⊆ S × S well founded is
to follow Turing’s suggestion [19] and find a map from the structure (R,S) to
some known well-ordered set (≥, T ) and then prove that the map is structure-
preserving (i.e. that it is a homomorphism). Since we know that the > relation
(where x > y , x ≥ y ∧ x 6= y) on T is well founded, by the properties
of homomorphisms and Observation 1, we know that R too is well founded.
Turing’s maps are typically called ranking functions.

Definition 6 (Ranking function). A mapping f with a range to a well-
ordered set is called a ranking function. In cases where f ranges over a bounded
set {x | x ≥ b} we may chose to make the bound explicit. In this case we say
that (f, b) is a ranking function.

Definition 7 (Ranking relation). Let f : X → Y be a ranking function. We
define f ’s ranking relation, Mf , to be

Mf = {(s, t) | f(s) > f(t)}

We also introduce a variant of M for the case where an explicit bound is needed

Mf,b = {(s, t) | f(s) > f(t) ∧ f(s) ≥ b}

Observation 2 For any ranking function f , Mf is well founded. Analogously,
for any ranking function (f, b), Mf,b is well founded.

Proof. We know that there exists some Y such that f : X → Y such that
(≥, Y ) is a well-ordered set. Thus, due to Theorem 1, we know that > is a well-
founded relation on sequences drawn from Y . By way of contradiction, assume
that s1, s2, s3, . . . is an infinite sequence permitted by Mf . This gives rise to the
infinite sequence of Y -elements f(s1) > f(s2) > f(s3) > . . .. But this infinite
sequence is not permitted, as (≥, Y ) is well ordered.

Example 4. Consider the example relation

R , x > 0 ∧ y > 0 ∧ x′ = x− 1 ∧ y′ = y + 1

Assume that x and y range over the integers. To prove R well-founded we
can use the ranking function f(s) = s(x) and bound 0 to construct Mf,0:

Mf,0 = {(s, t) | f(s) > f(t) ∧ f(s) ≥ 0}
= {(s, t) | s(x) > t(x) ∧ s(x) ≥ 0}
= [[x > x′ ∧ x ≥ 0]]

To prove that the inclusion R ⊆ Mf,0 holds we can construct a query for a
decision procedure. See Figure 1 for an implementation expressed in F# using an
interface to the Z3 decision procedure tool. When executed this program prints
the result true.



let n0 = Dp.constant 0

let n1 = Dp.constant 1

let x = Dp.var "x"

let y = Dp.var "y"

let x’ = Dp.var "x’"

let y’ = Dp.var "y’"

let R = Dp.conj [ Dp.gt x n0 ; Dp.gt y n0

; Dp.eq x’ (Dp.sub x n1)

; Dp.eq y’ (Dp.add y n1)

]

let f = x in

let f’ = x’ in

let M_f = Dp.conj [ Dp.gt f f’ ; Dp.ge f n0 ]

let query = Dp.implies R M_f

Dp.valid query |> print_bool

Fig. 1. F# code which proves the condition R ⊆Mf,0 from Example 4

6 Supporting invariants

The common wisdom when proving a relation well founded is that one must
find both a ranking function and a supporting invariant. The difficulty that this
strategy is solving is the fact that, in practice, relations are often only well
founded when restricted to the states reachable by the relation from some set of
initial states.

Definition 8 (Transition systems). We say that P is a transition system if
P = (I,R, S), where S is the (possibly infinite) set of program states represented
as finite partial functions from Vars to Vals, I ⊆ S, and R ⊆ S × S. We call I
the initial states, and R the update relation.

Definition 9 (Reachable states). We call R∗(I) the reachable states of the
transition system P = (I,R, S).

Definition 10 (Transition relation). Let P = (I, R, S). We use the notation
RI to denote P ’s transition relation:

RI , R ∩ (R∗(I)×R∗(I))

In contrast to transition relations, in practice update relations are usually simple
disjunctions representing simple commands—usually update relations are much
larger than RI , though of course it is possible to define a R such that R = RI .

Definition 11 (Invariant). A set of states Q is an invariant of a relation R ⊆
S × S and initial set I ⊆ S iff Q ⊇ R∗(I).



Note that, because RI ⊆ R, if R is well founded then RI is also well founded.
Clearly R∗(I) is the strongest possible invariant, but it is not computable in
theory and very difficult to compute in practice. Instead we usually look for a
weaker (but easier to find) invariant Q that is strong enough to prove relations
well founded. Because, by definition, Q ⊇ R∗(I), if Q × Q ∩ R is well founded,
then we know that RI is well founded. Note also that Q×Q ∩ R = Q× T ∩ R
whenever Q ⊆ T . Thus it suffices to find an invariant and prove Q× S ∩R well
founded, assuming that R ⊆ S × S.

Example 5. Consider the relation R , x > 0 ∧ x′ = x + y ∧ y′ = y, where the
variables range over the integers. R is not well founded if y ≥ 0. However, if we
let the initial set of states be I , y ≤ −1, then RI is well founded. To prove this
we can let Q = y ≤ −1. Luckily, in this case, Q is an inductive invariant, meaning
that we can show Q invariant simply via induction (i.e. I ⇒ Q and Q∧R ⇒ Q′)
To prove that Q×Q ∩R is well founded we can show that Q×Q ∩R ⊆Mx,0.
This query is encoded in Figure 2.

let n0 = Dp.constant 0

let x = Dp.var "x"

let x’ = Dp.var "x’"

let y = Dp.var "y"

let y’ = Dp.var "y’" in

let R = Dp.conj [ Dp.gt x n0

; Dp.eq x’ (Dp.add x y)

; Dp.eq y’ y

]

in

let I = Dp.lt y n0 in

// The relation Q * Q is expressed via Q && Q’, where Q’ is like

// Q but expressed over primed variables

let Q = Dp.lt y n0 in

let Q’ = Dp.lt y’ n0 in

// Base check

Dp.implies I Q |> Dp.valid |> print_bool

// Inductive check

Dp.implies (Dp.conj [Q;R]) Q’ |> Dp.valid |> print_bool

// WF-check

let M_f = Dp.conj [ Dp.gt x x’ ; Dp.ge x n0 ]

Dp.implies (Dp.conj [R;Q;Q’]) M_f |> Dp.valid |> print_bool

Fig. 2. Implementation of the check described in Example 5.



7 Proving non-termination

Until now we have considered only proving termination, but not disproving—i.e.
proving non-termination.

Definition 12 (Recurrence sets). Assume P = (I,R, S). Q ⊆ S is a recur-
rence set of P if:

1. Q ⊆ Π1(R)
2. Q ∩ I 6= ∅
3. ∀x ∈ Q. ∃x′. (x, x′) ∈ R ∧ x′ ∈ Q

Theorem 2. RI is not well founded iff there exists a recurrence set Q for RI

Todo: Prove the theorem

Example 6. Consider the relation over S:

R , x > 0 ∧ (x′ = x− 1 ∨ x′ = x)

Let I , S. The relation RI is not well founded. To prove it not well founded (as
opposed to simply failing to prove it well founded) we define Q = {s | s(x) =
1 ∧ s ∈ S}. Π1(R) = {s | s(x) > 0 ∧ s ∈ S}, thus Q ⊆ Π1(R). Because Q ⊆ I
and Q 6= ∅, Q∩ I 6= ∅. Finally, R(Q) = Q, thus ∀x ∈ Q.∃x′.(x, x′) ∈ R ∧ x′ ∈ Q. Todo: Encode an example

8 Composing termination arguments

In many cases, constructing a ranking function for a complex relation can be
a subtle art. As we have seen: once we know a ranking function, proving the
necessary subset inclusion is usually not difficult—finding the ranking function
argument is the hard part. This section describes a method for constructing
termination arguments via the composition of small sub-arguments. As we will
see later, the method makes the search for and construction of termination ar-
guments easier, but makes checking the argument more difficult. Modern ap-
proaches to termination are based on this result.

Theorem 3 (Podelski & Rybalchenko). Let be a binary relation R ⊆ S×S.
Let Q1, Q2, . . . Qn be a finite set of binary relations Qi ⊆ S × S such that each
Qi is well founded. R is well founded iff R+ ⊆ Q1 ∪Q2 ∪ . . . ∪Qn.

Todo: Give proof from [14]

It is important to note that the union of well-founded relations is not neces-
sarily well founded, thus making Theorem 3 a little surprising. Transitive closure
is the key to Theorem 3’s soundness. To see why this is true consider the rela-
tions P , 0 < x′ ∧ x′ < x and Q , 100 > x′ ∧ x′ > x. Both P and Q are well
founded, but P ∪Q is not. To see that P ∪Q is not well founded consider the case
where s(x) = 5. In this case (s, s) ∈ (P ∪Q)2, thus making {s | s(x) = 5∧ s ∈ S}
a valid recurrence set for (P ∪Q)2.



let n0 = Dp.constant 0

let n1 = Dp.constant 1

let x = Dp.var "x"

let x’ = Dp.bound ()

let decr x’ x = Dp.conj [ Dp.le x’ (Dp.sub x n1)

; Dp.ge x’ (Dp.sub x n1)

]

let R =

Dp.conj [ Dp.gt x n0

; Dp.disj [ Dp.eq x x’

; decr x’ x

]

]

let I = Dp.true_q

// TODO: explicitly quantify out x’

let pi1_R = Dp.mk_exists 1 R

// Recurrence set

let Q = Dp.conj [ Dp.ge x n1 ; Dp.le x n1 ]

let Q’ = Dp.conj [ Dp.ge x’ n1 ; Dp.le x’ n1 ]

// Checking condition 1

Printf.printf "%b\n" (Dp.valid(Dp.implies Q pi1_R))

// Checking condition 2

Printf.printf "%b\n" (Dp.sat (Dp.conj [Q;I]))

// Checking condition 3

Dp.mk_exists 1 (Dp.conj [R;Q’]) |> Dp.valid |> print_bool

Fig. 3. Implementation of the check described in Example 6.



Example 7. Consider the relation

R , (x > 0 ∧ y > 0 ∧ x′ = x− 1 ∧ y′ = y)
∨ (x > 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1)

We can prove R well founded by showing R ⊆ Mx+y,0. Alternatively we use
Theorem 3 and establish termination via proof that R+ ⊆ Mx,0 ∪My,0. Note
that we cannot prove the inclusion R+ ⊆Mx,0 ∪My,0 directly with any known
decision procedure, as they do not support transitive closure (transitive closure
for infinite-state systems is undecidable in theory, and difficult in practice). In the
advanced research literature we see the use of techniques from program analysis
being adapted to address this class of question. For now, define R+

α to be

R+
α , (x > 0 ∧ y > 0 ∧ x′ ≤ x ∧ y′ < y) ∨ (x > 0 ∧ y > 0 ∧ x′ < x ∧ y′ ≤ y)

It can be proved (via methods described later) that R+ ⊆ R+
α . Thus we can use

R+
α to check the condition from Theorem 3. An encoding of this check can be

found in Figure 4.
Note that finding Mx,0 and My,0 is, in a sense, easier than Mx+y,0. The

reason is that if we can often find the former argument by looking individually
at R’s disjuncts: Mx,0 is motivated by looking at the first disjunct in R (i.e.
x > 0 ∧ y > 0 ∧ x′ = x− 1 ∧ y′ = y), and My,0 is motivated by the second.

let n0 = Dp.constant 0

let x = Dp.var "x"

let x’ = Dp.var "x’"

let y = Dp.var "y"

let y’ = Dp.var "y’"

let R_star_abs =

Dp.conj [ Dp.gt x n0

; Dp.gt y n0

; Dp.disj [ Dp.conj [Dp.gt x x’; Dp.ge y y’ ]

; Dp.conj [Dp.ge x x’; Dp.gt y y’ ]

]

]

let M_x = Dp.conj [ Dp.gt x x’ ; Dp.ge x n0 ]

let M_y = Dp.conj [ Dp.gt y y’ ; Dp.ge y n0 ]

let arg = Dp.disj [ M_x ; M_y]

Dp.implies R_star_abs arg |> Dp.valid |> print_bool

Fig. 4. Implementation of the check described in Example 7.

As mentioned above, we find that Theorem 3 makes the construction of termina-
tion arguments easier but—because of the use of transitive closure—the checking
of the inclusion harder. For more discussion on this topic, see [8]



Definition 13 (Termination arguments, validity). We say that M is a valid
termination argument of R’s iff R+ ⊆ M and M is disjunctively well founded
or R ⊆ M and M is well founded. We say that a valid recurrence set is a valid
argument for non-termination.

9 Programs

Until now we have considered methods of proving mathematical relations well
founded. We now focus our attention on programs. In this section we describe
a simple imperative programming language and discuss the semantic meaning
that maps programs to the mathematical relations that they represent. We also
provide some preliminary results which allow us to prove termination of pro-
grams. For convenience we will often assume a fixed program, P = (I,R,S).
Note that this could be any program.

Definition 14 (Program counter). A program counter is a special program
variable used to track the the program’s current location during execution. In
these notes we assume that the variable pc is used for this purpose. We will
assume that no program explicitly references or modify pc; Instead, the program
commands will modify pc indirectly to indicate flow of control from one command
to another. Furthermore, for all P-states considered in these notes, s, we assume
s(pc) ∈ {1, . . . k} for some fixed k.

Todo: Need to be careful
about assumption that R ab-
stracts N for termination........

Definition 15 (Transfer lists). We use lists of commands, called transfer lists,
to represent transition relations. Program commands come in the form outlined
in Figure 5. The commands use constraints and terms, as defined in Figure 6.
Each command can be labeled with a label `. We use ρ to map between labels
and positions in the list. We assume a finite set of location labels L = {`1, . . . `j}.

The reader may find two aspects of Figure 5 subtle and perhaps surpris-
ing: the non-deterministic goto, and assume. The goto statement allows us
to specify multiple potential locations where the program can jump to—the
program’s semantics does not specify which location the program’s execution
will choose, and thus proofs of correctness must consider all possibilities. The
assume(c) statement eliminates executions through it in which the constraint
c does not hold. For example, no execution is allowed to pass through the se-
quence “assume(x > 0); assume(¬(x > 0));” Programs are usually written in
this form such that the non-deterministic goto makes choices early, and the as-
sume statements are used to trim executions away that do not meet the required
constraints. More standard conditional statements and loops can be translated
into isomorphic code fragments using goto and assume statements: see Figure 7
for a translation scheme.

Note that the assignment command from Figure 5 is standard, with the
slight twist that we can non-deterministically introduce newly chosen values via
nondet and assign them to variables.



Command Notes

exit Terminates the program

[`0 :] goto `1, `2, . . . `n Nondeterministic jump, pc′ = ρ(`1) or pc′ = ρ(`2), etc,
where `1, `2, . . . ∈ L

[` :] v:=t Sets v ∈ Vars to term t, leaves other variables alone. pc′ = pc + 1

[` :] v:=nondet Same as v:=t above, but t-value is unknown

[` :] assume(c) Assumes that constraint c holds in current state, pc′ = pc + 1

[` :] push(v1, v2, . . . , vn) Creates new stack frame with variables v1, v2, . . . vn on it

[` :] pop Pops the current stack frame

[` :] lock(v) Acquires lock through variable v

[` :] unlock(v) Releases lock through variable v

Fig. 5. Commands in the input programming language. Each command can optionally
be labeled. A program is a list of commands. Constraints and terms (i.e. c and t) are
defined in Figure 6.

c ∈ Constraints ::= t1 < t2 | t1 > t2 | t1 ≥ t2 | t1 ≤ t2
| ¬c | c1 ∧ c2 | c1 ∨ c2 | true | false

t ∈ Terms ::= k | v | −t | t1 + t2 | t1 − t2 | t1 × t2

k ∈ R

v ∈ Var

Fig. 6. Terms and constraints expressed in Backus-Naur form.

Original `0 : if c then s1 else s2 `0 : while c do s od

`0 : goto `1, `2; `0 : goto `1, `2;
`1 : assume(c); `1 : assume(c);

s1; s;
Translation goto `3; goto `0;

`2 : assume(¬c); `2 : assume(¬c);
s2;

`3 : assume(true);

Fig. 7. Translation scheme from while-loops and conditional statements into the in-
ternal representation using non-deterministic goto and assume statements.



Definition 16 (VarsOf). We define VarsOf(P) to be variables from Vars
referenced in I and R.

Definition 17 ([[·]]). Assume that R is a list and the command c = R[k] is
the kth element of the list. Let ρ : L → N be a mapping such that R[ρ(`)] =
` : i for some instruction i. The semantics of commands goto, :=, assume,
and exit are given in Figure 8. The meaning of push, pop, lock and unlock
can be defined in the obvious way. In the Marktoberdorf lectures I will discuss
methods of supporting them when proving termination, as well as providing their
semantic meaning. We define the relation that a command sequence R represents
as follows:

[[R]]V,L,ρ , {(s, t) | s(pc) ∈ L ∧ (s, t) ∈ [[R[s(pc)]]]V,ρ}

A typical application would be to compute [[R]]V,L,ρ, where V = VarsOf(P)
and L = {1, . . . , length(R)}.

We will often abuse notation by using R in place of [[R]]V,L,ρ. For example we
say that P’s reachable states are defined as R∗(I), when formally we mean
([[R]]V,L,ρ)∗(I)

Definition 18 ([[P]]).

[[P]] , [[R]]V,L,ρ ∩ [([[R]]V,L,ρ)∗(I)× ([[R]]V,L,ρ)∗(I)]

where ρ is a mapping consistent with P. Note that, by definition, P is terminating
iff [[P]] is well founded.

[[goto X]]V,ρ , {(s, t) | ∀v ∈ V − {pc}. s(v) = t(v) ∧ ∃` ∈ X. t(pc) = ρ(`)}
[[x := t]]V,ρ , {(s, t) | ∀v ∈ V − {pc, x}. s(v) = t(v) ∧ t(x) = [[t]]s ∧ t(pc) = s(pc) + 1}

[[assume(c)]]V,ρ , {(s, t) | ∀v ∈ V − {pc}. s(v) = t(v) ∧ [[c]]s ∧ t(pc) = s(pc) + 1}
[[exit]]V,ρ , ∅

Fig. 8. Semantics of commands

Example 8. Consider the program:

while x > 0 do
x := x− 1;

od
exit;



We can represent this program using the following transition list:

R ,

pc Commands
1 `1 : goto `2, `5;
2 `2 : assume(x > 0);
3 x := x− 1;
4 goto `1;
5 `5 : assume(¬(x > 0));
6 exit;

where ρ = {(`1, 1), (`2, 2), (`5, 5)}. The command sequence R, in this case, rep-
resents the following relation:

[[R]]{x,pc},{1,2,3,4,5},ρ = [pc = 1 ∧ ((pc′ = 2 ∨ pc′ = 5) ∧ x′ = x)]
∨ [pc = 2 ∧ (pc′ = 3 ∧ x > 0 ∧ x′ = x)]
∨ [pc = 3 ∧ (pc′ = 4 ∧ x′ = x− 1)]
∨ [pc = 4 ∧ (pc′ = 1 ∧ x′ = x)]
∨ [pc = 5 ∧ (pc′ = 6 ∧ x ≤ 0 ∧ x′ = x)]

The transition system’s set of initial states, I, can be defined as the singleton
set I = {s | s(pc) = 1}. Note that, in the case of this program, when x > 0 is an
invariant at locations 0 < pc < 5.

Given RI , as we have done before, we can use a decision procedure to prove
the termination of R, via a check that R ⊆ Mf,0 for some ranking function f .
The difficulty here is that the ranking function will have to be quite complex
to handle each of the disjuncts (notice that in some cases pc goes up, in other
cases it goes down, and that in only one case does x go down). Instead, in this
example its easier to unroll the relation 4 times and show that [[P]]4 ⊆Mx,0.

10 Decomposition using program structure

As we saw above in Example 8, the ranking function to prove termination for
even the simplest program is surprisingly complex if we attempt to directly find
a ranking function using the relation that the code denotes. The difficulty is that
the program’s notation of location complicates matters. In the example above
we were able to eliminate the problem through unrolling, but this solution only
works in very simple cases.

A program’s set of locations can actually work to our advantage if we use
them appropriately. Following Floyd’s suggestion [10], we define a technique that
allows us decompose a single termination check into a fixed number of easier
checks. The decomposition makes use of our assumption that the range of pc is
finite in any state in reachable state. The decomposition technique is, in fact,
general and can be used with any program variable of finite range.

Definition 19 (Sample). Assume that Q is a set of states. We define the set
Sample(Q, v, x) as

Sample(Q, v, x) , Q ∩ {s | s(v) = x}



We also define Sample on relations:

Sample(R, v, x) , R ∩ {(s, t) | s(v) = x ∧ t(v) = x}

Theorem 4. Assume that v ∈ Var and that the set L is finite, where

L = {x | s ∈ R∗(I) ∧ s(v) = x}

RI is well founded if for all l ∈ L, Sample(R+
I , v, l) is well founded.

Proof. By contradiction and the pigeon-hole principle. Assume that s =
s1, s2, s3, . . . is an infinite sequence such that (s1, s2) ∈ RI , (s2, s3) ∈ RI , etc.
Because L is finite and R∗(I)(v) = L, we know that there exists a c ∈ L such
that si(v) = c infinitely-often in s. Let s′ be the infinite sequence of these states.
We know that s′ is in the sequences allowed by R+

I ∩ {(s, t) | s(v) = t(v) = c}
(i.e. Sample(R+

I , v, c)). But Sample(R+
I , v, c) is well founded.

Example 9. Consider the relation

R , (b′ = 1 ∧ b = 0) ∨ (b′ = 0 ∧ b = 1)
∧ (b = 1 ∧ x′ = x− 1 ∧ x > 0) ∨ (b = 0 ∧ x′ = x)

In this case we could invent a fairly complex ranking function involving both
x and b, or alternatively we can simply prove Sample(R+, b, 0) ⊆ Mx,0 and
Sample(R+, b, 1) ⊆ Mx,0. Note that we can do slightly better—the following
lemmas will allow us to eliminate one of these conjuncts.

Lemma 1. Assume that v ∈ Var and that the set L = R∗(I)(v) is finite. Let
k1 and k2 be constants from Val. Assume that, if (s, t) ∈ R and t(v) = k2 then
s(v) = k1. Sample(R+

I , v, l) is well founded for each l ∈ L iff Sample(R+
I , v, l)

is well founded for each l ∈ L− {k2}.

Proof. By contradiction. Assume that there is an infinite sequence s =
s1, s2, s3, . . . allowed by R such that si(v) = k2 infinitely often. By assump-
tion, if si+1(v) = k2 then si(v) = k1. Thus si(v) = k1 occurs infinitely often in s.
But, by assumption, Sample(R+

I , v, k1) is well founded, meaning that s cannot
be infinite and thus contradicting the starting assumption.

Lemma 2. Assume that v ∈ Var and that the set L = R∗(I)(v) is finite. Let
k1 and k2 be constants from Val. Assume that, if (s, t) ∈ R and s(v) = k2 then
t(v) = k1. Sample(R+

I , v, l) is well founded for each l ∈ L iff Sample(R+
I , v, l)

is well founded for each l ∈ L− {k2}.

Proof. By the same argument as Lemma 1

Lemmas 1 and 2 allow us to remove one of the termination checks from Exam-
ple 9. We can now simply prove R well founded by proving Sample(R+, b, 0) ⊆
Mx,0



Definition 20 (P-trace,P-path). The (possibly finite) sequence s is a P-trace
if s0 ∈ I and for all s indices i, (si−1, si) ∈ R. Let π(s) , s(pc). The function
π, when applied to a sequence, returns a sequence in which π has been applied
pointwise. A sequence p is a P-path if there exists a P-trace s such that p = π(s).
Let Paths(P) be the set of all P-paths, Let Traces(P) be the set of all P-traces.
We define a P-trace segment to be a finite sequence s such that s0 ∈ R∗(I) and s
indices i, (si−1, si) ∈ R. Let TraceSegs(P) be the set of all P-trace segments.

Definition 21 (Cutpoints). C ⊆fin N is a valid cutpoint-covering [10] of P if
for any infinite P-path s, there exists a c ∈ C such that si(pc) = c for an infinite
subset of s indices. Let Cutpoints be some procedure that returns a valid set
of cutpoints when passed a program, and let C , Cutpoints(P).

Observation 3 The set {i | R[i] = goto X ∧ ∃` ∈ X. i ≥ ρ(`)} is a cutpoint
covering for P.

Proof. As R is a finite structure, any infinite execution must pass through at
least one R-location infinitely often. As every step increases the program counter
except the goto statements, the set of gotos that send execution to a location
smaller than the location of the goto is potentially such a location. L is exactly
this set.

Observation 4 P terminates if ∀n ∈ C. Sample(R+
I , pc, n) is well founded

Proof. By induction with Lemmas 1 and 2 on the bounded number of program
locations not in C.

Note that, each obligation resulting from Observation 4 is, in essence, prov-
ing that the location ` cannot be visited infinitely-often during the program’s
execution. Thus, since no location can be proved infinitely-often, we know that
the program terminates. When (as is done in the advanced literature) we con-
sider programs with nested loops, we will make improvements to Observation 4
that allow us to ignore infinite executions through nested loops that also pass
infinitely-often through an outer-loop.

Example 10. Consider the program from Example 8:

R ,

1 `1 : goto `2, `5;
2 `2 : assume(x > 0);
3 x := x− 1;
4 goto `1;
5 `5 : assume(¬(x > 0));
6 exit;

Note that {5} is a cutpoint covering in this case. Using techniques we can com-
pute x ≥ x′ + 1 ∧ x > 0 as an overapproximation to Sample(R+

I , pc, 5). Thus,
since our overapproximation equals Mx,0, we know that Sample(R+

I , pc, 5) is
well founded, and by Observation 4, we know that the program terminates.



11 Further reading

The reader interested in examining the original papers from which these notes
are drawn should begin with the proof of termination’s undecidability [18, 17],
and the seminal papers on proving program correctness (e.g. Turing’s paper on
proving programs correct [19], Floyd’s paper on program semantics [10], Manna
& Pnueli [13]). Readers interested in well-ordered sets, well-founded relations,
and the ordinals should refer to a text like [4]. Readers interested in disjunc-
tive termination proofs (i.e. Theorem 3) should read Podelski & Rybalchenko’s
paper [14] together with Ramsey’s original paper [15]. The size-change princi-
ple [11] is very similar to Podelski & Rybalchenko’s result, but specialized to
functional programs. For methods of automating termination based on Podelski
& Rybalchenko’s result, see [2, 3, 5, 8]. For methods of proving programs ter-
minating that use dynamically allocated and deallocated data structures, see
[3]. Note also that [12] produces arithmetic abstractions of programs that are
sound for termination proving when treating programs with heap. For informa-
tion on how to prove concurrent programs terminating, see [9]. To see methods on
synthesizing preconditions which guarentee termination of non-terminating pro-
grams, see [7]. Finally, in the beginning of these notes we alluded to the fact that
proving liveness properties can be converted into a problem of termination—for
this reduction see [6]

12 Exercises

1. Assume that the variables in the following relations range over the integers.
Which of the following relations are well founded? Which are not? Prove your
answer by either finding (and proving the validity) of a ranking relation, or
finding (and proving the validity) of a recurrence set.
(a) 1 < 0
(b) 0 < 1
(c) x′ > x ∧ x′ < 1000
(d) x′ > x ∧ x′ > 1000
(e) x′ ≥ x + 1 ∧ x′ < 1000
(f) x′ ≥ x− 1 ∧ x′ < 1000
(g) y′ ≥ y + 1 ∧ z′ = z ∧ z < 1000
(h) y′ + 1 ≥ y ∧ z′ = z ∧ z < 1000
(i) (x′ = x− 1 ∨ x′ = x + 1) ∧ x < 1000
(j) x′ = x− z ∧ x > 0
(k) x′ = x− z ∧ x′ > 0
(l) x′ = x− 1 ∧ (x > 0 ∨ x < 200)

(m) x > 0 ∧ y > 0 ∧ [(x′ = x− 1 ∧ y′ = y) ∨ (y′ = y − 1 ∧ x′ = x)]
(n) x > 0 ∧ y > 0 ∧ [(x′ = x− 1 ∧ y′ = y) ∧ (y′ = y − 1 ∧ x′ = x)]
(o) x > 0 ∧ y > 0 ∧ [(x′ = x− 1 ∧ y′ = y + 1) ∨ (y′ = y − 1 ∧ x′ = x)]
(p) x > 0 ∧ y > 0 ∧ [(x′ = x− 1 ∧ y′ = y + 1) ∨ (y′ = y − 1 ∧ x′ = x + 1)]
(q) (x > 0 ∨ y > 0) ∧ x′ = x− 1 ∧ y′ = y − 1



(r) x > 0 ∧ x′ = x− y ∧ y′ = y + 1

2. Reconsider the relations above in the case where the variables range over the
real numbers? Which of the following relations are well founded? Which are
not? Again, prove your answers.

3. Prove or disprove the following assertions:

(a) If R2 is well founded, R is well founded.
(b) If R is well founded, R2 is well founded.
(c) If R is well founded, R+ is well founded.
(d) If R+ is well founded, R is well founded.
(e) If R is well founded, R ∩Q is well founded.
(f) If R is well founded, R ∪Q is well founded.
(g) If R is well founded, R−1 is well founded.

4. Is the following relation well founded?

x > 0 ∧ y > 0 ∧ [(x′ = x + 1 ∧ y′ = y − 1) ∨ (x′ = x− 1 ∧ y′ = y)]

If so: Use Theorem 3 to prove the following relation well founded (i.e. figure
out the transitive closure, find two ranking relations, etc). If not, find and
prove the validity of a recurrence set.

5. Translate the following program into the representation using goto and as-
sume statements:

while x > 0 do
x := x− 1;
y := x;
while y > 0 do

y := y − 1;
od

od
exit;

What is this program’s semantic meaning (in the form of a relation)? Give
a valid set of cutpoints for this program. Find and prove the validity of a
ranking function that proves the relation well founded.

6. Use the techniques from Section 10 to prove the following relation well
founded:

R , x = 0 ⇒ (x′ = 1 ∧ y > 0 ∧ y′ = y)
∧ x = 1 ⇒ (x′ = 2 ∧ y′ = y)
∧ x = 2 ⇒ (x′ = 3 ∧ y′ = y − 1)
∧ x = 3 ⇒ (x′ = 0 ∧ y′ = y)
∧ (x = 3 ∨ x = 2 ∨ x = 1 ∨ x = 1 ∨ x = 0)

What is the value of Sample(R+, x, 2)?

Todo: Give example from of
modular arithmetic example
that doesn’t terminate in ex-
ercises.

Todo: Find example were ints
are not abstracted by reals
and put in example and exer-
cises
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