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Abstract— This paper describes a symbolic algorithm for over-
approximating reachability in Boolean programs with unbounded
thread creation. The fix-point is detected by projecting the state
of the threads to the globally visible parts, which are finite. Our
algorithm models recursion by over-approximating the call stack
that contains the return locations of recursive function calls,
as reachability is undecidable in this case. The algorithm may
obtain spurious counterexamples, which are removed iteratively
by means of an abstraction refinement loop. Experiments show
that the symbolic algorithm for unbounded thread creation scales
to large abstract models.

I. INTRODUCTION

All scalable symbolic model checkers for software are
currently based on counterexample-guided abstraction refine-
ment (CEGAR) (e.g., BLAST [1], SLAM [2], MAGIC [3],
SATABS [4], DIVER [5]). To date, none of these model check-
ers supports unbounded thread creation together with shared
memory cross-thread communication. This gap is not due to
lack of need: much of the software that these tools are used to
verify are actually shared memory concurrent programs with
unbounded thread creation. Static Driver Verifier (SDV) [2],
for example, is used to verify Windows device drivers—
which are tremendously concurrent pieces of software. SDV’s
analysis is unsound because it ignores the side-effects caused
by other threads.

The cause for this gap between the software model checkers
and the software that they are intended to verify is a technical
one: CEGAR is effective only if the underlying reachability
procedure is guaranteed to terminate—and terminate quickly.
When unbounded thread creation is added into the mixture,
today’s reachability engines often do not terminate.

We address this problem with a new symbolic model
checker for Boolean programs (the most common form of
abstractions used within CEGAR-based tools for software)
that supports unbounded thread creation while guaranteeing
termination. What we lose is precision—the Boolean program
checker may now return counterexamples that are spurious
within the abstraction itself. The experimental results show
that this is not a practical problem: the CEGAR refinement
mechanism can be adapted to remove these false counterex-
amples as well as the counterexamples that are spurious only
in the unabstracted software. Furthermore, the experimental
results demonstrate that the algorithm scales in practice to
large concurrent programs.

The contribution of this paper is contained in Sections III
and IV, namely an algorithm for reachability analysis of
programs with unbounded thread creation in Section III and
their symbolic simulation in Section IV. Experimental results
are discussed in Section V.

Related Work

Formal verification of multi-threaded programs is an area of
active research; see [6] for an excellent survey. The develop-
ment of static analysis tools for such programs is complicated
due to the fact that reachability for interprocedural programs
(that is, for programs that contain both communication and
data-flow structures) is undecidable [7].

Pushdown automata have been used as tools for analyz-
ing sequential programs with (recursive) procedures [8]. The
expressive power of pushdown systems is equivalent to that
of sequential programs with (possibly recursive) procedures
where all variables have a finite data type. MOPED [9] and
BEBOP [10], for example, are BDD-based symbolic model
checkers for this class of language. There has also been work
on pushdown automata with multiple stacks, e.g., see [11]. As
reachability is undecidable in this case, the existing implemen-
tations are not fully automated.

Unsound approaches have also proved successful in find-
ing bugs in concurrent programs. For example, Qadeer &
Rehof [12] note that many bugs can be found when the
analysis is limited to execution traces with only a small set of
context-switches. This analysis supports recursive programs.
Our approach complements these techniques because, while
they are unsound, they are able to analyze a larger set of
programs.

The class of programs considered in this paper can be
viewed as an instance of a parameterized system, i.e., a
system with a number of identical processes (threads in our
case). Many approaches to this problem have been developed
over the years, including the use of symbolic automata-based
techniques, network invariants, predicate abstraction or system
symmetry (see an excellent overview in [13]). Methods that are
most closely related to our work are based on abstraction (for
example, an extension of Murφ uses abstraction for replicated
identical components [14]). In contrast to our approach, many
of these methods are only partially automated, requiring at
least some human ingenuity to construct a process invariant
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or a closure process (for example, the TLPVS tool [15] is
based on manual theorem proving).

Henzinger et al. use predicate abstraction in order to con-
struct environment models from threads [16]. When combined
with a counter abstraction, an unbounded number of threads
can be supported. Flanagan and Qadeer propose to use the
idea of thread-states in order to obtain environment models
for loosely-coupled multi-threaded programs [17]. In contrast
to their algorithm, we address the spurious behavior intro-
duced by this over-approximation by (safely) restricting the
thread-states that are passed, and by an automatic refinement
procedure.

One can also model concurrent Boolean programs as a
set of rewriting rules and use rewriting techniques to prove
safety. For example, [18] computes abstractions of program
paths using the least solutions of a system of path language
constraints. At this time it is not clear how our work compares
to these techniques. One disadvantage of the term rewriting
approach is that it requires translating programs written in
general purpose languages into the term models. There are no
translation tools reported yet.

A number of tools for analysis of multi-threaded Java pro-
grams is available. While some of the tools compute abstract
models automatically, most perform only explicit state space
exploration. Representative examples of model checkers for
Java are [19] and JPF [20]. Yahav reports an implementation
of a Model Checker for Java with an unbounded number
of threads using three-valued logic [21]. Similarly to our
approach, an over-approximation is computed.

The reachability of concurrent programs with a restricted
form of recursion is shown to be decidable and implemented
in ZING [22]. Here, recursive functions are partitioned into
atomic transactions, which are only allowed to modify local
variables. ZING, however, suffers from scalability problems
since its approach flattens concurrent programs to sequential
programs to handle recursive procedures. BEACON [23] (an
explicit-state model checker for concurrent Boolean programs)
has similar scalability problems. Additionally, CEGAR-based
tools produce abstractions that make non-trivial use of under-
specified values. For this reason, explicit-state model checkers
perform poorly when used as the reachability procedure within
a CEGAR loop.

II. BOOLEAN PROGRAMS

A. Syntax

The syntax of the control flow statements is derived from C,
and can be found in [10]. The syntax for expressions permits
the usual Boolean operators, and the following two extensions:
1) non-deterministic choice, and 2) next-state variables.

expression : expression ’ ∨ ’ expression
| expression ’ ∧ ’ expression
| ’¬’expression
| atom

atom : Identifier | Identifier ’′’ | ’ ?j ’

The stars denote non-deterministic choice symbols. If multi-
ple non-deterministic choices are to be used in one expression,
we number them ?1, ?2, . . .

1. If an identifier is followed by a
prime, the identifier is to be evaluated in the next state.2

B. Formal Semantics

We extend the semantics of Boolean Programs [10] to
permit unbounded thread creation. Let Vg denote the set of
global variables. For the sake of simplicity, we assume that
all threads have the same set of local variables Vl and the
same program code, i.e., there is only one set of program
locations L. We denote the program by P . A program with
threads that have different code can easily be transformed
into a program with identical threads. We denote the set of
variables by V = Vg

.
∪ Vl. We assume that a subset L ⊆ Vl

of the local variables is used for locking exclusively.3

Definition 1 (Explicit State): An explicit state η of a
Boolean program is a triple (n, pc,Ω), where n ∈ N is the
number of threads, pc : {1, . . . , n} 7→ L is the vector of
program locations, Ω : ({1, . . . , n} × Vl) ∪ Vg 7→ B is the
valuation of the program variables. We denote the set of
explicit states by S.

We denote the projection of a state η to the number of
running threads in that state by η.n, the projection from a
state to the values of the program counters by η.pc, and so
on. The value of the program counter of thread t ∈ {1, . . . , n}
is denoted by η.pc(t), the value of the local variable v ∈ Vl

of thread t is denoted by η.Ω(t, v).
Definition 2 (Thread State): The tuple (PC ,Ω) with PC ∈

L and Ω : V −→ B is called a thread state. It is a valuation of
the program counter, the local variables of a particular thread,
and the global shared variables. We use S̃ to denote the set of
thread states.

Thus, the thread state is the set of values that is visible to
a thread.

Definition 3 (µt): The thread state projection function µt :
S −→ S̃ takes a state η of the full state space and maps it to
the state visible to thread t ∈ {1, . . . , η.n}.

µt(η).PC := η.pc(t)

µt(η).Ω(v) :=
{
η.Ω(v) : v ∈ Vg

η.Ω(t, v) : v ∈ Vl

Given a thread state η̃ ∈ S̃ and an expression e over the
variables V , we use Je , η̃K to denote the evaluation of e by
a thread in state η̃. Let e, e1, and e2 denote expressions, and
v ∈ V be a variable. Formally, Je , η̃K is defined recursively
as follows:

Je1 ∨ e2 , η̃K := Je1 , η̃K ∨ Je2 , η̃K
J¬e , η̃K := ¬Je , η̃K
Jv , η̃K := η̃.Ω(v)

1The schoose non-deterministic choice operator implemented by BEBOP
can be transformed into an expression that uses ?.

2Tools such as BEBOP expect the prime before the identifier.
3We use local variables instead of global variables for locking in order to

be able to identify the individual thread that holds a lock.
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The next-state identifiers (primed identifiers) refer to the
next thread state ζ̃ ∈ S̃. The semantics of expressions con-
taining such primed identifiers is defined using the evaluation
function Je , η̃ , ζ̃K. The definition of Je , η̃ , ζ̃K is identical to
the definition of Je , η̃K above, unless e is a primed identifier:

Jv′ , η̃ , ζ̃K := ζ̃.Ω(v)

The semantics of expressions containing non-deterministic
choice symbols is given by Je , η̃ , ζ̃ , ιK, where ι denotes the
valuation of the ? symbols. The definition is identical to the
definition above, unless e is ?j for some j:

J?j , η̃ , ζ̃ , ιK := ιj

For any function f : D → R and any d ∈ D, r ∈ R, we
define f [d/r] : D → R as follows:

f [d/r](x) =
{
r : d = x
f(x) : otherwise

As a shorthand, we write η̃
G= ζ̃ iff the values of the

global, i.e., shared variables in η̃ and ζ̃ are equal, i.e., ∀g ∈
Vg.Jg , η̃K = Jg , ζ̃K. Similarly, we write η̃ L= ζ̃ iff the values
of the local variables in η̃ and ζ̃ are equal.

Execution Semantics: We use η̃ −→ ζ̃ to denote the fact
that a transition from state η̃ is made to ζ̃ by executing the
statement η̃.PC . The relation η̃ −→ ζ̃ is defined by a case-split
on this instruction. The conditions for each case are shown in
Table I. The description of the semantics of the skip, goto,
assume, and constrained assignment statements are identical
to the description found in [24]. The definitions of lock and
unlock are straight-forward. Note that lock and unlock
are special cases of a constrained assignment.

We write l(η̃) ⊆ L := {l ∈ L | η̃.Ω(l)} for the set of locks
that are held in state η̃.

The semantics of the concurrent program is defined as
follows: Assume the scheduler picks a thread t ∈ {1, . . . , η.n}
to execute in state η. We use η −→t ζ to denote the fact that a
transition from state η is made to ζ by executing one statement
of thread t. The statement that is executed is P (η.pc(t)). The
relation η −→t ζ is defined by a case-split on this instruction.
For all instructions but start thread, we require that

• the number of threads does not change, i.e., ζ.n = η.n,
• thread t makes a transition, i.e., µt(η) −→ µt(ζ),
• and the values of local variables and the program counters

of the other threads j 6= t remain unchanged, i.e.,
µj(η)

L= µj(ζ) and ζ.pc(j) = η.pc(j),
• locks are held exclusively, i.e., l(µu(ζ)) ∩ l(µv(ζ)) = ∅

for all u 6= v.
If P (η.pc(t)) is start thread θ, we require that

• the number of threads increases by one, i.e., ζ.n = η.n+
1,

• the program counter of the new thread is θ, and the pro-
gram counter of thread t is η.pc(t)+1, i.e., ζ.pc(ζ.n) = θ
and ζ.pc(t) = η.pc(t) + 1,

• thread t makes a transition into both changed states, i.e.,
µt(η) −→ µt(ζ) and µt(η) −→ µζ.n(ζ), and

• the values of the local variables of the other threads j 6= t

and j 6= ζ.n remain unchanged, i.e., µj(η)
L= µj(ζ) and

ζ.pc(j) = η.pc(j).
Syntactic sugar such as if or while can be easily trans-

formed using goto and assume, as described in [24]. For
now, we assume that function calls can be inlined. We extend
our algorithm to support unbounded recursion in Section IV-B.

Finally, we write η −→ ζ if there exists a thread t ∈
{1, . . . , η.n} such that η −→t ζ. In this case, we say that
there is a transition from η to ζ, or that ζ is reachable from η
with one transition. Let S0 ⊆ S denote the set of initial states,
and let Si ⊆ S with i ∈ N denote the set of states reachable
in i or less transitions. The set of all reachable states is S∞.
The property we check is reachability of states with particular
program locations.

III. OVER-APPROXIMATION AND REFINEMENT

A. Over-approximating S∞

Finite-state model checking algorithms are based on fix-
point detection, that is, the model checker compares the new
set of states computed using the transition relation with the
states explored so far. The algorithm iterates until no new
states are discovered.

This basic idea can be applied to programs with unbounded
thread creation as well. For example, SPIN [25] permits
dynamic creation of new threads by means of Promela’s run
statement. However, SPIN assumes that the program only
creates a finite number of threads. If the thread creation is
not actually bounded, the state enumeration of SPIN never
terminates.

We propose an algorithm that does not restrict thread
creation to a finite number, i.e., we permit an infinite set S∞

while still guaranteeing termination. The classical fix-point
detection algorithm is not readily applicable for this case.

Definition 4 (µ∗): Let µ∗(η) denote the set of the thread
states µt(η) for any thread t. Let S′ ⊆ S be a set of states.
The thread-visible states are the states in S′ projected to the
thread states of all threads.

µ∗(η) :=
⋃

t∈{1,...,η.n}{µt(η)}
µ∗(S′) :=

⋃
η∈S′ µ∗(η)

The set of thread states reachable in i transitions is denoted
by S̃i := µ∗(Si) ⊆ S̃. We propose to compute an over-
approximation of S̃∞. This is sufficient to detect violations
of reachability properties that are expressed in terms of the
thread visible state4, e.g., assertions.

Definition 5 ( ): Let Ã ⊆ S̃ denote a set of thread states,
and ζ̃ ∈ S̃ denote a thread state. Let Ã  ζ̃ hold iff any of
the following two conditions holds:

1) there is η̃ ∈ Ã such that there is a transition from η̃ to
ζ̃, i.e., η̃ −→ ζ̃,

4Note that the property still may depend on the behavior of multiple threads,
due to the communication between the threads.
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P (η̃.PC ) PC Ω

skip PC ′ = PC + 1 Ω′ = Ω

goto θ1, . . . , θk
Wk

i=1 PC ′ = θi Ω′ = Ω
assume e PC ′ = PC + 1 Ω′ = Ω ∧ Je , η̃K = true

x1, . . . , xk := e1, . . . , ek

constrain e
PC ′ = PC + 1

∃ι. Ω′ = Ω [x1/Je1 , η̃ , ζ̃ , ιK]
. . . [xk/Jek , η̃ , ζ̃ , ιK] ∧ Je , η̃ , ζ̃ , ιK

start thread θ
PC ′ = PC + 1
∨PC ′ = θ

Ω′ = Ω

lock l PC ′ = PC + 1 Ω(l) = false ∧ Ω′ = Ω[l/true]
unlock l PC ′ = PC + 1 Ω(l) = true ∧ Ω′ = Ω[l/false]

TABLE I
CONDITIONS ON THE EXPLICIT THREAD STATE TRANSITION η̃ −→ ζ̃ WITH η̃ = (PC ,Ω) AND ζ̃ = (PC ′,Ω′), FOR VARIOUS STATEMENTS P (PC ),

WHERE θi ∈ L, e IS AN EXPRESSION AND l ∈ L.

2) or there exists η̃ ∈ Ã and another transition out of Ã
with a disjoint set of locks that changes the global state
of η̃ to that of ζ̃. Formally, we require ζ̃.PC = η̃.PC,
ζ̃

L= η̃ and there exist η̃′ ∈ Ã and ζ̃ ′ ∈ S̃ such that

a) η̃′ −→ ζ̃ ′ with η̃′
G

6= ζ̃ ′,
b) η̃′

G= η̃, and
c) ζ̃ ′

G= ζ̃,
d) l(η̃) ∩ l(η̃′) = ∅ and l(η̃) ∩ l(ζ̃ ′) = ∅.

This case captures the communication between two
threads.

We write η̃  ζ̃ instead of the more cumbersome {η̃} ζ̃.
Note that η̃  ζ̃ implies Ã ζ̃ for any Ã with η̃ ∈ Ã.

Let T̃ 0 := µ∗(S0) denote the set of initial thread states, and
T̃ i for i ∈ N be defined recursively as follows:

T̃ i := T̃ i−1 ∪ {ζ̃ | T̃ i−1  ζ̃}

The following claim holds by construction of  .
Theorem 1: For all i ∈ N0, the set T̃ i is an over-

approximation of the set of reachable thread states S̃i.
Proof: The claim is shown by induction on i. For i = 0,

the claim is trivial.
We show T̃ i ⊇ S̃i for the step from i − 1 to i as follows.

Let ζ̃ ∈ S̃i. By definition of S̃i, there is a full state ζ ∈ Si

and u ∈ {1, . . . , ζ.n} such that ζ̃ = µu(ζ). Furthermore, there
exists η ∈ Si−1 and t ∈ {1, . . . , η.n} such that η −→t ζ. Let η̃
be a shorthand for µu(η). Using the induction hypothesis, we
can conclude that µ∗(η) ⊆ T̃ i−1, and in particular, η̃ ∈ T̃ i−1.

If u = t, we have η̃ −→ ζ̃, which implies η̃  ζ̃ (case 1 of
Def. 5), and thus ζ̃ ∈ T̃ i, which concludes the claim.

If u 6= t, we make a case-split on the instruction P (η.pc(t)),
which is executed in the transition from η to ζ (Table I):

• If P (η.pc(t)) is skip, goto, or assume, only the PC
of thread t changes, and thus, ζ̃ = η̃, which implies ζ̃ ∈
T̃ i−1, and thus, ζ̃ ∈ T̃ i.

• If P (η.pc(t)) is start thread and u 6= ζ.n (i.e., u is
not the newly created thread), we also have ζ̃ = η̃, which
concludes the claim. If u = ζ.n, we have µt(η) −→ ζ̃,
which concludes the claim.

• If P (η.pc(t)) is x1, . . . , xk :=
e1, . . . , ek constrain e, let k = 1 without loss

// Input: Boolean Program P with locations L,
// bad location b ∈ L
UNBOUNDEDTHREADAPPROXIMATION(P, b)

1 T̃ :=µ∗(S0); // Initial States
2 while (true)
3 if (∃η̃ ∈ T̃ .η̃.PC = b) return “Error state found”;
4 F̃ :={ζ̃ ∈ S̃ | T̃  ζ̃};
5 if (F̃ ⊆ T̃ ) return “Property holds”;
6 T̃ :=T̃ ∪ F̃ ;
7 end

Fig. 1. High level description of the approximation algorithm for reachability
in Boolean programs with unbounded threads

of generality. If x1 ∈ Vl, only data local to thread t is
modified, and the claim is shown as in case of skip.
If x1 ∈ Vg , let v := ζ̃.Ω[x1] denote the value that is
assigned to x1 by thread t. The new thread state ζ̃ is equal
to η̃ up to the assignment to x1, i.e., ζ̃.PC = η̃.PC and
ζ̃.Ω = η̃.Ω[x1/v]. Also, µt(η)

G= η̃, and threads t and u
hold a disjoint set of locks in state η. We therefore have
η̃  ζ̃ using case 2 of Def. 5.

• The statements lock and unlock are special cases of
constrained assignments.

As the sequence T̃ 0, T̃ 1, . . . is monotonic and taken from
a finite set, it has a fixed-point, and thus, T̃∞ is easily com-
putable. The theorem above therefore gives rise to an algorithm
(Fig. 1). If the algorithm terminates with “Property holds”,
the property is guaranteed to hold on the Boolean program.
However, if an error state is found, there is no guarantee that
the state is actually reachable. A counterexample trace can be
computed by recording the one or two states that are used to
compute a new thread state.

To illustrate the benefit of condition 2d) in Def. 5, consider
the Boolean program in Fig. 2a, and assume a definition of 
without condition 2d). Suppose we start an unbounded number
of threads that execute f(). The set of reachable thread states
is shown in Fig. 2b. The lock protects the global variable, and
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decl g, l;

void f() begin
L1: lock l;
L2: assert(!g);
L3: g:=1;
L4: g:=0;
L5: unlock l;
L6: skip;

end

PC Ω(g) Ω(l)
L1 0 0
L2 0 1
L3 0 1
L4 1 1
L5 0 1

(a) (b)

Fig. 2. Boolean Program with critical section

thus, the assertion in L2 holds.
We denote a state by (PC, g, l). However, because

of {(L5,0,1),(L2,0,1)}  (L2,0,0) −→ (L3,0,0) and
{(L3,0,0),(L2,0,0)}  (L2,1,0), T̃∞ contains a state that
violates the assertion, and we obtain a spurious error trace.

Remark 1: As an additional optimization, we keep track
of whether a thread state was generated before or after a
start thread command. Thread states that are generated
before the execution of any start thread command need
not participate in case 2 of definition 5. This optimization
results in fewer spurious error traces, as the set of states of
the program reachable up to the first start tread command
is no longer over-approximated. This case is omitted from the
proof.

B. Refinement

The drawback of the over-approximation is that it may
produce additional spurious counterexamples. Thus, for reach-
ability properties ϕ, we may obtain M ′ 6|= ϕ even though
M |= ϕ holds. If the algorithm generates an error trace, the
error trace is simulated on the full model in order to rule out
spurious error traces due to the imprecision introduced by  .
Such a simulation corresponds to an incremental series of SAT
instances, and is commonly performed by program analysis
tools that implement abstraction refinement, e.g., SLAM and
BLAST.

If the error trace is spurious, the over-approximation is
refined. Note that we assume that this refinement is performed
outside of the model checker as part of an abstraction refine-
ment loop. Our algorithm may introduce spurious counterex-
amples due to the over-approximation caused by case 2 of
Def. 5. The refinement algorithms in the existing predicate
abstraction tools remove spurious traces by adding predicates
to the model. This refinement strategy is effective for the over-
approximation performed by our analysis algorithm, as the
additional variables split states into two or more states η̃, ζ̃

such that η̃
G

6= ζ̃, which violates condition 2 of Def. 5.

IV. SYMBOLIC SIMULATION

A. Symbolic State Representation

This section presents how thread states are represented
symbolically. It extends the algorithm described in [24] to

support an unbounded number of threads.
Definition 6: A symbolic formula is defined using the fol-

lowing syntax rules:

1) The Boolean constants true and false are formulae.
2) The non-deterministic choice identifiers ?1, ?2, . . . are

formulae.
3) If f1 and f2 are formulae, then f1∧f2, f1∨f2, and ¬f1

are formulae.

The set of such formulae is denoted by F .
A symbolic formula may evaluate to multiple values due

to the choice identifiers. As an example, the pair of formulae
〈?1, ?2 ∧¬?1〉 may evaluate to 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, but not to
〈1, 1〉. Given a particular valuation ι for the non-deterministic
choices ?i, we denote the value of a symbolic formula f as
JfKι, i.e., ι |= f ⇐⇒ JfKι = true.

We use these symbolic formulae in order to represent sets
of explicit thread states:

Definition 7: A symbolic thread state σ̃ is a triple
〈PC , ω, γ〉, with PC ∈ L, ω : V 7→ F , and γ ∈ F .

The first component of a symbolic thread state σ̃, namely
PC , is identical to the first component of an explicit thread
state (definition 2). The second component, called ω, is a
mapping from the set of variables into the set of formulae.
It denotes the symbolic valuation of the state variables. The
last component, called γ, is a formula that represents the guard
of the state symbolically, i.e., a constraint over the variables.
Note that the program counter is represented explicitly, while
the program variables are represented symbolically.

We can define the symbolic evaluation Je , σ̃ , τ̃K of an
expression e in the symbolic thread state σ̃ and a next state
τ̃ in analogy to the definition for explicit states. The set of
explicit thread states represented by a symbolic thread state σ̃
are those states η̃ ∈ S̃ that satisfy the following conditions:

• They have the same PC: η̃.n = σ̃.n ∧ η̃.PC = σ̃.PC
• There exists a valuation ι that satisfies the guard γ and

assigns values to the variables that match the values given
by η̃.Ω.

∃ι.ι |= γ ∧ ∀v ∈ V. Jv , η̃K = Jv , σ̃Kι (1)

Note that the set of explicit states corresponding to a
symbolic state is defined using a predicate in the parameter ι.
Therefore, we have a parametric representation of the state-
space. Parametric representations of sets of states have been
used in formal verification before, e.g., in [26], [27], [28], but
mostly in the context of hardware verification.

The construction of the symbolic thread states and the fixed-
point loop with fixed-point detection using QBF follows the
principle described in [24].

We also implement partial order reduction. In the context
of algorithm 1, this corresponds to strengthening  such that
transitions are only propagated to thread states ζ̃ that have a
program counter ζ̃.PC that points to an instruction that either
1) reads one of the global variables begin modified or 2) writes
a global variable.
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void f() begin

. . .

p1,p2:=e1,e2;

ψ:=0;

start thread ϕ

ψ:=0 constrain ψ;

. . .

end

ϕ: f();
ψ:=1;
end thread

Fig. 3. Over-approximating a recursive call f(e1, e2) with thread creation

B. Recursive Functions

Reachability for programs with recursion and concurrency
(even with only two threads) is undecidable [7]. In order
to model recursive programs we further extend the idea of
conservative over-approximation.

Let f denote the function that is called, and let p1, . . . , pk ∈
Vl denote the parameters of the function. The expression ei is
passed as argument of the call for pi.

• As first step, an assignment p1, . . . , pk := e1, . . . , ek is
performed.

• For synchronization upon return of the function, we intro-
duce a new global variable ψ. An assignment statement
is inserted before the function call that sets ψ to zero.

• The function call is replaced by a start thread θ
command, where θ denotes the first program location of
f .

• After the function call, the statement ψ :=
0constrainψ is inserted. It sets ψ to false, but
waits for ψ to become true before doing so.

• When f returns (using return), it sets ψ to true. The
return values are passed by means of global variables.

The approximation of a recursive call f(e1, e2) using thread
creation is illustrated in Fig. 3.

This reduction is similar to an encoding of recursion com-
monly done in SPIN that uses a new channel for synchro-
nization. In contrast to this reduction used for SPIN, we use
a finite set of global variables for synchronization (one per
call site), and therefore loose precision. The termination of
the second recursion may synchronize with the call site of the
first recursion and so on.

V. EXPERIMENTAL RESULTS

We have implemented the technique described in this paper
in a tool called BOPPO. To the best of our knowledge, there is
no other model checker available for either Boolean programs
with unbounded thread creation or concurrent Boolean pro-
grams with recursion. An implementation based on symbolic
simulation has been compared to MOPED, SPIN, BEBOP,
and ZING in [24]. However, none of these model checkers
supports the class of programs the algorithm described in this
paper aims at, which prevents experimental comparison. We
make our implementation available to other researchers for
experimentation5.

5http://www.verify.ethz.ch/boppo/

The BOPPO is integrated as model checker for abstract
models into SATABS, which is an implementation of SAT-
based predicate abstraction [4], [29]. In this configuration, SA-
TABS can verify safety properties of programs with (possibly
unbounded) while loops that contain thread creating state-
ments, e.g., the pthread create() command. SATABS is
also available for download6.

The experiments have been performed on an Intel Xeon
Processor with 2.8 GHz running Linux. The results are sum-
marized in Table II. We use MiniSAT as our SAT-solver, and
Quantor as QBF solver for the fixed-point detection. The run-
time results are reported for our tool with symbolic partial
order reduction and without symbolic partial order reduction.
We also report the number of symbolic thread states that are
explored, i.e., |T̃ |. Note that one symbolic thread state typically
corresponds to many explicit thread states, in particular if non-
determinism is used heavily. On all experiments with non-
trivial run-time, the run-time is dominated by the QBF solver.

We focus on the evaluation of the scalability of the im-
plementation. We have two classes of benchmarks: artificial
ones to measure scalability (ART series), and benchmarks
extracted from the Apache httpd web-server package (AP
series). The ART-PC-n series benchmarks are scaled in the
number of program locations. Each benchmark generates
an unbounded number of threads (using an infinite loop
containing start thread). Each thread then executes n
non-deterministic assignments to global variables. The QBF
instances generated for the fixed-point detection contain a
number of quantified variables that is linear in n. The ART-
V-n series benchmarks are parameterized in the number of
variables, where n denotes the number of global (and thus,
also thread-visible) variables. The number of variables in the
QBF instances grows quadratically in n.

The APn series of benchmarks are extracted from an
ANSI-C program using SATABS. While the original pro-
gram generates a finite number of threads using the POSIX
pthread create command, the abstraction of the program
generates an unbounded number of threads. The POSIX
pthread mutex lock and unlock functions are mapped
to lock and unlock in the Boolean programs. The various
benchmarks correspond to different properties of the same
program.

Apache (like most other programs) does not use locking dur-
ing initialization, i.e., before it starts the worker threads. The
algorithm as described above results in states with inconsistent
global predicates, which produces a large number of spurious
counterexamples. For this benchmark, we therefore extend the
algorithm to distinguish two different types of thread states
using a flag as suggested in remark 1 above. The flag is
false in the initial state, and is set to true upon execution
of start thread. Case 2 of Def. 5 is changed such that
global data is only passed between thread states that have the
same value of the flag. After the initialization phase, most
writes to global data are protected by means of locks, which

6http://www.verify.ethz.ch/satabs/
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Without PO With PO
Benchmark Time #σ̃ Time #σ̃
ART-PC-10 6.0s 893 <0.1s 21
ART-PC-20 21.0s 2723 <0.1s 31
ART-PC-100 ? 0.2s 111

ART-PC-1000 ? 8.3s 1011
ART-V-10 17.2s 801 0.1s 29
ART-V-20 111.7s 2571 0.3s 49
ART-V-100 ? 5.3s 209

ART-V-1000 ? 3508.1s 2009
AP1 ? 242.7s 8009
AP2 ? 269.5s 10766
AP3 ? 288.9s 11422
AP4 ? 155.1s 5453
AP5 ? 1130.9s 43812

TABLE II
SUMMARY OF RESULTS: A STAR DENOTES THAT THE TWO HOUR TIMEOUT

WAS EXCEEDED. THE COLUMNS UNDER #σ̃ CONTAIN THE NUMBER OF

SYMBOLIC THREAD STATES.

prevents spurious error traces.
On the artificial examples, the regular refinement with WPs

works fine to eliminate the spurious CEs, as it adds more
Boolean variables, which make the states different (and only
states with equal values of the global variables participate in
case 2 of Def. 5).

VI. CONCLUSION

CEGAR-based symbolic model checkers have proven them-
selves tremendously useful for sequential programs. For
shared-memory concurrent software they have been effectively
useless. This is due to fact that the underlying tool that checks
the abstractions must always return an answer—something
that no tool has been able to guaranteed when applied to
abstractions that can support arbitrary thread creation. This
paper introduces a new symbolic model checker for software
abstractions (Boolean programs) that supports arbitrary thread
creation while guaranteeing termination. This checker can
potentially return spurious counterexamples, but it is always
able to produce one.
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