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Abstract
We describe a new algorithm for proving temporal properties ex-
pressed in LTL of infinite-state programs. Our approach takes ad-
vantage of the fact that LTL properties can often be proved more
efficiently using techniques usually associated with the branching-
time logic CTL than they can with native LTL algorithms. The
caveat is that, in certain instances, nondeterminism in the sys-
tem’s transition relation can cause CTL methods to report coun-
terexamples that are spurious with respect to the original LTL
formula. To address this problem we describe an algorithm that,
as it attempts to apply CTL proof methods, finds and then re-
moves problematic nondeterminism via an analysis on the po-
tentially spurious counterexamples. Problematic nondeterminism
is characterized usingdecision predicates, and removed using a
partial, symbolic determinization procedure which introduces new
prophecy variables to predict the future outcome of these choices.
We demonstrate—using examples taken from the PostgreSQL
database server, Apache web server, and Windows OS kernel—
that our method can yield enormous performance improvements
in comparison to known tools, allowing us to automatically prove
properties of programs where we could not prove them before.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking; Correct-
ness proofs; Reliability; D.4.5 [Operating Systems]: Reliability—
Verification; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Verification, Theory, Reliability

Keywords Linear temporal logic, formal verification, termination,
program analysis, model checking

1. Introduction
The common wisdom amongst users and developers of tools that
prove temporal properties of systems is that the linear specifica-
tion logic LTL [33] is more intuitive than CTL [10], but that prop-
erties expressed in the universal fragment of CTL (∀CTL) with-
out fairness constraints are often easier to prove than their LTL
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cousins [3, 32, 44]1. Properties expressed in CTL without fair-
ness can be proved in a purely syntax-directed manner using state-
based reasoning techniques, whereas LTL requires deeper reason-
ing about whole sets of traces and the subtle relationships between
families of them.

In this paper we aim to make an LTL prover for infinite-state
programs with performance closer to what one would expect from
a CTL prover. We use the observation that∀CTL without fairness
can be a useful abstraction of LTL. The problem with this strategy
is that the pieces don’t always fit together: there are cases when,
due to some instances of nondeterminism in the transition system,
∀CTL alone is not powerful enough to prove an LTL property.

In these cases our LTL prover works around the problem using
something we calldecision predicates, which are used to character-
ize and treat such instances of nondeterminism. A decision predi-
cate is represented as a pair of first-order logic formulae(a, b),
where the formulaa defines the decision predicate’s presupposi-
tion (i.e. whenthe decision is made), andb characterizes the binary
choice made when this presupposition holds. Any transition from
states to states′ in the system that meets the constrainta(s)∧b(s′)
is distinguished by the decision predicate(a, b) froma(s)∧¬b(s′).

We use decision predicates as the basis of a partial symbolic
determinization procedure: for each predicate we introduce a new
prophecy variable [3] to predict the future outcome of the decision.
After partially determinizing with respect to these prophecy vari-
ables, we find that CTL proof methods succeed, thus allowing us
to prove LTL properties with CTL proof techniques in cases where
this strategy would have previously failed. To synthesize the deci-
sion predicates we employ a form of symbolic execution on spuri-
ous∀CTL counterexamples together with an application of Farkas’
lemma [23].

With our new approach we can automatically prove properties
of infinite-state programs in minutes or seconds which were in-
tractable using existing tools. Examples include code fragments
drawn from the PostgreSQL database server, the Apache web
server, and the Windows OS kernel.

Limitations. In practice, the applicability and performance of our
technique is dependent on the heuristic used to choose new decision
predicates when given an abstract representation of a specific point
in a spurious counterexample. The predicate synthesis mechanism
implemented in our tool is applicable primarily to infinite-state pro-
grams over arithmetic variables with commands that only contain
linear arithmetic. However, no matter which predicate selection
mechanism is used, our predicate-based determinization strategy is
sound. Thus, unsound approximations to predicate synthesis could
potentially be used in instances where the systems considered do
not meet the constraints given above. Our technique is also based

1 Abadi and Lamport [3] make this point using the terminology of “refine-
ment mappings” and “trace equivalence” instead of phrasing itin the con-
text of temporal logics.



on an∀CTL prover for infinite-state systems, which itself cannot
be complete.

A further limitation is that our procedure is not well suited
for finite-state model checking. The problem is that introducing
prophecy variables greatly increases the number of state-holding
elements required in usual finite-state encodings: Each prophecy
variable must be capable of counting up to a number larger than the
system’s diameter [12]. The problem is further exacerbated when
we introduce multiple prophecy variables, as thenth prophecy vari-
able must range over values as large as the diameter of the system
which has been augmented with the firstn−1 prophecy variables. In
contrast, when using proof tools for infinite-state systems the per-
formance cost for adding additional infinite-state variables is usu-
ally low.

Finally, our procedure critically depends on the full structure
of counterexamples to∀CTL properties, which are in the form of
trees. Unfortunately, with only a few exceptions [13, 17] tools do
not return whole tree counterexamples.

Related work. Our method complements more classical automata-
theoretic approaches [34, 45] in which fairness constraints are
used to encode linear-temporal conditions and then language
emptiness—a.k.a.fair termination—is proved of the resulting sys-
tem. The difficulty with language emptiness for infinite state sys-
tems (e.g.as implemented in previous work [15]) is that the mech-
anisms that allow us to ignore infinite executions not accepted by
the fairness constraints are effectively the same as the expensive
techniques used for proving termination. Thus, in practice, our pre-
vious tool [15] relies too heavily on termination proving machinery.
In contrast, our new approach uses syntax-directed techniques for
∀CTL that depend much less on the performance of the underlying
termination proving infrastructure. However, our strategy does rely
on the assumption that, on average, the subtle correlations that are
tracked only on-demand in our approach do not occur frequently.
In cases where this assumption is not true, the cost of on-demand
inference of decision predicates may be higher than simply us-
ing traditional techniques. We will see an example of this later in
Section 6.

It is well known that determinization addresses the subtle se-
mantic distinctions between linear-time and branching-time log-
ics [39]. However, for infinite-state systems, open questions still re-
main if we hope to develop a practical determinization-based strat-
egy: a)what to determinize, since complete determinization does
not lead to a viable automatic tool for infinite-state systems, and
b) how to determinize in a way that facilitates the application of
current formal verification tools. We address these two questions in
this paper.

Others have considered this trade-off between linear-time spec-
ifications and efficient branching-time verification procedures. For
example, Cadence SMV [1] reduces LTL to CTL using additional
fairness constraints [9, 14]. This technique still relies heavily on
reasoning about fairness. This is a sensible engineering choice for
finite-state systems for the reasons discussed above, but not for
infinite-state systems. Schneider describes a method of translating
an LTL formula into a semantically equivalent CTL formula [41].
However, this leads to an exponential blowup in the size of the
CTL formula, and requires a modification to the model checking
algorithm. Maidl identifies the subset of∀CTL (called∀CTLdet)
which is expressible in LTL. Consequentially, for such formu-
lae, an∀CTL prover can be used [31]. By contrast, our decision
predicate-based technique allows one to verify any LTL formula
using branching-time proof techniques in such a way that perfor-
mance is affected only in cases where tracking subtle correlations
between traces is actually required.

Previous work has also examined different methods of repre-
senting systems [4, 6, 43] in order to facilitate proving linear-time

PROVE (M,ϕL) :
Ω := ∅
let ϕC = APPROXIMATE(ϕL) in
while true do

let MΩ = DETERMINIZE(M,Ω) in

match PROVE∀CTL(MΩ, ϕC) with
∣ Succeed -> return Succeed
∣ Fail(χ) ->

let Ω′ = REFINE(χ) in
if(Ω′ = ∅)
let π ∈ χ in return Fail(π)

else
Ω := Ω ∪Ω′

done

Figure 1: Algorithm based on predicate determinization which im-
plements LTL model checking (i.e. M ⊧L ϕL). The procedures
APPROXIMATE, DETERMINIZE, REFINE and PROVE∀CTL are de-
fined in later sections.

temporal properties or proving linear-time properties of abstrac-
tions (e.g.pushdown systems [21, 42]). When model-checking is
performed using explicit-state techniques [25, 28, 29] then the con-
verse of our assumption is true: linear-time traces are in fact more
naturally explored than branching-time executions in this context.

Our procedure uses several techniques found in the literature:
namely prophecy variables [3] and Farkas’ lemma [23]. We are of
course not the first to use these techniques in applications related
to the one addressed here. Prophecy variables have been used for
many years to resolve nondeterminism in proofs, including some
recent work [27, 38]. Our use of Farkas’ lemma is similar to its use
in rank function synthesis [35] and invariant generation [40].

2. Algorithm
Our LTL proof procedure, PROVELTL, is given in Figure 1. The
algorithm is designed to iteratively find a sufficient set of decision
predicatesΩ such that proof tools for CTL can be used to prove an
LTL propertyϕL of the systemM . The algorithm is based on four
procedures which are each defined in later sections of the paper:

• APPROXIMATE (Section 3) is a simple procedure which ap-
proximates an LTL formula with an analogous∀CTL formula
in which universal operators are added in (e.g.F becomesAF,
andG becomesAG). Without loss of generality we assume that
negations have been pushed to the atomic propositions of the
formula.

• DETERMINIZE (Section 4) takes a transition system and a set of
decision predicatesΩ and returns a new partially determinized
system in which newly introduced prophecy variables are used
to make predictions about the valuations of the decision predi-
cates inΩ.

• REFINE (Section 5) takes an∀CTL counterexampleχ and, in
the case thatχ represents multiple distinct paths through the
system, returns decision predicates which characterize the non-
determinism that distinguishes between the different paths. In
the case thatχ represents only a single path through the system
then REFINE returns∅,

• PROVE∀CTL(Section 6) is an∀CTL-prover.

WhenΩ = ∅, DETERMINIZE(M,Ω) = M . Thus, on the first
iteration of the loop our procedure is attempting to proveϕL via
a simple approximationϕC together with the original systemM .
When given a non-empty set of decision predicates, DETERMINIZE



buildsMΩ by conjoining the original transition relation ofM with
a relation that specifies the behavior of a prophecy variable for
each decision predicate. For any set of decision predicatesΩ, if
ϕC holds, thenϕL also holds. Thus, whenever we find a sufficient
set of predicates to proveϕC, we have provedϕL.

REFINE is used to determine if an∀CTL-counterexample
found by PROVE∀CTL represents a real LTL-counterexample or
something spurious. At first glance there is a formidable se-
mantic gap between the two types of counterexamples:∀CTL-
counterexamples are trees, whereas LTL-counterexamples are
traces. However, if all of the paths through the counterexampleχ
represent the same path or its prefixes, then any one of these paths
is a legitimate counterexample toϕL. In this case REFINE returns
∅. Otherwise, ifχ represents more than one path in the program,
REFINE returns a non-empty set of new decision predicates.

Example. Consider the LTL propertyFG(x = 1), which infor-
mally can be read“for every trace of the system,x = 1 will even-
tually become true and stay true.”The meaning of the analogous
∀CTL propertyAFAG(x = 1) is slightly more operational:“On all
paths emanating from an initial state, the system eventually reaches
a state such that along all paths starting from this state,x = 1 will
be true and stay true.”For every transition system, ifAFAG(x = 1)
holds, thenFG(x = 1) holds. Furthermore, our experience leads us
to believe that provingAFAG(x = 1) is often an efficient method
of provingFG(x = 1).

However, consider the following program, where* represents
nondeterministic choice:

1 x := 1;
2 while (*) {
3 skip;
4 }
5 x := 0;
6 x := 1;
7 while (true) {
8 skip;
9 }

In this caseFG(x = 1) is valid, but unfortunatelyAFAG(x = 1)
is not.FG(x = 1) is valid because,for every individual program
trace, it is valid. For example, if a trace never leaves the loop at
line 2, then the property is valid becausex = 1 before entering the
loop. For the traces that do leave the loop,x = 1 will become true at
the command on line 6 and then remain true. The∀CTL property is
valid only if we can find a set of states that are eventually reached
from the program’s initial states such thatAG(x = 1) holds. In this
caseno such set of states exists, and tools for∀CTL verification
will return counterexamples toAFAG(x = 1) that seemingly have
no relation to to the original propertyFG(x = 1).

The heart of the problem is the nondeterministic choice between
the transition from line 2 to 3, and the transition from line 2 to
5: when we are in the loop at line 2 we cannot know if we will
eventually leave the loop or not. We struggle when trying to decide
if a state at location 2 is the point at whichx = 1 will be global true,
as it is onlyafter considering a full program trace that we would
know (i.e. in this case we need to be looking at sets of traces, not
sets of states).

We now illustrate the procedure in Figure 1 on this example.
Let ϕL = FG(x = 1) andM be the example program from above.
Our procedure approximatesϕL with APPROXIMATE(ϕL) = ϕC =
AFAG(x = 1). As we described above, the programM does not
respect the propertyϕC. The counterexampleχ to ϕC in M is an
infinite tree which can be represented as a finite graph of transitions
between program locations:

pc = 1 pc = 2

pc = 3

x := 1
x :=

 0
pc = 5

skip

n0 n1

n3

n2

In this graphpc = 5 indicates that the execution is at a state in
which the program counter is at line 5. Our procedure uses REFINE
to simultaneously symbolically simulate all possible paths through
this graph and try to unify them into a single path throughM .
In this case it would begin its execution by visiting firstpc = 1
and thenpc = 2, after which it would discover that, for all paths
of the graph to represent the same path, it must unifypc = 5
andpc = 3, which cannot be done. Thus, in this case, the∀CTL
counterexampleχ will be deemed spurious to the LTL property
and the decision predicate(pc = 2,pc = 5) will be included
in the Ω′ refinement2. This decision predicate(pc = 2,pc = 5)
characterizes the choice: “whenpc = 2, will pc′ = 5 or not?” Notice
also that, in this particular case, the predicates selected are over
program locations, but this is not true in general (see Example 10
in Section 5).

The procedure then uses DETERMINIZE to generateMΩ, which
is effectively the cross product ofM and a new transition relation
which updates a new prophecy variableρ based on the valuations
of the decision predicate(pc = 2,pc = 5):

⋀
⎧⎪⎪⎨⎪⎪⎩
s(pc) = 2 ∧ s′(pc) ≠ 5 ⇒ s(ρ) ≠ 0 ∧ s′(ρ) = s(ρ) − 1

s(pc) = 2 ∧ s′(pc) = 5 ⇒ s(ρ) = 0 ∧ s′(ρ) ∈ Z

s(pc) ≠ 2 ⇒ s′(ρ) = s(ρ)
⎫⎪⎪⎬⎪⎪⎭

We might try to expressMΩ in textual program code form as

ρ := *;

x := 1;
while (*) {

assume(ρ ≠ 0);
ρ := ρ - 1;

skip;
}
assume(ρ = 0);
ρ := *;

x := 0;
x := 1;
while (true) {

skip;
}

This new prophecy variableρ predicts the outcomes of the decision
predicate(pc = 2,pc = 5). We initializeρ to be an integer. For
every given trace of the system, the concrete number chosen at
the command “ρ := *” predicts the number of instances of the
transitions(pc) = 2∧s′(pc) ≠ 5 before we see a transitions(pc) =
2∧s′(pc) = 5. The choice of a negative number (e.g.−1) represents
the case where the execution will never see as(pc) = 2∧s′(pc) = 5

transition (i.e. non-termination)3. Whenever the program makes a
transitions(pc) = 2 ∧ s′(pc) ≠ 5 it knows thatρ ≠ 0, because
the prophecy made previously does not allow it. The program also
decrementsρ whenever we see as(pc) = 2∧ s′(pc) ≠ 5 transition,
for we know that (if we are going to see it at all) we are one
step closer to seeings(pc) = 2 ∧ s′(pc) = 5. If and when a

2 An additional decision predicate will also be returned by our procedure,
but it is not important for this example.
3 In later sections we use a special element� instead of negative numbers to
represent non-termination, but for the purpose of this illustration negative
numbers are easier.



s(pc) = 2 ∧ s′(pc) = 5 transition finally occurs, we know that
ρ = 0. The program then predicts how manys(pc) = 2∧s′(pc) ≠ 5
transitions will be visited the next time around until seeing another
s(pc) = 2 ∧ s′(pc) = 5 transition (which will never occur in this
example). Because the old prediction is not needed again, we can
re-use the same variableρ for the new prophecy.

With the prophecy variableρ in place, there is now a set of states
whereAG(x = 1) holds:

{s ∣ (s(ρ) < 0 ∧ s(pc) = 2) ∨ s(pc) = 6}
Furthermore we can prove that this set of states is eventually
reached. So we can now use∀CTL where it previously failed.
On the second iteration of the procedure from Figure 1, no∀CTL-
counterexample will be found inMΩ and thus the LTL property
ϕL has been proved ofM .

Note that if we remove the secondx := 1 command from the
example, then the propertyϕL is false. In this case the variable
ρ will uniquely determine the number of iterations through the
first loop, and the counterexample returned will instead involve the
second loop. From this∀CTL counterexample, we can construct a
valid LTL counterexample.

Preliminaries

In the later sections of this paper we define each of the sub-
procedures used in Figure 1 (i.e. APPROXIMATE in Section 3,
DETERMINIZE in Section 4, etc). However, before moving to these
more detailed descriptions we must develop some terminology and
definitions that will be shared later. More details on any of our
formalities, including a Coq proof script, can be found in our com-
panion technical report [16].

States, sets, relations.We assume a domainD of states and, in
the context of programs, will often treat it as a mapping from
variablesV to values. We will lets and t range over states, and
S represent a set of states. We assume that no two states are
indistinguishable.R will often be used to represent relations. When
R is represented symbolically (i.e. expressed as a formula) it will
be over the unprimed variablesV and primed variablesV ′. For a
state predicatep, the meaningJpKS, is defined as the set of concrete
states that respectp. The relational meaning of a formulap over
primed and unprimed variables,JpKR is defined in the usual way.
When it is clear from the context that we mean the real relation
as opposed to the symbolic formula representation, we will drop
the J KR brackets. The notationsΠ1 and Π2 mean the first and
second projection, respectively, of a relation. In cases where we
are representing programs with control-flow graphs we will assume
that states include a variablepc that represents the program counter
and whose value is taken from a finite domainL = {ℓ1, ..., ℓn}.
Transition systems. We define a machineM = (S,R, I) where
I ⊆ S is the set of initial states andR ⊆ S × S is the transition
relation. In this paper we will be constructing new systems by
adding variables and equating them to their original versions. Thus,
it is convenient to build in a notion of internal and external state
elements. We assume thatS = Sex × S in (i.e. states consist of an
external (visible) component and an internal component). We refer
to an individual state as⟨s, sin⟩ ∈ S and when a machine has no
internal components, we omit the⟨⟩ brackets.

Traces and paths. We define atraceto be a sequence of states

π = (⟨s0, sin
0 ⟩, ⟨s1, sin

1 ⟩, ...)
such that⟨s0, sin

0 ⟩ ∈ I ∧ ∀i ≥ 0.(⟨si, s
in
i ⟩, ⟨si+1, s

in
i+1⟩) ∈ R

We denotetraces(I,R) as the set of all such traces. For conve-
nience, we do not allow finite traces – the transition relation must
be such that every states has at least one successor state. This is

α(π0∣ext)
π ⊧L α

π ⊧L ϕL ∨ π ⊧L ψL

π ⊧L ϕL ∨ψL

π ⊧L ϕL π ⊧L ψL

π ⊧L ϕL ∧ψL

∀i ≥ 0.πi ⊧L ϕL

π ⊧L GϕL

∃i ≥ 0.πi ⊧L ϕL

π ⊧L FϕL

∀i ≥ 0.πi ⊧L ϕL ∨ ∃j ≥ 0.πj ⊧L ψL ∧ ∀i < j.π
i ⊧L ϕL

π ⊧L ϕLWψL

Figure 2: Semantics of LTL:⊧L

α(s∣ext)
s ⊧C α

s ⊧C ϕC s ⊧C ψC

s ⊧C ϕC ∧ψC

s ⊧C ϕC ∨ s ⊧C ψC

s ⊧C ϕC ∨ψC

∀(s0, s1, ...) ∈ traces(I,R).∃i ≥ 0. s0 = s⇒ si ⊧C ϕC

s ⊧C AFϕC

∀(s0, s1, ...) ∈ traces(I,R).∀i ≥ 0. s0 = s⇒ si ⊧C ϕC

s ⊧C AGϕC

∀(s0, s1, ...) ∈ traces(I,R).
∀i ≥ 0. si ⊧C ϕC ∨ ∃j ≥ 0. sj ⊧C ψC ∧ ∀0 ≤ i < j. si ⊧C ϕC

s ⊧C A[ϕCWψC]
Figure 3: Semantics of∀CTL: ⊧C

without a loss of generality, as final states can be encoded as states
that loop back to themselves in the transition relation. With coin-
ductive reasoning we can show that there exists an infinite trace
from every state.

We use the notationπ∣ext to denote the projection ofπ where
internal components are removed:

(⟨s0, sin
0 ⟩, ⟨s1, sin

1 ⟩, ...)∣ext △= (s0, s1, ...)
traces(I,R)∣ext is similarly defined. We say that two systems are
trace equivalent, notationally≅, if their sets of projected traces are
equivalent. We define anabstract traceto be a sequence of state
abstractions. Apath is a special case of an abstract trace in which
only the pc-valuations are given. A path or an abstract trace is
spuriousif there does not exist a concrete trace from which we
can construct the path via a projection.

Decision predicate vector. Formally we will treatΩ as a vector of
pairs. Each element in the decision predicate vectorΩ is a predicate
pair denoted(a, b). We will use the vector indexi to refer to a
particular pair withinΩ, andai, bi denote the components of the
ith pair. We use the notationai(s) to indicate thats is in the set of
states whereai holds (i.e.s ∈ JaiK) and similar forbi(s).
3. APPROXIMATE : Proving LTL with ∀CTL
In this section we describe APPROXIMATE, which defines a sound
over-approximation of LTL formulae with formulae in∀CTL.

3.1 Linear Temporal Logic (LTL)

We use the following LTL grammar:

ϕL ∶∶= α ∣ ϕL ∧ϕL ∣ ϕL ∨ϕL ∣ GϕL ∣ FϕL ∣ ϕLWϕL

We have not includedU, R,X or ¬. Without loss of generality
we assume that negations appear only in atomic propositions (i.e.
instances of¬ have been pushed to the leaves of the formula). In the
context of programsX is relatively useless and is easily subsumed



by F. U andR can be encoded as:ϕLUψL
△
= FψL ∧ (ϕLWψL) and

ϕLRψL
△
= ψLW(ϕL ∧ ψL). The LTL semantics, notationally⊧L,

are given in Figure 2. The notationπi indicates asuffixof a trace
starting at theith state in the sequence. We useπ0 to denote the
first element inπ. The superscript binds tighter than the subscript,
i.e.πi

0 = (πi)0.
An atomic propositionα is from some abstract domainD, and

we assume thattrue, false ∈D and thatD is closed under negation
(i.e.∀α ∈ D. ∃β ∈ D. JβKS = J¬αKS). The operatorGϕL specifies
thatϕL globally holds along all traces. The operatorFϕL specifies
that along every trace, eventually a suffix will be reached whereϕL

holds. Finally, theϕLWψL operator specifies thatϕL holds forever
orϕL holds untilψL holds.

The LTL entailment relation⊧L is defined on traces: the relation
π ⊧L ϕL indicates thatϕL holds for a given traceπ. We now lift⊧L

to machines.

Definition 3.1 (LTL Machine Entailment). Assume thatM =(S,R, I). We define LTL-entailment, notationallyM ⊧L ϕL, as

∀π ∈ traces(I,R) . π ⊧L ϕL

3.2 Computation Tree Logic (∀CTL)

We now review existential-free computation tree logic:

ϕC ∶∶= α ∣ ϕC ∧ϕC ∣ ϕC ∨ϕC ∣ AGϕC ∣ AFϕC ∣ A[ϕCWϕC]
The semantics of∀CTL ⊧C are given in Figure 3. Unlike the trace-
based LTL semantics,∀CTL’s semantics are state-based. By this
we mean that the temporal operators are state-based in structure—
the derivation of a given formula is per-state and depends on
the derivation of subformulae for subsequent states. The opera-
tor AGϕC specifies thatϕC globally holds in all reachable future
states. The operatorAFϕC specifies that across all computation
sequences from the current state, that there is a reachable state in
whichϕC holds. Finally, theA[ϕCWψC] operator specifies thatϕC

holds in every state whereψC does not hold yet.

Definition 3.2 (∀CTL Machine Entailment). As we did for⊧L,
we lift ⊧C to machines. AssumeM = (S,R, I). We define∀CTL-
entailment, notationallyM ⊧C ϕC, to be

∀s ∈ I . R,s ⊧L ϕL

3.3 Over-approximating LTL with ∀CTL

We describe a simple syntactic conversion from a formula in LTL
to its corresponding over-approximation in∀CTL.

Definition 3.3. (APPROXIMATE) For all ϕL,

APPROXIMATE(α) = α
APPROXIMATE(ϕL ∧ψL) = APPROXIMATE(ϕL)

∧ APPROXIMATE(ψL)
APPROXIMATE(ϕL ∨ψL) = APPROXIMATE(ϕL)

∨ APPROXIMATE(ψL)
APPROXIMATE(GϕL) = AG APPROXIMATE(ϕL)
APPROXIMATE(FϕL) = AF APPROXIMATE(ϕL)
APPROXIMATE(ϕLW ψL) = A[APPROXIMATE(ϕL)

W APPROXIMATE(ψL)]
Lemma 3.1. (∀CTL Approximation) For a machineM and LTL
propertyϕL,

M ⊧C APPROXIMATE(ϕL) ⇒ M ⊧L ϕL

Proof. By corresponding structural induction on the formulae
APPROXIMATE(ϕL) and ϕL. We first unlift ⊧C and ⊧L. Since
traces is defined overI, we are free to pick a states ∈ I such
that s ⊧C ϕC. We now pick a traceπ ∈ traces({s},R) and the
appropriate case from the CTL semantics. For example, in the

DETERMINIZE((S,R, I),Ω) = (SΩ,RΩ, IΩ) where

S
Ω = S ×

Ð→
N� denoted⟨s, ρ⟩

I
Ω = I ×

Ð→
N�

R
Ω = {(⟨s, ρ⟩, ⟨s′, ρ′⟩) ∣ (s, s′) ∈ R ∧ ∀(ai, bi) ∈ Ω.

[ai(s) ∧ ρi = � ⇒ bi(s′) ∧ ρ′i = �] (1)

∧[ai(s) ∧ ρi > 0 ⇒ bi(s′) ∧ ρ′i = ρi − 1] (2)

∧[ai(s) ∧ ρi = 0 ⇒ ¬bi(s′) ∧ ρ′i ∈ N�] (3)

∧[¬ai(s) ⇒ ρ
′
i = ρi]} (4)

andN�
△
= N ∪ {�}.

Figure 4: The DETERMINIZE procedure which, when given a
vector of predicate pairsΩ, constructs the corresponding predicate-
determinized machine.

s ⊧C AFϕC
′ case the universal quantification tells us that for

π = (s0, s1, ...) that ∃n.sn ⊧C ϕC
′. By the inductive hypothe-

sis for all π̃ ∈ traces({sn},R), we have that̃π ⊧L ϕL
′. and thus

we have established the criteria forπ ⊧L FϕL
′. For further details,

see our companion technical report [16].

4. DETERMINIZE : Decision Predicate
Determinization

In this section we describe the procedure DETERMINIZE, which
uses decision predicates as it performs a symbolic form of partial
determinization.

Partially determinized machines. Figure 4 contains the definition
for DETERMINIZE, which is designed to return a partially deter-
minized machine when given a vector of predicatesΩ and a ma-
chine:

M
Ω = DETERMINIZE(M,Ω)

The new machineMΩ includes additional prophecy variables de-
notedρi. These correspond to the predicate pairs(ai, bi) in the
vectorΩ. In accordance withIΩ these variables are free to be a
positive integer or zero or� in the initial state. We will see that the
choice of initial values (and the choice in Eqn. 3 from Figure 4) is
the driving force behind determinization. For simplicity we usedZ

instead ofN� in Section 2. We also now define the update relation
differently than we did in Section 2, in the sense that in Figure 4
the unprimed variables appear only to the left of⇒ and primed
variables appear only to the right. While the two formalizations
are equivalent, the encoding in Figure 4 is conceptually more op-
erational and easier to implement within a tools setting, where in
practice we are modifying the existing transition relation ofM .

Transitions inRΩ are made in accordance withR, but con-
strained by the values ofρ when states are reached that match a de-
cision predicate(ai, bi) in Ω. Specifically, when a state is reached
whereai holds and the prophecy variableρi = �, thenbi must hold
in the next state andρi is unchanged (Eqn. 1 of Figure 4). This rule
corresponds to behaviors where aai(s) state is visited infinitely
often. Alternatively, ifρi > 0 (Eqn. 2) thenbi must also hold in the
next state, except thatρi is decremented. Whenρi reaches zero,
then¬bi must hold in the next state andρi is free to take a new
value fromN�, starting the process all over (Eqn. 3). Finally, when
ai doesn’t hold of a particular state,ρi is unchanged (Eqn. 4).

The prophecy variables introduced here tradenondeterminism
in the transition relationR for a larger,nondeterministic state
space. The state space nondeterminism is either determined at ma-



chine initialization by the initial choice of values forρ given byIΩ,
or else later in a trace (Eqn. 3) by choosing new nondeterministic
values forρ. This lazy selection of nondeterministic values means
thatMΩ needn’t consist of infinitely many prophecy variables for
each predicate pair. This formulation restricts us to treat programs
with only countable nondeterminism. One could conceive of more
powerful forms of nondeterminism, but we intend to use this tech-
nique in the context of programs for which countable nondetermin-
ism is sufficient.

Theorem 4.1. For all Ω,MΩ ≅M .

Proof. The theorem holds if each of the conditionsP1, P2, P3 and
P4 andPB described below are met. These conditions are a varia-
tion of Proposition 5 from Abadi and Lamport [3]. ConditionsP1,
P2, P3andP4directly match Abadi and Lamport’s conditions. We
omit ConditionP5as it involves liveness restrictions on the behav-
ior of machines and we assume that our machines have no liveness
restrictions. We loosen the restriction of Abadi and Lamport’sP6
with PB (detailed below), as our prophecy variables do not respect
the condition of finite nondeterminism. The new conditionPB is
in fact a consequence ofP6: in the second part of the proof, Abadi
and Lamport show that all the behaviors ofM are contained within
MΩ (note that regardless of superscript,P =M becauseL = true).
Part 2.1 defines a directed graph, and then introduces Claim 2.1,
which is not true in our setting. However, Claim 2.1 is only used in
conjunction with Claim 2.2 and K̈onig’s Lemma in order to prove
Claim 2.3. In our setting we have simply included Claim 2.3 as
conditionPB. We now describe why each condition holds:

(P1) SΩ ⊆ S × SP for someSP .
√

(P2) IΩ = Π−1p (I) whereΠ−1p mapsS × SΩ ontoS.
√

(P3) If ((s, p), (s′, p′)) ∈ RΩ then(s, s′) ∈ R or s = s′. This holds
by construction ofRΩ fromR.

√
(P4) If (s, s′) ∈ R and(s′, p′) ∈ SΩ then there existsp ∈ SΩ such

that ((s, p), (s′, p′)) ∈ RΩ. Again, this holds by construction
of RΩ fromR, case splitting on the value ofp′ and quantifying
overi ∈ Ω.

√
(PB) For every(s0, s1, ...) ∈ traces(I,R) there exists(p0, p1, ...)

such that((s0, p0), (s1, p1), ...) ∈ traces(IΩ,RΩ).
Proof: Quantifying over eachi ≤ ∣Ω∣, consider all of the (pos-
sibly infinitely many) transitions(sj , sj+1) such thatai(sj)
holds. Now for each transitionbi(sj+1) may or may not hold.
This can be modeled by:

(∃m. bmi ¬bi)∞∣∗(b∞i )
i.e. a head(∃m ≥ 0. bmi ¬bi)∞∣∗ consisting of repeated in-
stances of finitely manybi-states and a single¬bi-state, and
a tail consisting of infinitely manybi-states. So we can choose
ρi accordingly, settingρi = m in each (potentially zero or in-
finitely many) instances of the head, and settingρi = � in the
tail.
√

Further details are available [16].

Example 5. (Nondeterministic Choice) Consider the following
machine:

S = [ N

N
] denoted [ x

y ]
I = [ 0

0
]

R = {([ 0
0
] , [ 1

0
]) , ([ 0

0
] , [ 0

1
]) , ([ 1

0
] , [ 1

0
]) , ([ 0

1
] , [ 0

1
])}

In this transition relation there is nondeterminism in the first transi-
tion. We can determinize this with the predicatesa = (x = 0∧y = 0)

andb = (x = 1). With these predicates we can construct the corre-
spondingMΩ.

S
Ω = [ N

N
] ×N� denoted ⟨[ x

y ] , ρ⟩
I
Ω = ⟨[ 0

0
] ,N�⟩

R
Ω = {(⟨[ 0

0
] ,1⟩ , ⟨[ 1

0
] ,0⟩) , (⟨[ 0

0
] ,0⟩ , ⟨[ 0

1
] ,N�⟩) ,

(⟨[ 1
0
] ,0⟩ , ⟨[ 1

0
] ,0⟩) , (⟨[ 0

1
] ,N�⟩ , ⟨[ 01 ] ,N�⟩)}

The first two transitions have now been determinized: from the
initial state, depending on the initial choice ofρ, either (x = 1)
or ¬(x = 1) will hold in the next state. In this example, since
the nondeterministic transition only happens once, the (external)
behaviors whenρ > 1 or ρ = � in the initial state are all equivalent
to ρ = 1 in the initial state so, for presentation purposes, we have
omitted them. The additional behaviors will be used in the next
example.

Example 6. (Termination) Consider the following infinite-state
system which we represent symbolically

S = N denoted x

I = N

R = J(x > 0 ∧ x
′ = x + 1) ∨ (x > 0 ∧ x

′ = 0) ∨ (x = 0 ∧ x
′ = 0)KR

In this transition relation, whenx > 0 initially, there is nondeter-
minism in how many times the first transition is chosen before the
second transition is chosen. We can determinize this with the pred-
icatesa = (x > 0) andb = (x > 0), constructing the corresponding
MΩ as follows:

S
Ω = N ×N�

I
Ω = N ×N�

R
Ω = J(x > 0 ∧ ρ = � ∧ x

′ = x + 1 ∧ ρ′ = �) ∨
(x > 0 ∧ ρ > 0 ∧ x

′ = x + 1 ∧ ρ′ = ρ − 1) ∨
(x > 0 ∧ ρ = 0 ∧ x

′ = 0 ∧ ρ′ ∈ N�) ∨
(x = 0 ∧ ρ ∈ N� ∧ x

′ = 0 ∧ ρ′ ∈ N�)KR

In MΩ the first choice of how many times a transition fromJx >
0 ∧ x′ = x + 1KR is taken is given by the choice of an initial value
for ρ. Any finite number of iterations corresponds to an arbitrarily
chosen numeric value ofρ. The case where the transition is taken
infinitely many times corresponds to the initial choice of� for ρ.

Example 7. (Running example) For the example given in Section 2,
the state space of the original program isS = {ℓ1, ..., ℓ9} × {0,1}
denotedpc, x. For Ω = {(pc = ℓ2,pc = ℓ5)}, we have one prophecy
variable denotedρ, soSΩ = S×N� andIΩ = {ℓ1}×{1}×N�. The
transition relation (omitting some uninteresting arcs) is defined as
follows:

R
Ω = J(x = 1 ∧ pc = ℓ2 ∧ ρ = � ∧ x

′ = 1 ∧ pc
′ = ℓ2 ∧ ρ

′ = �) ∨
(x = 1 ∧ pc = ℓ2 ∧ ρ > 0 ∧ x

′ = 1 ∧ pc
′ = ℓ2 ∧ ρ

′ = ρ − 1) ∨
(x = 1 ∧ pc = ℓ2 ∧ ρ = 0 ∧ x

′ = 1 ∧ pc
′ = ℓ5 ∧ ρ

′ ∈ N�) ∨
...KR

4.1 Proving LTL with ∀CTL and determinization

Lemma 3.1 shows that one can prove LTL properties with an∀CTL
verifier and an unmodified transition relation. We now extend this
to show that one can prove (perhaps even more) LTL properties
with ∀CTL and a predicate-determinized machine.

Theorem 4.2. (∀CTL Approximation with Determinization) For a
machineM , LTL propertyϕL and predicatesΩ,

M
Ω
⊧C APPROXIMATE(ϕL) ⇒ M ⊧L ϕL



Proof. Lemma 3.1 says thatM ⊧C APPROXIMATE(ϕL) ⇒ M ⊧L

ϕL The process of predicate determinization constructs machine
MΩ fromM such thatMΩ ≅M . Since the two machines are trace
equivalent and it is known that trace-equivalent machines have the
same LTL-behavior, Lemma 3.1 applies to the new machine and
hence the theorem holds. Further details are available [16].

5. REFINE : Decision Predicate Refinement
We now describe REFINE, our procedure which examines coun-
terexamples from a branching-time verification tool and discov-
ers predicates which characterize the nondeterministic branching
within them if any nondeterminism exists.

∀CTL counterexamples. Counterexamples in∀CTL are trees [13].
The shape of the tree depends on the shape of the property which
is violated. While most tools typically do not annotate their coun-
terexamples with subformula, they could be made to do so. We
formalize an∀CTL counterexample tree as follows:

Definition 5.1. (∀CTL tree counterexample)

χ ∶∶= CEXα of π

∣ CEX∧ of χ

∣ CEX∨ of χ × χ

∣ CEXAG of π × χ

∣ CEXAF of π × π × χ

∣ CEXW of π × χ × χ

In the above definition there is a constructor for each structural ele-
ment of an∀CTL formula. A counterexample to an atomic propo-
sition CEXα is a (single state) trace where the atomic proposition
does not hold of the first element. A counterexample to a conjunc-
tion CEX∧ is a counterexample to one of the conjuncts. A coun-
terexample to a disjunctionCEX∨ is comprised of two counterex-
amples, one for each disjunct. A counterexampleCEXAG is a path
to a state in which a counterexample exists for the subformula. A
counterexampleCEXAF is a “stem” path to an infinite “lasso” loop
where a counterexample exists for the subformula. A counterexam-
ple CEXW is a path to a state where a counterexample exists for
both subformulae. For example, the counterexample to the property
AF((AGp) ∨ (AGq)) consists of a stem and loop (for theAF sub-
formula), and from within the loop a stem for eachAG subformula.

Equality≐ between counterexamples is inductively defined, lift-
ing equality between traces. We denote byχ∣ext the counterexam-
ple which consists of the external projection of paths in all com-
ponents. Often counterexamples from model checking tools may
contain less information than actual concrete traces (e.g. SLAM
returns abstract traces that include the valuations ofpc together
with the valuations of the predicates used during the failed proof
attempt).

In the AF rule, the counterexample is represented as a “stem”
with an infinitely-repeated “lasso” path, along which every sub-
tree is a counterexample to the subformula. In reality, not all coun-
terexamples to termination can be represented this way. There are
some rare programs that do not terminate but whose counterexam-
ples cannot be represented as a infinitely-repeated “lasso path.” For
example:

while (x > 0) {
y := x;
x := x + 1;
while (y > 0) { y := y - 1; }

}

PSYNTHD(R,R′) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(a, b), (a,¬b)} such thatR ⊆ Ja ∧ b′KR

andR′ ⊆ Ja ∧ ¬b′KR

∅ if no sucha, b exist

Figure 5: Specification of PSYNTHD which, when given symbolic
representations of two relations, returns predicate pairs that distin-
guishes them. An implementation of this procedure is described in
Section 6.

REFINE(χ) :
S := ∅
N := {n0}
let Γ = cefg(χ∣ext) in
while true do

let N ′ = {n′ ∣ n ∈ N ∧ ∃(n, r,n′) ∈ Γ} in
let T = {r ∣ n ∈ N ∧ ∃n′.(n, r,n′) ∈ Γ} in
let Ω = ⋃r,r′∈T PSYNTHD(r, r′) in
if Ω = ∅ then

if N ′ ∪ S = S then
return ∅

else
N := N ′

S := S ∪N ′

else
return Ω

done

Figure 6: The REFINE procedure walks down a counterexample
flow-graph, at each step simultaneously exploring all possible next
steps. If any pair of possible next steps are distinguishable via
a predicate from PSYNTHD then that predicate is immediately
returned.

cefg(n0, χ) △= matchχ with∣ CEXα s Ð→ (n0, Id,n0)∣ CEX∧ χ1 Ð→ cefg(n0, χ1)∣ CEX∨ χ1, χ2 Ð→ cefg(n0, χ1) ∪ cefg(n0, χ2)∣ CEXAG π,χ1 Ð→ cefgπ(n0,nx) ∪ cefg(nx, χ1)∣ CEXAF π, π̃, χ1 Ð→ cefgπ(n0,n1) ∪ cefgπ̃(n1,n1)
∪ cefg(n1, χ1)∣ CEXW π,χ1 Ð→ cefgπ(n0,nx) ∪ cefg(nx, χ1)

wherenx,n1 are fresh.

cefgπ(n0,nx) △={(ni, r,ni+1) ∣ 0 ≤ i < ∣π∣ ∧ (πi
0, π

i+1
0 ) ∈ JrKR}

where eachni is fresh andnx = n∣π∣

Figure 7: Thecefg procedure consumes a counterexample and
constructs a counterexample flow graph, usingcefgπ to convert a
pathπ to a graph component.

In this case we assume an approximation of the real counterexam-
ple has been found and has been encoded usingCEXAF . In some
instances this could potentially lead to divergence in our tool.

Counterexample control-flow graphs.From a given counterex-
ampleχ, we can construct a corresponding counterexample flow-
graph (CEFG)Γ which represents all paths in the counterexam-
ple. We use a standard graph-based notation, where nodesn ∈ N



correspond to states in the counterexample, and edges are triples(n1, r,n2) consisting of a starting node, a transition relationr
from the counterexample and a destination node. Even when we
are working with programs, these CEFGs are different from pro-
gram CFGs because they represent possible state transitions: there
may be multiple CEFG transitions for a single CFG transition (e.g.
when the program involves nondeterministic assignment) and there
maybe multiple CEFG nodes which have the same CFG node. A
counterexample flow graph can be constructed from a counterex-
ample via the translation shown in Figure 7.

Predicate synthesis. The procedure PSYNTHD(r, r′) is specified
in Figure 5. It consumes two transition relationsR,R′ and returns
twopairs of decision predicates: both(a, b) and(a,¬b). We return
both pairs because it is difficult to knowa priori which will be more
useful to the LTL proving procedure, as the information tracked
by (a, b) differs slightly from that tracked by(a,¬b). Moreover,
there are cases where tracking only(a, b) will result in divergence,
whereas(a,¬b) does not.

The details of the implementation of PSYNTHD will differ,
depending on the context (i.e. finite-state systems expressed at the
bit-level, infinite-state systems expressed over linear arithmetic,
etc). We assume that for a given domainD (a) thatD is capable
of distinguishing two states and (b) that PSYNTHD is capable of
discovering sufficient elements inD to do so. If these assumptions
do not hold then in some instances our technique may be unable
to sufficiently determinize. In our implementation, described in
Section 6, we use constraint-solving techniques to find predicates
which are monomials over linear inequalities.

Symbolic tree execution. The recursive procedure REFINE, given
in Figure 6, consumes an∀CTL counterexample and returns a set
of predicates which distinguish nondeterministic branching. This
involves first constructing a counterexample flow-graph, and iter-
atively exploring the frontier. REFINE simultaneously steps down
each possible branch of the counterexample, ensuring that all of
the next states are equivalent using PSYNTHD (see the PSYNTHD

specification in Figure 5) to find distinguishing predicates. When
distinct states are found, the corresponding predicates are returned,
so that they can be added toΩ and the main algorithm can reiterate.

Progress. We now show that for a given counterexampleχ, if
REFINE discovers predicates, then our algorithm produces a new
machine for whichχ∣ext is not a counterexample. We also show
that, if no predicates are found by REFINE, then a real counterex-
ample to the original LTL property can be constructed fromχ∣ext.
Lemma 5.1. (Counterexample elimination) For a machineMΩ,
propertyϕL,

if χ is a counterexample toMΩ ⊧C APPROXIMATE(ϕL)
then∄ counterexampleχ′ toMΩ

′

⊧C APPROXIMATE(ϕL)
such thatχ∣ext ≐ χ′∣ext

whereΩ′ = Ω ∪ REFINE(χ) andREFINE(χ) ≠ ∅.

Proof. Let (ai, bi) ∈ REFINE(χ). By definition of REFINE in Fig-
ure 6 this predicate pair must have come from a subcomponent of
the counterexampleχ flow graph of the form(n, r,n′), (n, r′,n′′).
Moreoverai(Π1(r)), bi(Π2(r)) and¬bi(Π2(r′)). Now, in the
new machine the prophecy vector is augmented with a new element
ρi. So the set of states denoted⟨Π1(r), ρ⟩ have eitherρi = 0 orρi ∈{�,1,2, ...}. According toRΩ

′

, either(⟨Π1(r), ρ⟩, ⟨Π2(r), ρ⟩) is
enabled or else(⟨Π1(r), ρ⟩, ⟨Π2(r′), ρ⟩) is enabled, but not both.
Hence, there is no valid counterexampleχ′ such thatχ∣ext ≐ χ′∣ext.
Further details are available [16].

Remark on completeness.There are a few impediments to mak-
ing a completeness claim. First, for a given∀CTL counterexample
χ, the routine PSYNTHD must be able to discover predicates to
characterize nondeterminism inχ. However, since we use approx-
imation (e.g.with linear arithmetic), it will not always be able to
discover sufficient predicates when they exist.

Second, even when we have a perfect PSYNTHD routine, some
∀CTL counterexamples may be spurious, as the underlying∀CTL
also supports only overapproximation in linear arithmetic. Conse-
quently, when REFINE(χ) = ∅we cannot necessarily claim that we
have a valid LTL counterexample. Furthermore, as mentioned pre-
viously, there are some non-terminating programs that do not have
a infinitely-repeated “lasso path.” In these instances, the∀CTL tool
itself will either hang or return spurious counterexamples.

Finally, it is unclear whether our refinement loop will discover a
finite number of decision predicates. With an infinite predicate vec-
tor Ω∞, all nondeterminism can be represented (given a sufficient
predicate domain), but one would hope that for each program/prop-
erty there is a finite predicate vector.

Example 8. (Running Example) For the example in Section 2, an
∀CTL prover may generate the following counterexample:

(CEXAF [ 11 ] ∶∶ [ 21 ] , [ 21 ] ∶∶ [ 31 ] ∶∶ [ 21 ] ,CEXα [ 50 ])

where a state is represented as[ pc
x ]. From this counterexample,

we usecefg to construct the counterexample flow-graphΓ given
in Section 2. Each arc represents a possible transition within the
counterexample tree. the procedureREFINE then walks all possible
paths of the control-flow graph simultaneously, starting from the
first node as follows:

Iteration 1: N = {n0}, S = ∅
Iteration 2: N = {n1}, S = {n0,n1}
Iteration 3: N = {n2,n3}, S = {n0,n1,n2,n3}

After the first and second iterationsPSYNTHD does not discover a
predicate to distinguish the two branches, but after the third call
to REFINE, the predicate pairs(pc = ℓ2,pc = ℓ3) and (pc =
ℓ2,pc ≠ ℓ3) are discovered, which distinguish paths that remain
in the loop or exit the loop. A new machine is then constructed with
prophecy variables corresponding to these decisions, and for this
new machine an∀CTL verifier can prove that the property holds.

Example 9. Consider the following program for which we would
like to proveϕL = (FG y = 1) ∨ (F x ≥ t):

ℓ0: x = y = 0; t = *;
while(*)

ℓ1: x++;
ℓ2: t = *;
ℓ3: if (x<t)
ℓ4: y=1;

while (true)
ℓ5: skip;

The machine representing this program can be encoded as follows:



c.
e.

x.
1 (CEX∨ (1CEXAF [ 0

0

56

ℓ0

] ∶∶ [ 0

0

56

ℓ1

] ,
⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

x′=x+1
y′=y

t′=t
pc′=pc

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦
, (1CEXAG Id, (1CEXα [ x

0

56

ℓ1

]))),
(2CEXAF [ 0

0

56

ℓ0

] ∶∶ [ 0

0

56

ℓ2

] ∶∶ [ 0

0

56

ℓ3

] ∶∶ [ 0

1

56

ℓ4

] ∶∶ [ 0

1

56

ℓ5

] , Id, (2CEXα [ 0

1

56

pc=ℓ5

])))
c.

e.
x.

2 (CEX∨ (1CEXAF [ 0

0

56

ℓ0

] ∶∶ [ 0

0

56

ℓ1

] ,
⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

x′=x+1
y′=y

t′=t
pc′=pc

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦
, (1CEXAG Id, (1CEXα [ x

0

56

ℓ1

]))),
(2CEXAF [ 0

0

56

ℓ0

] ∶∶ [ 1

0

56

ℓ1

] ∶∶ [ 1

0

56

ℓ2

] ∶∶ [ 1

0

56

ℓ3

] ∶∶ [ 1

1

56

ℓ4

] ∶∶ [ 1

1

56

ℓ5

] , Id, (2CEXα [ 1

1

56

ℓ5

])))

c.
e.

x.
3 (CEX∨ (1CEXAF [ 0

0

56

ℓ0

] ∶∶ [ 1

0

56

ℓ1

] ∶∶ [ 1

0

0

ℓ2

] ∶∶ [ 1

0

0

ℓ3

] ∶∶ [ 1

0

0

ℓ5

] , Id, (1CEXAG Id, (1CEXα [ 1

0

0

ℓ5

]))),
(2CEXAF [ 0

0

56

ℓ0

] ∶∶ [ 1

0

56

ℓ1

] ∶∶ [ 1

0

2

ℓ2

] ∶∶ [ 1

0

2

ℓ3

] ∶∶ [ 1

1

2

ℓ4

] ∶∶ [ 1

1

2

ℓ5

] , Id, (2CEXα [ 1

1

2

ℓ5

])))
Figure 8: Counterexamples for each of the three iterations of proving Example 9. The notationId indicates the identity transition (arising
from the loop at lineℓ5).

n0

n1 n2

n3
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Figure 9: The counterexample flow graphs that are constructed at
each iteration of proving Example 9.
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(pc = ℓ3 ∧ pc
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′ = x ∧ y′ = y ∧ t′ = t) ∨

(pc = ℓ4 ∧ pc
′ = ℓ5 ∧ x

′ = x ∧ y′ = 1 ∧ t
′ = t) ∨

(pc = ℓ5 ∧ pc
′ = ℓ5 ∧ x

′ = x ∧ y′ = y ∧ t′ = t)KR

Using an∀CTL prover, we may obtain the first counterexample
in Figure 8. From this counterexample, we usecefg to construct the
first counterexample flow graph in Figure 9. Each arc represents a
possible transition within the counterexample tree. The procedure
REFINE then walks all possible paths of the control-flow graph
simultaneously, starting fromn0 as follows:

Iteration 1: N = {n0}, S = ∅

In this iteration,REFINE finds thatN ′ = {n1,n2} and thatR ={(ℓ0, ℓ1), (ℓ0, ℓ2)}. Taking the (only) pair of relations fromR,
PSYNTHD generates the predicate pairs(pc = ℓ0,pc = ℓ1) and(pc = ℓ0,pc ≠ ℓ1). Corresponding prophecy variables are created,
and the∀CTL verifier is used on the newly constructed machine,
resulting in the next counterexample in Figure 8. We then get the
second counterexample flow graph in Figure 9 and theREFINE
explores it as follows:

Iteration 1: N = {n0}, S = ∅
Iteration 2: N = {n1,n2}, S = {n0,n1,n2}

After the first iteration,PSYNTHD does not discover any predicates
to distinguish the two branches, but after the second iteration the
predicate pairs(pc = ℓ1,pc = ℓ1) and (pc = ℓ1,pc ≠ ℓ1) are
discovered, which distinguish paths that remain in the loop or exit
the loop. The∀CTL verifier is executed once again, resulting in the
third counterexample in Figure 8. The counterexample flow-graph
is given in Figure 9 andREFINE explores it as follows:

Iteration 1: N = {n0}, S = ∅
Iteration 2: N = {n1,n5}, S = {n0,n1,n5}
Iteration 3: N = {n2,n6}, S = {n0,n1,n5,n2,n6}
Iteration 4: N = {n3,n7}, S = {n0,n1,n5,n2,n6,n3,n7}

In the final iteration,PSYNTHD discovers the predicate pairs(pc =
ℓ2, t ≥ x) and(pc = ℓ2, t < x). Notice that the second predicate is
over a program variable other thanpc – in the next example we will
see thatpc is not always sufficient to distinguish paths. Running the
∀CTL verifier one more time yields no counterexamples. Hence the
original LTL property holds.

Example 10. In the examples above, almost all predicates were
over the program counter variablepc. In many cases, the program
counter serves as a convenient way of distinguishing paths through
the program. However, this is not always the case. Consider proving
the property(G x = 0) ∨ (F x = 20) for the following program:

ℓ0: x = 0;
while(x<20)

ℓ1: x := (x==0)*{0,1} + (x==1)*20;
while(true)

ℓ2: skip

The notation{0,1} represents nondeterministic choice between 0
or 1. The LTL property holds because in traces where this non-
deterministic choice is always 0, the propertyG x = 0 holds. For
any trace in which the nondeterministic choice is 1, the property
F x = 20 holds.



We shall represent the state as[ xℓ ] wherex ∈ N. An ∀CTL
prover will generate the following counterexample to(AG x =
0) ∨ (AF x = 20):
(CEX∨ (CEXAG [ 0

ℓ0
] ∶∶ [ 0

ℓ1
] ∶∶ [ 1

ℓ1
] , (CEX∧ [ 1

ℓ1
]))(CEXAF [ 0

ℓ0
] ∶∶ [ 0

ℓ1
] ∶∶ [ 0

ℓ1
] , Id, (CEX∧ [ 0

ℓ1
])))

For this counterexampleREFINE would explore the corresponding
CEFG, and discover the decision predicate pairs(x = 0,x = 1) and(x = 0,x ≠ 1) which distinguish the transition ([ 0

ℓ1
] , [ 1

ℓ1
]) from

([ 0

ℓ1
] , [ 0

ℓ1
]). Importantly, there is no predicate over the program

counter variable alone which distinguishes these two transitions.
We can now synthesize a prophecy variable corresponding to this
decision predicate and an∀CTL prover will discover a proof of the
∀CTL property, implying that the original LTL property holds.

6. Implementation
In this section we discuss some details of our implementation of
the algorithm in Figure 1, our implementation of an∀CTL prover,
and the results of our tool when applied to example programs.

Predicate synthesis. In Section 5, we have assumed the existence
of a predicate synthesis mechanism PSYNTHD that met the con-
straints given in Figure 5:

PSYNTHD(R,R′) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(a, b), (a,¬b)} such thatR ⊆ Ja ∧ b′KR

andR′ ⊆ Ja ∧ ¬b′KR

∅ if no sucha, b exist

Depending on the configuration of the systems considered by the
tool, PSYNTHD will need to be implemented in different ways.
Here we describe a particular method of synthesizing predicates
for counterexamples drawn from the style of programs typically ac-
cepted by modern model checking tools for infinite-state programs.

As is true in many symbolic model checking tools for software,
we will assume that counterexamples are sequences of commands
drawn from a path in the program. We will assume that these
commands are over a finite set of arithmetic variables, and that
the conditional checks and assignment statements only use linear
arithmetic. Given this context, an implementation can represent the
relations passed to PSYNTHD as conjunctions of inequalities using
variables. For example, the command sequence

ℓ41 ∶ x ∶= x − 1;
ℓ21 ∶ assume(x > 0);
ℓ10 ∶ y ∶= x;

which might represent a piece of a counterexample can be repre-
sented as a relation from valuations on(x, y,pc) to valuations on(x′, y′,pc′) where

∃x1, x0, y1, y0.

⋀{ pc = ℓ41 ∧ pc′ = ℓ10 ∧ x = x0 ∧ x′ = x1 ∧ y = y0 ∧ y′ = y1

x1 = x0 − 1 ∧ x1 > 0 ∧ y1 = x1

}
We can reduce the search for predicates in this setting to the

search for functions satisfying a set of constraints. In this instance
we hope to find families of affine functionsf andg such that the
following conditions are true

1. (∃V ′.R1 ∧ ∃V
′.R2)⇒ ⋀i∈dom(f) fi(V ) > 0

2. R1 ⇒ ⋀i∈dom(g) gi(V ′) > 0

3. R2 ⇒ ¬(⋀i∈dom(g) .gi(V ′) > 0)
The set of pre-states common to both relationsR1 andR2 are given
S ≡ ∃V ′.R1 ∧ ∃V

′.R2, i.e. we are existentially quantifying out
the post-states by quantifying out the variables that are used to
represent them. We then find an over-approximation ofS that is

expressible as the conjunction of inequalities usingf . The second
and third constraints force the functiong—which is expressed only
over the primed variables—to distinguish between two transitions.

As done elsewhere [35], we can apply Farkas’ lemma [23] and
an SMT solver (e.g.Z3 [2] or Yices [20]) to find linear functions
fi and gi that satisfy the above constraints. Thus, to implement
PSYNTHD(R1,R2) we find familiesf andg satisfying the above
constraints. We then return the predicate pairs(a, b) and(a,¬b)
where

a ≡ ⋀
i∈dom(f)

fi(V ) > 0 and b ≡ ⋀
i∈dom(g)

gi(V ) > 0

A witness to∃V ′.R1 ∧∃V
′.R2 can be computed using a quantifier

elimination procedure, or alternatively, an additional application of
Farkas’ lemma. In practice, however, a good guess is simply to take
the valuation ofpc from bothR1 andR2, i.e. S ≡ pc = ℓ, where
R1 ⇒ pc = ℓ andR2 ⇒ pc = ℓ.

Proving ∀CTL for infinite-state systems. We use∀CTL verifi-
cation tool for infinite-state programs, described elsewhere [17].
Our ∀CTL prover works by reducing the task of∀CTL verifica-
tion, via a program transformation, to an interprocedural program
analysis problem. Thus, we can use known safety analysis tools
[5, 11, 19, 26] combined with techniques for refining termination
arguments [7, 8, 18, 22, 37] to obtain an∀CTL verification tool
whose power is limited only by the power of these underlying
tools. The transformation uses recursion and nondeterminism in
such a way that when these tools are applied to the transformed pro-
gram, they effectively perform the necessary reasoning (e.gback-
tracking, eventuality checking, tree counterexamples, abstraction,
abstraction-refinement, etc.) to prove branching-time behaviors of
the original program. Formally, our transformationT works as fol-
lows: For a programP and an∀CTL propertyϕC,

∃M. T (P,M, ϕC) cannot returnfalse ⇒ P ⊧C ϕC

whereM is assumed to be a finite set of disjunctively well-founded
relations [36]. The new programT (P,M, ϕC) is constructed by
recursively walking the structure ofϕC. Instances ofAF(p) is
syntactically decomposed into proving termination to a set of states
in which p holds;AG(p) can be decomposed into checking thatp
holds at each line of the program, etc.M can be thought of as
the argument of progress when provingϕC. Once a suitable setM has been found, proving thatT (P,M, ϕC) cannot return false
can be accomplished with existing interprocedural analysis tools.
Satisfying instances ofM can be found using the same technique
as is used in TERMINATOR [18]. In our implementation we use
SLAM [5] as the underlying safety prover, and RANK FINDER [35]
as the method of finding new ranking functionsf from spurious
counterexamplesχ.

Experiments. We have drawn out a set of LTL challenge prob-
lems from industrial code bases. Examples were taken from code
models of the I/O subsystem of the Windows kernel, the back-end
infrastructure of the PostgreSQL database server, and the Apache
web server. We also include a few toy examples, as well as the ex-
ample from Figure 8 in [15]. Further details on our benchmarks,
including sources are available in our companion technical re-
port [16].

In many cases, heap-commands from the original sources have
been abstracted away using the approach due to Magillet al. [30].
This abstraction introduces new arithmetic variables that track the
sizes of recursive predicate found as a byproduct of a successful
memory safety analysis using an abstract domain based on separa-
tion logic. This abstraction also may introduce extra nondetermin-
ism into the transition relation which, in more complex cases, may
force our method to synthesize decision predicates.



Fair termination tool [15] Decision predicates tool (Figure 1)
Program LOC Property Time (s) ∣M∣ Result Time (s) ∣M∣ ∣Ω∣ Result
Example from Section 2 5 FGp 2.32 1 ✓ 1.98 1 1 ✓

Example from Fig. 8 of [15] 34 G(p⇒ Fq) 209.64 1 ✓ 27.94 0 0 ✓

Toy acquire/release example 14 G(p⇒ Fq) 103.48 3 ✓ 14.18 1 0 ✓

Toy linear arith. 1 13 p⇒ Fq 126.86 1 ✓ 34.51 1 0 ✓

Toy linear arith. 2 13 p⇒ Fq T.O. 1+ ??? 6.74 1 0 ✓

PostgreSQL strmsrv 259 G(p⇒ FGq) T.O. 5+ ??? 9.56 0 0 ✓

PostgreSQL strmsrv+bug 259 G(p⇒ FGq) 87.31 0 χ 47.16 1 0 χ

PostgreSQL pgarch 61 FGp 31.50 2 ✓ 15.20 0 0 ✓

PostgreSQL dropbuf 152 Gp T.O. 2+ ??? 1.14 0 0 ✓

PostgreSQL dropbuf 152 G(p⇒ Fq) 53.99 1 ✓ 27.54 2 0 ✓

Apacheaccept() liveness 314 Gp⇒ GFq T.O. 1+ ??? 197.41 1 2 ✓

Apache progress 314 G(p⇒ (Fq1 ∨ Fq2)) 685.34 0 ✓ 684.24 0 0 ✓

Windows OS fragment 1 180 G(p⇒ Fq) 901.81 2 ✓ 539.00 2 0 ✓

Windows OS fragment 2 158 FGp 16.47 0 ✓ 52.10 3 3 ✓

Windows OS fragment 2+bug 158 FGp 26.15 0 χ 30.37 0 0 χ

Windows OS fragment 3 14 FGp 4.21 0 ✓ 15.75 1 1 ✓

Windows OS fragment 4 327 G(p⇒ Fq) T.O. 7+ ??? 1,114.18 1 0 ✓

Windows OS fragment 4 327 (Fa) ∨ (Fb) 1,223.96 5 ✓ 100.68 1 0 ✓

Windows OS fragment 5 648 G(p⇒ Fq) T.O. 1+ ??? T.O. 0 0 ???
Windows OS fragment 6 13 FGp 149.41 2 ✓ 59.56 1 0 ✓

Windows OS fragment 6+bug 13 FGp 6.06 0 χ 22.12 0 0 χ

Windows OS fragment 7 13 GFp T.O. 1+ ??? 55.77 1 0 ✓

Windows OS fragment 8 181 FGp T.O. 1+ ??? 5.24 1 0 ✓

Table 1: Comparison of fair termination based LTL prover [15] to decision predicate based algorithm from Figure 1 . Examples drawn from
PostgreSQL database server, Apache web server, as well as the I/O subsystem of the Windows OS. The property column indicates the shape
of the temporal properties, wherep andq are atomic propositions specific to the program. A✓ indicates that the tool has proved the property,
whereas aχ indicates that a valid LTL counterexample has been found.∣Ω∣ indicates the number of decision predicates needed, and∣M∣ the
number of progress measures required.T.O. indicates that the experiment timed out after 4 hours, and in such cases we specify at least how
many termination arguments were needed (denoted+).

The only previously known tool for automatically proving LTL-
like properties of infinite-state programs is described in [15], which
is a TERMINATOR-like [18] procedure with an extension for fair-
ness. LTL2BA [24] is used to convert LTL formulae to B̈uchi au-
tomata. As we have done in our implementation of Figure 1, the
implementation of [15] uses SLAM as the underlying safety model
checker, and RANK FINDER [35] as the rank function synthesis tool.

Table 1 reports the results of our experiments. The first column
describes the code artifact. We added bugs into several of the
examples. The second column “LOC” reports the number of lines
of code for each example. We studied the results for properties of
differing shapes (e.g.G(p ⇒ Fq), FGp, GFp, etc.). Experiments
were run using Windows Vista and an Intel 2.66GHz processor.

For both tools we report the total time, the number of ranking
functions required (denoted∣M∣), and the result for each of the
benchmarks. A✓ indicates that the tool proved the property, and
χ is used to denote cases where bugs were found. In the case that
the tool exceeded the timeout threshold of 4 hours, “T.O.” is used
to represent the time, the result is listed as “???”, and we simply
report the current size of∣M∣ at the time that the tool was killed
together with a “+” symbol.

For our approach we report the number of decision predicates
required∣Ω∣. For these examples relatively few prophecy variables
are usually required. This confirms our assumption that faster CTL-
based techniquesusuallywork, so long as we have a fast method
for evaluating the potential spuriousness of CTL counterexamples,
and an effective strategy of refinement when CTL methods fail. We
also observe that∣M∣ is typically smaller when using the decision
predicates based tool.

We implemented support for fairness in our decision predicate
based approach tool in order to support Figure 8 of [15]. This is
due to the fact that one of the fairness constraints actually comes
from an environment assumption and thus must still be modeled.
Our support for fairness uses essentially the same recipe as given
in [15], combined with the source-to-source transformation.

As mentioned in Section 1, a limitation to our approach is that
there are cases when we see a minor performance penalty for our
strategy of only tracking correlations on demand (e.g.in “Windows
OS fragment 2.”) We also see some minor overhead when comput-
ing real counterexamples (e.g.in “Windows OS fragment 2+bug”).

The most dramatic aspect of Table 1 is the overall result: our
decision predicate based LTL prover was able to prove/disprove all
but 1 example in usually a fraction of a minute, whereas the fair
termination based tool fails on nearly a quarter of the benchmarks.
This is due to our strategy of first trying to use∀CTL proof strate-
gies, and only tracking subtle relationships between families of
traces on demand using decision predicates. Without our approach
we could not reliably use an∀CTL-based proof strategy with pre-
cision equal to native LTL-based approaches. In each of theseT.O.
cases but one our decision predicate based tool proves all of the ex-
amples with reasonable runtimes (resulting in a✓). Furthermore,
our tool reported no spurious counterexamples: in the cases where
a purely∀CTL-based approach would have been incomplete for
LTL (resulting in a spurious counterexample), our refinement pro-
cedure quickly found and then symbolically shifted the problematic
nondeterminism into the state-space of the system.



7. Conclusion
We have described a new algorithm for proving LTL properties
of infinite-state systems. Our algorithm searches for instances of
nondeterminism that preclude the use of CTL-based proof methods.
We characterize these instances of nondeterminism using decision
predicates, and then symbolically shift them into the state-space
using a partial-determinization procedure. The advantage to this
approach is that CTL proof methods can be used where they would
have previously failed. We find in practice that most instances of
nondeterminism is harmless to CTL proof methods. Thus, in many
cases, we see performance improvements when using this strategy.
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