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Abstract

We describe a new algorithm for proving temporal properties ex-
pressed in LTL of infinite-state programs. Our approach takes ad-
vantage of the fact that LTL properties can often be proved more
efficiently using techniques usually associated with the branching-
time logic CTL than they can with native LTL algorithms. The

caveat is that, in certain instances, nondeterminism in the sys-
tem’s transition relation can cause CTL methods to report coun-
terexamples that are spurious with respect to the original LTL
formula. To address this problem we describe an algorithm that,
as it attempts to apply CTL proof methods, finds and then re-
moves problematic nondeterminism via an analysis on the po-
tentially spurious counterexamples. Problematic nondeterminism
is characterized usingdecision predicatesand removed using a

partial, symbolic determinization procedure which introduces new
prophecy variables to predict the future outcome of these choices.
We demonstrate—using examples taken from the PostgreSQL

database server, Apache web server, and Windows OS kernel—

that our method can yield enormous performance improvements
in comparison to known tools, allowing us to automatically prove
properties of programs where we could not prove them before.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking; Correct-
ness proofs; Reliability; D.4.8]Jperating SystenisReliability—
Verification; F.3.1 Logics and Meanings of PrografsSpecify-
ing and Verifying and Reasoning about Programs; F.B&jics
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cousins [3, 32, 44] Properties expressed in CTL without fair-
ness can be proved in a purely syntax-directed manner using state-
based reasoning techniques, whereas LTL requires deeperfeason
ing about whole sets of traces and the subtle relationships between
families of them.

In this paper we aim to make an LTL prover for infinite-state
programs with performance closer to what one would expect from
a CTL prover. We use the observation th@TL without fairness
can be a useful abstraction of LTL. The problem with this strategy
is that the pieces don't always fit together: there are cases when,
due to some instances of nondeterminism in the transition system,
VCTL alone is not powerful enough to prove an LTL property.

In these cases our LTL prover works around the problem using
something we calilecision predicatesvhich are used to character-
ize and treat such instances of nondeterminism. A decision predi-
cate is represented as a pair of first-order logic form(lag),
where the formula: defines the decision predicate’s presupposi-
tion (i.e. wherthe decision is made), ariccharacterizes the binary
choice made when this presupposition holds. Any transition from
states to states’ in the system that meets the constraiti) Ab(s")
is distinguished by the decision predicéteb) froma(s)A-b(s").

We use decision predicates as the basis of a partial symbolic
determinization procedure: for each predicate we introduce a new
prophecy variable [3] to predict the future outcome of the decision.
After partially determinizing with respect to these prophecy vari-
ables, we find that CTL proof methods succeed, thus allowing us
to prove LTL properties with CTL proof techniques in cases where

and Meanings of PrograrisSemantics of Programming Languages—this strategy would have previously failed. To synthesize the deci-

Program analysis
General Terms Verification, Theory, Reliability

Keywords Linear temporal logic, formal verification, termination,
program analysis, model checking

1. Introduction

The common wisdom amongst users and developers of tools thatLimitations.

prove temporal properties of systems is that the linear specifica-
tion logic LTL [33] is more intuitive than CTL [10], but that prop-
erties expressed in the universal fragment of CVICTL) with-

out fairness constraints are often easier to prove than their LTL
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sion predicates we employ a form of symbolic execution on spuri-
ousVCTL counterexamples together with an application of Farkas’
lemma [23].

With our new approach we can automatically prove properties
of infinite-state programs in minutes or seconds which were in-
tractable using existing tools. Examples include code fragments
drawn from the PostgreSQL database server, the Apache web
server, and the Windows OS kernel.

In practice, the applicability and performance of our
technique is dependent on the heuristic used to choose new decision
predicates when given an abstract representation of a specific point
in a spurious counterexample. The predicate synthesis mechanism
implemented in our tool is applicable primarily to infinite-state pro-
grams over arithmetic variables with commands that only contain
linear arithmetic. However, no matter which predicate selection
mechanism is used, our predicate-based determinization strategy is
sound. Thus, unsound approximations to predicate synthesis could
potentially be used in instances where the systems considered do
not meet the constraints given above. Our technique is also based

1 Abadi and Lamport [3] make this point using the terminology efifie-
ment mappings” and “trace equivalence” instead of phrasimgthe con-
text of temporal logics.



on anVCTL prover for infinite-state systems, which itself cannot
be complete.

A further limitation is that our procedure is not well suited
for finite-state model checking. The problem is that introducing
prophecy variables greatly increases the number of state-holding
elements required in usual finite-state encodings: Each prophecy,
variable must be capable of counting up to a number larger than the
system’s diameter [12]. The problem is further exacerbated when

PROVE (M, pL) :
Q=g
let pc = APPROXIMATE(pL) in
while true do
let M = DETERMINIZE(M,Q) in
match PROVEycorrn (M, ¢c) with
| Succeed -> return Succeed

we introduce multiple prophecy variables, astiie prophecy vari- | Fail(x) g .

able must range over values as large as the diameter of the system let € = REFINE(y) in

which has been augmented with the fiistl prophecy variables. In if (@ = 2) ) _
contrast, when using proof tools for infinite-state systems the per- let mex in return Fail(m)
formance cost for adding additional infinite-state variables is usu- el;e = QU

ally low.

Finally, our procedure critically depends on the full structure
of counterexamples tg§CTL properties, which are in the form of
trees. Unfortunately, with only a few exceptions [13, 17] tools do Figure 1: Algorithm based on predicate determinization which im-
not return whole tree counterexamples. plements LTL model checking.€. M =, ¢.). The procedures
APPROXIMATE, DETERMINIZE, REFINE and FROVEy ¢, are de-
fined in later sections.

done

Related work. Our method complements more classical automata-
theoretic approaches [34, 45] in which fairness constraints are
used to encode linear-temporal conditions and then language
emptiness-a.k.a.fair termination—is proved of the resulting sys-  temporal properties or proving linear-time properties of abstrac-
tem. The difficulty with language emptiness for infinite state sys- tions (.g. pushdown systems [21, 42]). When model-checking is
tems €.g.as implemented in previous work [15]) is that the mech- performed using explicit-state techniques [25, 28, 29] then the con-
anisms that allow us to ignore infinite executions not accepted by verse of our assumption is true: linear-time traces are in fact more
the fairess constraints are effectively the same as the expensivenaturally explored than branching-time executions in this context.
techniques used for proving termination. Thus, in practice, our pre-  Our procedure uses several techniques found in the literature:
vious tool [15] relies too heavily on termination proving machinery. namely prophecy variables [3] and Farkas’ lemma [23]. We are of

In contrast, our new approach uses syntax-directed techniques forcourse not the first to use these techniques in applications related
VCTL that depend much less on the performance of the underlying to the one addressed here. Prophecy variables have been used for
termination proving infrastructure. However, our strategy does rely many years to resolve nondeterminism in proofs, including some
on the assumption that, on average, the subtle correlations that arg@ecent work [27, 38]. Our use of Farkas’ lemma is similar to its use

tracked only on-demand in our approach do not occur frequently. in rank function synthesis [35] and invariant generation [40].

In cases where this assumption is not true, the cost of on-demand
inference of decision predicates may be higher than simply us-
ing traditional techniques. We will see an example of this later in
Section 6.

2. Algorithm

Our LTL proof procedure, ROVEL T, IS given in Figure 1. The

It is well known that determinization addresses the subtle se- algorithm is designed to iteratively find a sufficient set of decision
mantic distinctions between linear-time and branching-time log- predicates2 such that proof tools for CTL can be used to prove an
ics [39]. However, for infinite-state systems, open questions still re- LTL property ¢, of the system\/. The algorithm is based on four
main if we hope to develop a practical determinization-based strat- procedures which are each defined in later sections of the paper:

egy: a)whatto determinize, since complete determinization does
not lead to a viable automatic tool for infinite-state systems, and
b) how to determinize in a way that facilitates the application of
current formal verification tools. We address these two questions in
this paper.

Others have considered this trade-off between linear-time spec-
ifications and efficient branching-time verification procedures. For
example, Cadence SMV [1] reduces LTL to CTL using additional
fairness constraints [9, 14]. This technique still relies heavily on
reasoning about fairness. This is a sensible engineering choice for
finite-state systems for the reasons discussed above, but not for
infinite-state systems. Schneider describes a method of translating
an LTL formula into a semantically equivalent CTL formula [41].
However, this leads to an exponential blowup in the size of the
CTL formula, and requires a modification to the model checking
algorithm. Maidl identifies the subset ofCTL (called VCTL
which is expressible in LTL. Consequentially, for such formu-
lae, anVCTL prover can be used [31]. By contrast, our decision
predicate-based technique allows one to verify any LTL formula
using branching-time proof techniques in such a way that perfor-
mance is affected only in cases where tracking subtle correlations
between traces is actually required.

* APPROXIMATE (Section 3) is a simple procedure which ap-
proximates an LTL formula with an analogod€TL formula
in which universal operators are added éng(F becomesAF,
andG becomesAG). Without loss of generality we assume that
negations have been pushed to the atomic propositions of the
formula.

DETERMINIZE (Section 4) takes a transition system and a set of
decision predicate® and returns a new partially determinized
system in which newly introduced prophecy variables are used
to make predictions about the valuations of the decision predi-
cates int.

REFINE (Section 5) takes aWCTL counterexamplg and, in

the case thag represents multiple distinct paths through the
system, returns decision predicates which characterize the non-
determinism that distinguishes between the different paths. In
the case thay represents only a single path through the system
then REFINE returnsg,

* PROVEycrr.(Section 6) is arvy CTL-prover.
When = @, DETERMINIZE(M,2) = M. Thus, on the first

iteration of the loop our procedure is attempting to preyevia

Previous work has also examined different methods of repre- a simple approximatiogpc together with the original systed/.
senting systems [4, 6, 43] in order to facilitate proving linear-time When given a non-empty set of decision predicatestERMINIZE



builds M*? by conjoining the original transition relation & with

a relation that specifies the behavior of a prophecy variable for
each decision predicate. For any set of decision predidaies

pc holds, thenp, also holds. Thus, whenever we find a sufficient
set of predicates to provec, we have proveg, .

REFINE is used to determine if arvCTL-counterexample
found by RROVEvcr represents a real LTL-counterexample or
something spurious. At first glance there is a formidable se- In this graphpc = 5 indicates that the execution is at a state in
mantic gap between the two types of counterexamptesTL- which the program counter is at line 5. Our procedure usesNR:
counterexamples are trees, whereas LTL-counterexamples argo simultaneously symbolically simulate all possible paths through
traces. However, if all of the paths through the counterexargple this graph and try to unify them into a single path through
represent the same path or its prefixes, then any one of these path# this case it would begin its execution by visiting figst = 1
is a legitimate counterexample {9 . In this case RFINE returns and thenpc = 2, after which it would discover that, for all paths
@. Otherwise, ify represents more than one path in the program, of the graph to represent the same path, it must updy= 5
REFINE returns a non-empty set of new decision predicates. andpc = 3, which cannot be done. Thus, in this case, W&TL

counterexampley will be deemed spurious to the LTL property

) o and the decision predicatgc = 2,pc = 5) will be included
Example. Consider the LTL propert§fG(x = 1), which infor- in the Q' refinemertt. This decision predicatépc = 2,pc = 5)
mally can be readfor every trace of the systenx, = 1 will even- characterizes the choice: “when = 2, will pc’ = 5 or not?” Notice
tually become true and stay trueThe meaning of the analogous  giso that, in this particular case, the predicates selected are over
VCTL propertyAFAG(x = 1) is slightly more operationatOn all program locations, but this is not true in general (see Example 10
paths emanating from an initial state, the system eventually reachesin Section 5).
a state such that along all paths starting from this state, 1 will The procedure then use€DERMINIZE to generaté//?, which
be true and stay trueFor every transition system, #FAG(x = 1) is effectively the cross product dff and a new transition relation

holds, therFG(x = 1) holds. Furthermore, our experience leads Us \yhich updates a new prophecy variapléased on the valuations
to believe that provinAFAG(x = 1) is often an efficient method  of the decision predicat@c = 2, pc = 5):

of provingFG(x = 1). , ,
However, consider the following program, whergepresents /\{ s(pc) =2As'(pc) #5=5(p) #0As'(p) =s(p) - 1 }

nondeterministic choice: s(pc) =24 8'(,PC) =5=35(p)=0ns'(p)eZ
s(pc) # 2= s'(p) = s(p)

; :hilel’(*) { We might try to expres3/* in textual program code form as
; Skip;
4 x = 1;
5 X := 0; while (%) {
6 x = 1; [assume(p# 0); |
7 while (true) { p i=p-1;]
8 skip; skip;
9 } 1
assume (p = 0) ;
In this caseFG(x = 1) is valid, but unfortunatehAFAG(x = 1) p = *;
is not. FG(x = 1) is valid becausefor every individual program x := 0;
trace it is valid. For example, if a trace never leaves the loop at x = 1;
line 2, then the property is valid because 1 before entering the while (true) {
loop. For the traces that do leave the loop, 1 will become true at skip;
the command on line 6 and then remain true. V& L property is }

valid only if we can find a set of states that are eventually reached
from the program’s initial states such thE(x = 1) holds. In this
caseno such set of states exisend tools forvVCTL verification

will return counterexamples tAFAG(x = 1) that seemingly have

no relation to to the original properfyG(x = 1).

The heart of the problem is the nondeterministic choice between
the transition from line 2 to 3, and the transition from line 2 to
5. when we are in the loop at line 2 we cannot know if we will
eventually leave the loop or not. We struggle when trying to decide
if a state at location 2 is the point at whigh- 1 will be global true,
as it is onlyafter considering a full program trace that we would
know (i.e. in this case we need to be looking at sets of traces, no
sets of states).

We now illustrate the procedure in Figure 1 on this example.
Let o = FG(x = 1) and M be the example program from above.

This new prophecy variablepredicts the outcomes of the decision
predicate(pc = 2,pc = 5). We initialize p to be an integer. For
every given trace of the system, the concrete number chosen at
the command p := *" predicts the number of instances of the
transitions(pc) = 2As’(pc) # 5 before we see a transitiaiipc) =
2As’(pc) = 5. The choice of a negative numberd.—1) represents

the case where the execution will never seépx) = 2As’(pc) = 5
transition {.e. non-terminatior). Whenever the program makes a
transitions(pc) = 2 A s'(pc) # 5 it knows thatp # 0, because
the prophecy made previously does not allow it. The program also
+ decrementg whenever we sees(pc) = 2 A s'(pc) # 5 transition,

for we know that (if we are going to see it at all) we are one
step closer to seeing(pc) = 2 A s’(pc) = 5. If and when a

Our procedure approximates with APPROXIMATE(¢1 ) = ¢ = 2An_ additional decision predicate will also be returned by procedure,
AFAG(x = 1). As we described above, the progravh does not ~ Putitis notimportant for this example.
respect the propertyc. The counterexamplg to ¢c in M is an 3In later sections we use a special elemeitistead of negative numbers to

infinite tree which can be represented as a finite graph of transitionsrepresent non-termination, but for the purpose of thistilation negative
between program locations: numbers are easier.



s(pc) = 2 A s'(pc) = 5 transition finally occurs, we know that
p = 0. The program then predicts how masfpc) = 215" (pc) # 5
transitions will be visited the next time around until seeing another
s(pc) = 2 A s'(pc) = 5 transition (which will never occur in this
example). Because the old prediction is not needed again, we can
re-use the same variabtefor the new prophecy.

With the prophecy variablgin place, there is now a set of states
whereAG(z = 1) holds:

TELQEL TELYL
7l'|:|_(p|_/\’(/1|_
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= QDLWUJL

{s](s(p) <0 A s(pc) =2) v s(pc) = 6}
Furthermore we can prove that this set of states is eventually

reached. So we can now ust&CTL where it previously failed.
On the second iteration of the procedure from Figure 1yG6dL-

Figure 2: Semantics of LTLx,

counterexample will be found in/* and thus the LTL property
oL has been proved a¥/.

Note that if we remove the secomd:= 1 command from the
example, then the property, is false. In this case the variable
p will uniquely determine the number of iterations through the
first loop, and the counterexample returned will instead involve the
second loop. From thig CTL counterexample, we can construct a
valid LTL counterexample.

SEcwc V SEcYc
SIZCQOC\/ll}C

SEcpc SEcYc
Sbc(pc/\wc

r(slext)
SEc«

V(so0,81,...) etraces(I, R).3i > 0. so = s = $; =c ¢
s Ec AFpc

V(so0,51,...) €traces(I, R).Vi > 0. so = s = $; =c ¢
S Ec AGQDC

Preliminaries V(so,s1,...) € traces(I, R).

In the later sections of this paper we define each of the sub-| Vi 20.sicpc v 372055 Ecthc AVO<i<j.si e pc
procedures used in Figure 1e( APPROXIMATE in Section 3, sEc AlpcWabc]

DETERMINIZE in Section 4, etc). However, before moving to these
more detailed descriptions we must develop some terminology and
definitions that will be shared later. More details on any of our
formalities, including a Coq proof script, can be found in our com-
panion technical report [16].

Figure 3: Semantics 6fCTL: c

without a loss of generality, as final states can be encoded as states
that loop back to themselves in the transition relation. With coin-
the context of programs, will often treat it as a mapping from ductive reasoning we can show that there exists an infinite trace
variablesV to values. We will lets andt¢ range over states, and  from every state.

S represent a set of states. We assume that no two states are We use the notatiom|.,: to denote the projection of where
indistinguishableR will often be used to represent relations. When  internal components are removed:

R is represented symbolically.€. expressed as a formula) it will in n A

be over the unprimed variablés and primed variable¥”’. For a ((50,50); (s1,87); -+ )lext = (0,81, ...)

state predicate, the meaningp]®, is defined as the set of concrete  traces(I, R)|ex is similarly defined. We say that two systems are
states that respegt The relational meaning of a formufaover trace equivalent, notationally, if their sets of projected traces are
primed and unprimed variablefp[® is defined in the usual way.  equivalent. We define aabstract traceto be a sequence of state
When it is clear from the context that we mean the real relation abstractions. Aathis a special case of an abstract trace in which
as opposed to the symbolic formula representation, we will drop only the pc-valuations are given. A path or an abstract trace is
the [ |® brackets. The notations' and IT> mean the first and  spuriousif there does not exist a concrete trace from which we
second projection, respectively, of a relation. In cases where we can construct the path via a projection.

are representing programs with control-flow graphs we will assume
that states include a varialpe that represents the program counter
and whose value is taken from a finite doméim {¢1, ..., ¢, }.

States, sets, relations.We assume a domaiP of states and, in

Decision predicate vector. Formally we will treat2 as a vector of
pairs. Each element in the decision predicate vetsra predicate
pair denoted(a, b). We will use the vector index to refer to a
Transition systems. We define a machind/ = (S, R, I) where particular pair withinQ2, anda;, b; denote the components of the
I c S is the set of initial states an® c S x S is the transition ith pair. We use the notatian (s) to indicate that is in the set of
relation. In this paper we will be constructing new systems by states where; holds (i.e.s € [a;]) and similar forb;(s).

adding variables and equating them to their original versions. Thus,

it is convenient to build in a notion of internal and external state 3, APPROXIMATE : Proving LTL with VCTL

elements. We assume théit= S x S™ (i.e. states consist of an . . . . '
external (visible) component and an internal component). We refer N this section we describe #PROXIMATE, which defines a sound
over-approximation of LTL formulae with formulae WCTL.

to an individual state aés,s™) € S and when a machine has no

internal components, we omit the brackets. 3.1 Linear Temporal Logic (LTL)

Traces and paths. We define araceto be a sequence of states We use the following LTL grammar:

= ((50,Si0n>7<81»5i1n>7"') pL o u=

such thatso, sg) € I A Vi > 0.({(s:,57), (5i+1,5i%1)) € R We have not includedJ, R, X or —. Without loss of generality
We denotetraces(1, R) as the set of all such traces. For conve- we assume that negations appear only in atomic propositi@ns (
nience, we do not allow finite traces — the transition relation must instances of: have been pushed to the leaves of the formula). In the
be such that every statehas at least one successor state. This is context of programX is relatively useless and is easily subsumed

aloire oVl | Gol | Fou | ot Wer



by F. U andR can be encoded agi U 2 FioL A (L W1p) and

oL RYL £ LW (L A 9). The LTL semantics, notationally, ,

are given in Figure 2. The notatierf indicates asuffixof a trace
starting at theith state in the sequence. We usgto denote the
first element int. The superscript binds tighter than the subscript,
i.e.my = (7")o.

An atomic propositiony is from some abstract domain, and
we assume thatue, false € D and thatD is closed under negation
(i.e.Ya e D. 38 € D. [B]° = [-a]®). The operatoty, specifies
thaty, globally holds along all traces. The operakas, specifies
that along every trace, eventually a suffix will be reached where
holds. Finally, thep, W1, operator specifies that, holds forever
or ¢ holds untilyy. holds.

The LTL entailment relatior:, is defined on traces: the relation
7 EL L indicates thatp, holds for a given trace. We now lift =,
to machines.

Definition 3.1 (LTL Machine Entailment) Assume thatM =
(S, R, I). We define LTL-entailment, notationally =, ¢, as

Ve traces(I,R) . &=L L
3.2 Computation Tree Logic (CTL)
We now review existential-free computation tree logic:
wcu=alwc Apc | pc Ve | AGpc | AFpc | AlpcWec]

The semantics of CTL . are given in Figure 3. Unlike the trace-
based LTL semantics{CTL's semantics are state-based. By this

we mean that the temporal operators are state-based in structure—
the derivation of a given formula is per-state and depends on
the derivation of subformulae for subsequent states. The opera-

tor AGyc specifies thatpc globally holds in all reachable future
states. The operatokFyc specifies that across all computation

DETERMINIZE((S, R, I),Q) = (S, R®, I'*) where

5% SxN, denoteds, p)
% = IxN,
R® = {({s,0),(s",0")) | (5,8") € RAY(ai,b;) €.
l[ai(s) Api=1 = bi(s)Api=1] @
Aai(s) Api>0 = bi(s") Ap;=pi—1] @)
Aai(s)Api=0 = =bi(s")Ap;eN,] (3)
Al-ai(s) = pi=pil} (4)

andN, SNu {1}.

Figure 4: The [ETERMINIZE procedure which, when given a
vector of predicate pailQ, constructs the corresponding predicate-
determinized machine.

s Ec AFpc’ case the universal quantification tells us that for
m = (s0,81,...) that In.s, Ec @c’. By the inductive hypothe-
sis for all 7 € traces({sn}, R), we have thaf =, ¢.'. and thus
we have established the criteria for=, F,’. For further details,
see our companion technical report [16]. O

4. DETERMINIZE : Decision Predicate
Determinization

In this section we describe the procedureTBRMINIZE, which
uses decision predicates as it performs a symbolic form of partial
determinization.

sequences from the current state, that there is a reachable state iPartially determinized machines. Figure 4 contains the definition

which ¢ holds. Finally, theA[pc W1 | operator specifies thatc
holds in every state wheré: does not hold yet.

Definition 3.2 (VCTL Machine Entailment) As we did for=,,
we lift = to machines. Assum¥ = (S, R, I). We definevyCTL-
entailment, notationally/ ¢ ¢, to be

Vsel . RiskEL oL

3.3 Over-approximating LTL with VCTL

We describe a simple syntactic conversion from a formula in LTL
to its corresponding over-approximationWiCTL.

Definition 3.3. (APPROXIMATE) For all ¢,

APPROXIMATE( )
APPROXIMATE(pr A r)

«
APPROXIMATE(p)
APPROXIMATE(%),)
APPROXIMATE(p)
APPROXIMATE(%),)
AG APPROXIMATE(¢; )
AF APPROXIMATE(¢; )
A[APPROXIMATE(p; )

W APPROXIMATE(?), )]

Lemma 3.1. (VCTL Approximation) For a machind/ and LTL
propertyp;,

M =c APPROXIMATE(¢r) = M &=, ¢

APPROXIMATE(pr V 1)

APPROXIMATE( Gpr)
APPROXIMATE( Fy,)
APPROXIMATE(p; W ;)

< 1> 1

Proof. By corresponding structural induction on the formulae
APPROXIMATE(p) and ¢. We first unlift =c and .. Since
traces is defined overl, we are free to pick a state € I such
thats =c ¢c. We now pick a tracer € traces({s}, R) and the

for DETERMINIZE, Which is designed to return a partially deter-
minized machine when given a vector of predicdteand a ma-
chine:

M = DETERMINIZE(M, Q)

The new machiné/*? includes additional prophecy variables de-
noted p,;. These correspond to the predicate pdiis b;) in the
vector (2. In accordance with® these variables are free to be a
positive integer or zero ar in the initial state. We will see that the
choice of initial values (and the choice in Eqn. 3 from Figure 4) is
the driving force behind determinization. For simplicity we u&ed
instead oflN, in Section 2. We also now define the update relation
differently than we did in Section 2, in the sense that in Figure 4
the unprimed variables appear only to the left=efand primed
variables appear only to the right. While the two formalizations
are equivalent, the encoding in Figure 4 is conceptually more op-
erational and easier to implement within a tools setting, where in
practice we are modifying the existing transition relation\éf

Transitions inR are made in accordance with, but con-
strained by the values gfwhen states are reached that match a de-
cision predicatéa;, b;) in Q. Specifically, when a state is reached
wherea; holds and the prophecy variabje= 1L, thenb; must hold
in the next state ang; is unchanged (Eqn. 1 of Figure 4). This rule
corresponds to behaviors whereig s) state is visited infinitely
often. Alternatively, ifp; > 0 (Eqn. 2) therb; must also hold in the
next state, except that; is decremented. Whep; reaches zero,
then -b; must hold in the next state and is free to take a new
value fromN, starting the process all over (Egn. 3). Finally, when
a; doesn't hold of a particular statg; is unchanged (Eqn. 4).

The prophecy variables introduced here trad@edeterminism
in the transition relationR for a larger,nondeterministic state

appropriate case from the CTL semantics. For example, in the space The state space nondeterminism is either determined at ma-



chine initialization by the initial choice of values fprgiven by,

or else later in a trace (Eqn. 3) by choosing new nondeterministic
values forp. This lazy selection of nondeterministic values means
that M* needn’t consist of infinitely many prophecy variables for
each predicate pair. This formulation restricts us to treat programs
with only countable nondeterminism. One could conceive of more
powerful forms of nondeterminism, but we intend to use this tech-
nigue in the context of programs for which countable nondetermin-
ism is sufficient.

Theorem 4.1. For all Q, M = M.

Proof. The theorem holds if each of the conditidp$, P2, P3and

P4 andPB described below are met. These conditions are a varia-
tion of Proposition 5 from Abadi and Lamport [3]. ConditioR4,

P2, P3andP4 directly match Abadi and Lamport’s conditions. We
omit ConditionP5 as it involves liveness restrictions on the behav-
ior of machines and we assume that our machines have no livenes
restrictions. We loosen the restriction of Abadi and Lampdrés
with PB (detailed below), as our prophecy variables do not respect
the condition of finite nondeterminism. The new conditieB is

in fact a consequence &6: in the second part of the proof, Abadi
and Lamport show that all the behaviorsidfare contained within
M* (note that regardless of superscript= M becausé. = true).
Part 2.1 defines a directed graph, and then introduces Claim 2.
which is not true in our setting. However, Claim 2.1 is only used in
conjunction with Claim 2.2 and &nig’s Lemma in order to prove
Claim 2.3. In our setting we have simply included Claim 2.3 as
conditionPB. We now describe why each condition holds:

1

(P1) S? c S x ST for somes”. \/

(P2) I* = I1,,' (I) wherell,' mapsS x S ontoS. \/

(P3) If ((s,p), (s',p")) € R® then(s,s’) € Rors = s'. This holds
by construction ofR* from R. \/

(P4) If (s,8") e Rand(s',p") € S then there existg € S such
that ((s,p), (s',p’)) € R™. Again, this holds by construction
of R" from R, case splitting on the value pf and quantifying
overi e ./

(PB) For every(so, s1, ...) € traces(I, R) there existgpo, p1, ...)
such that((so,po), (s1,p1), ...) € traces(I?, R%)

Proof: Quantifying over each < ||, consider all of the (pos-
sibly infinitely many) transitionys;, sj+1) such thata;(s;)
holds. Now for each transitioby (s;.1) may or may not hold.
This can be modeled by:

(Im. 6" =bi) ™" (b77)

i.e. a head(Im > 0. b;"ﬁbi)“"* consisting of repeated in-
stances of finitely many;-states and a singleb;-state, and
a tail consisting of infinitely many;-states. So we can choose
p: accordingly, setting; = m in each (potentially zero or in-
finitely many) instances of the head, and setfing- L in the

tail. /

Further details are available [16].

O

Example 5. (Nondeterministic Choice) Consider the following
machine:

S = [N] denoted [y]
I = [g]
R o= {((81.[aD, (119D, ({51, L6D. (IF1.[8D}

In this transition relation there is nondeterminism in the first transi-
tion. We can determinize this with the predicaies(x = 0Ay = 0)

andb = (x = 1). With these predicates we can construct the corre-
spondingM .

S$? = [¥]xN, denoted ([}],p)

I = ([9],N)

RQ = {(<[8]71)7([(1)]70>)»(<[8]70)7([(1)]’NL>)7
(L6150, ([51,00), (LT, NL) ([T, N )}

The first two transitions have now been determinized: from the
initial state, depending on the initial choice pf either (x = 1)

or ~(x = 1) will hold in the next state. In this example, since
the nondeterministic transition only happens once, the (external)
behaviors whep > 1 or p = 1 in the initial state are all equivalent

to p = 1 in the initial state so, for presentation purposes, we have
omitted them. The additional behaviors will be used in the next
example.

Example 6. (Termination) Consider the following infinite-state
system which we represent symbolically

S = N denoted x
I = N
R = [(x>0AX =x+1)v(x>0Ax =0) v (x=0Ax =0)]F

In this transition relation, whex > 0 initially, there is nondeter-
'minism in how many times the first transition is chosen before the
second transition is chosen. We can determinize this with the pred-
icatesa = (x> 0) andb = (x > 0), constructing the corresponding
M** as follows:

5% = NxN,
I? = NxN,
R? = [(x>0Ap=1AX=x+1Ap =1)v

(x>0Ap>0ax =x+1Ap =p-1)v
(x>0Ap=0ax"=0np eN,)v
(x=0ApeN, AX =0Ap eN)F

In M* the first choice of how many times a transition frgxn>
0AX =x+ 1]]R is taken is given by the choice of an initial value
for p. Any finite number of iterations corresponds to an arbitrarily
chosen numeric value @f The case where the transition is taken
infinitely many times corresponds to the initial choice dor p.

Example 7. (Running example) For the example given in Section 2,
the state space of the original programds= {1, ...,¢9} x {0,1}
denotedbe, x. For Q = {(pc = £2, pc = £5) }, we have one prophecy
variable denotegh, s0S* = SxN, andI*® = {¢/;}x {1} xN,. The
transition relation (omitting some uninteresting arcs) is defined as
follows:

R® = [(x=1Apc=Llanp=1AX =1Apd =banp =1)v
(x=1Apc=lanp>0AX'=1Aapc =lanp =p-1)v
(x=1Apc=lanp=0AX"=1Apc =lsAp eN,)Vv

17
4.1 Proving LTL with VCTL and determinization

Lemma 3.1 shows that one can prove LTL properties withi @fL
verifier and an unmodified transition relation. We now extend this
to show that one can provedrhaps even moye TL properties
with VCTL and a predicate-determinized machine.

Theorem 4.2. (VCTL Approximation with Determinization) For a
machinelM, LTL propertyp,; and predicates?,

M = APPROXIMATE(p1) = ME, ¢



Proof. Lemma 3.1 says that/ =c APPROXIMATE(p) = M £,

L The process of predicate determinization constructs machine
M* from M such thatV/ = M. Since the two machines are trace
equivalent and it is known that trace-equivalent machines have the
same LTL-behavior, Lemma 3.1 applies to the new machine and

{(a,b), (a,-b)} suchthatR < [a A b']"
andR’ c [a A bR
if no sucha, b exist

PSYNTHp(R,R') =
@

hence the theorem holds. Further details are available [16].C]

Figure 5: Specification of P&ITH p which, when given symbolic

5. REeFINE: Decision Predicate Refinement

representations of two relations, returns predicate pairs that distin-

guishes them. An implementation of this procedure is described in

We now describe RFINE, our procedure which examines coun-
terexamples from a branching-time verification tool and discov-
ers predicates which characterize the nondeterministic branching

Section 6.

within them if any nondeterminism exists.

VCTL counterexamples. Counterexamples idCTL are trees [13].
The shape of the tree depends on the shape of the property which
is violated. While most tools typically do not annotate their coun-
terexamples with subformula, they could be made to do so. We
formalize anvCTL counterexample tree as follows:

Definition 5.1. (VCTL tree counterexample)
CEX, of 7

|  CEX, of x

| CEX,of xxx
| CEXAG of m x X
|

|

X

CEXA,':OfTrXWXX
CEXWOfﬂxxxx

REFINE(Y)
S =g
N := {no}

let ' = cefg(X|ext) in
while true do
let N' = {n"|ne NA3(n,r,n")el} in
let T = {r|neNA3n'.(n,r,n")eT} in
let Q = U, ver PSYNTHD (r,7') in
if Q=@ then
if N" u S =S then
return &
else
N := N’
S = SuN’

else
return 2
done

In the above definition there is a constructor for each structural ele- Figure 6: The RFINE procedure walks down a counterexample

ment of anvCTL formula. A counterexample to an atomic propo-

flow-graph, at each step simultaneously exploring all possible next

sition CEX,, is a (single state) trace where the atomic proposition steps. If any pair of possible next steps are distinguishable via
does not hold of the first element. A counterexample to a conjunc- a predicate from P&\NTHp then that predicate is immediately
tion CEX, is a counterexample to one of the conjuncts. A coun- returned.

terexample to a disjunctioBEX, is comprised of two counterex-
amples, one for each disjunct. A counterexan(@iX,¢ is a path

to a state in which a counterexample exists for the subformula. A
counterexampl€EXar is a “stem” path to an infinite “lasso” loop
where a counterexample exists for the subformula. A counterexam-
ple CEXyw is a path to a state where a counterexample exists for
both subformulae. For example, the counterexample to the property
AF((AGp) v (AGq)) consists of a stem and loop (for tAé& sub-
formula), and from within the loop a stem for ea&s subformula.
Equality= between counterexamples is inductively defined, lift-
ing equality between traces. We denotexdy.: the counterexam-
ple which consists of the external projection of paths in all com-
ponents. Often counterexamples from model checking tools may
contain less information than actual concrete traeeg. SLAM
returns abstract traces that include the valuationpcofogether

with the valuations of the predicates used during the failed proof
attempt).

In the AF rule, the counterexample is represented as a “stem”
with an infinitely-repeated “lasso” path, along which every sub-
tree is a counterexample to the subformula. In reality, not all coun-

cefg(no,y) = matchy with

| CEXq s —  (no, Id,no)

| CEXA x1 —  cefg(no, x1)

| CEXy X1, X2 —  cefg(no, x1) U cefg(no, x2)

| CEXaG 7, X1 — cefg_(no,n,) Ucefg(ng, x1)

| CEXaF m, 7, x1 —> cefg, (no,n1)Ucefg.(ni,n1)
U cefg(ni, x1)

| CEXw 7, x1 —  cefg_(no,n;) Ucefg(ng, x1)

wheren,, n; are fresh.

A
cefg (no,ng) = o
{(ni,rniea) |0 < <l A (g, m5™) € [r] "}
where eachn; is fresh anch, = ni;

Figure 7: Thecefg procedure consumes a counterexample and
constructs a counterexample flow graph, usiedg,_ to convert a
pathz to a graph component.

terexamples to termination can be represented this way. There are

some rare programs that do not terminate but whose counterexam- o

ples cannot be represented as a infinitely-repeated “lasso path.” Fodn this case we assume an approximation of the real counterexam-
example: ple has been found and has been encoded WEi¥ur . In some

instances this could potentially lead to divergence in our tool.
while (x > 0) {
y = X,
X x + 1;
while (y > 0) { y :

}

Counterexample control-flow graphs. From a given counterex-
ampley, we can construct a corresponding counterexample flow-
graph (CEFG)" which represents all paths in the counterexam-
ple. We use a standard graph-based notation, where modes

y-1;}



correspond to states in the counterexample, and edges are tripleRemark on completeness.There are a few impediments to mak-
(n1,7,n2) consisting of a starting node, a transition relation ing a completeness claim. First, for a givé@TL counterexample
from the counterexample and a destination node. Even when wey, the routine PSNTHp must be able to discover predicates to
are working with programs, these CEFGs are different from pro- characterize nondeterminism jn However, since we use approx-
gram CFGs because they represent possible state transitions: thergnation (.g. with linear arithmetic), it will not always be able to
may be multiple CEFG transitions for a single CFG transition (e.g. discover sufficient predicates when they exist.

when the program involves nondeterministic assignment) and there  Second, even when we have a perfecyR®4 p routine, some
maybe multiple CEFG nodes which have the same CFG node. A YCTL counterexamples may be spurious, as the underlyi@L
counterexample flow graph can be constructed from a counterex-also supports only overapproximation in linear arithmetic. Conse-

ample via the translation shown in Figure 7. quently, when RFINE(x) = @ we cannot necessarily claim that we

) ) ) - have a valid LTL counterexample. Furthermore, as mentioned pre-
Predicate synthesis. The procedure P&\THp (r, ") is specified  viously, there are some non-terminating programs that do not have
in Figure 5. It consumes two transition relatioRsR’ and returns gz infinitely-repeated “lasso path.” In these instancesy@e&L tool
two pairs of decision predicates: both, b) and(a, -b). We return itself will either hang or return spurious counterexamples.
both pairs because it is difficult to knampriori which will be more Finally, it is unclear whether our refinement loop will discover a
useful to the LTL proving procedure, as the information tracked finite number of decision predicates. With an infinite predicate vec-
by (a,b) differs slightly from that tracked bya,-b). Moreover,  tor 3>, all nondeterminism can be represented (given a sufficient
there are cases where tracking ofdyb) will resultin divergence,  predicate domain), but one would hope that for each program/prop-
whereag(a, -b) does not. erty there is a finite predicate vector.

The details of the implementation of PSTHp will differ,
depending on the contextd. finite-state systems expressed at the

bit-level, infinite-state systems expressed over linear arithmetic, example 8. (Running Example) For the example in Section 2, an
etc). We assume that for a given domdin(a) thatD is capable VCTL prover may generate the following counterexample:
of distinguishing two states and (b) that W& Hp is capable of

discovering sufficient elements il to do so. If these assumptions
do not hold then in some instances our technique may be unable (CEXar [11:[21,[2]
to sufficiently determinize. In our implementation, described in ! totl
Section 6, we use constraint-solving techniques to find predicates
which are monomials over linear inequalities.

:: [?] [%]7CEX0& [g])

where a state is represented 85 |. From this counterexample,
we usecefg to construct the counterexample flow-graplgiven

in Section 2. Each arc represents a possible transition within the
counterexample tree. the procediReFINE then walks all possible
paths of the control-flow graph simultaneously, starting from the
first node as follows:

Symbolic tree execution. The recursive proceduregRINE, given

in Figure 6, consumes anCTL counterexample and returns a set
of predicates which distinguish nondeterministic branching. This
involves first constructing a counterexample flow-graph, and iter-
atively exploring the frontier. RFINE simultaneously steps down
each possible branch of the counterexample, ensuring that all of
the next states are equivalent usingviR$H p (see the P8NTHp

specification in Figure 5) to find distinguishing predicates. When lteration 1. = N = {n0}, S=
distinct states are found, the corresponding predicates are returned, lteration 2: N = {n1}, S ={n0,nl}
so that they can be addedstoand the main algorithm can reiterate. lteration 3: N = {n2,n3}, S ={n0,nl,n2,n3}

Progress. We now show that for a given counterexampleif

REFINE discovers predicates, then our algorithm produces a new After the first and second iteratiofsSyNTH p does not discover a
machine for whichy|e: is not a counterexample. We also show predicate to distinguish the two branches, but after the third call
that, if no predicates are found byERNE, then a real counterex-  to REFINE, the predicate pairgpc = {2, pc = £3) and (pc =

ample to the original LTL property can be constructed frja:. Uy, pc + ¢3) are discovered, which distinguish paths that remain
. o in the loop or exit the loop. A new machine is then constructed with

Lemma 5.1. (Counterexample elimination) For a machidé™, prophecy variables corresponding to these decisions, and for this

propertyyy, new machine aiCTL verifier can prove that the property holds.

if y is a counterexample td/*’ = APPROXIMATE( ;)

then? counterexamplg’ to M ¢ APPROXIMATE(¢; )

such thaty|ex = X' |ext Example 9. Consider the following program for which we would

like to provep, = (FGy=1) v (Fz >t):
whereQ’ = Q U REFINE(y) and REFINE() # @.

Proof. Let (as,b;) € REFINE(y). By definition of REFINE in Fig- for x =y =05 € =%

ure 6 this predicate pair must have come from a subcomponent of ;- Whl)ljff)

the counterexamplg flow graph of the form(n,,n"), (n, 7', n"). Elj £ = %
Moreovera; (IT'(r)), b:(IT*(r)) and —b; (I12(r")). Now, in the it (xet)
new machine the prophecy vector is augmented with a new element Ei y=1;

pi. So the set of states denotdd' (r), p) have eithep; = 0 or p; € while (true)
{1,1,2,...}. According toR*, either((IT* (1), p), (I1*(r), p)) is 5 skip;

enabled or els¢(I1' (1), p), (II*(+"), p)) is enabled, but not both.
Hence, there is no valid counterexamplesuch thatyex: = X’ ext-
Further details are available [16]. g The machine representing this program can be encoded as follows:



ro ro z':,z+1 rz
T e cemxae [ fx| ||| | OB a (X [ 48 ]),
A L¢o] Le] | oc/=pc | L 41
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("CEXar | 56 56 56 56 56 |, 1d, (CCEXa | 56 |)))
2 2 05 04 o pc=ls
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( CEXar 506 506 506 506 516 516“ ) [d»( CEXa "516“)))
Ly 0y 12 O3 04 5 L5
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Figure 8: Counterexamples for each of the three iterations of proviagnile 9. The notatioiid indicates the identity transition (arising

from the loop at line’s).

Third lteration

First Iteration Second Iteration

Figure 9: The counterexample flow graphs that are constructed at
each iteration of proving Example 9.

N x 0
S = [g] denoted [3{] I:[g]
L pc Lo
R = [(pc=torpd =tinx' =xny =yat' =t)v

(pc=tloApc =lana’ =zny =yt =t)v
(pc=tinpd =tinz’ =z+1ny =ynat =t)v
(pc=liApc =lonz’ =z +1ay =yt =t)v
(pc=tloApc =lzna’ =z rny =yat eN)v
(pc=tlsnpd =lanz<tnz' =xny =ynt =t)v
(pc=tlanpc =tlsnx>tna’ =xny =yat =t)v
(pc=tlanpd =lsnz’ =zrny =1at' =t)v
(pc=tlsnpd =tsna’ =z ny =yt =t)]F
Using anVCTL prover, we may obtain the first counterexample

in Figure 8. From this counterexample, we usgf g to construct the

first counterexample flow graph in Figure 9. Each arc represents a

possible transition within the counterexample tree. The procedure

REFINE then walks all possible paths of the control-flow graph
simultaneously, starting from0 as follows:

Iteration 1: N ={n0}, S=02

In this iteration, REFINE finds thatN’ = {n1,n2} and thatR =
{(€o,41), (Lo, l2)}. Taking the (only) pair of relations fronR,
PSYNTHp generates the predicate pai(gc = ¢y, pc = ¢1) and
(pc = 4o, pc+ £1). Corresponding prophecy variables are created,

and theVCTL verifier is used on the newly constructed machine,
resulting in the next counterexample in Figure 8. We then get the
second counterexample flow graph in Figure 9 and ReEFINE
explores it as follows:

S=2
S ={n0,n1,n2}

Iteration 1:
Iteration 2:

N = {n0},
N ={n1,n2},

After the first iterationP SYNTH p does not discover any predicates
to distinguish the two branches, but after the second iteration the

predicate pairs(pc = ¢1,pc = £1) and (pc = £1,pc + {1) are
discovered, which distinguish paths that remain in the loop or exit

the loop. They CTL verifier is executed once again, resulting in the

third counterexample in Figure 8. The counterexample flow-graph
is given in Figure 9 andREFINE explores it as follows:

Iteration 1: N = {n0}, S=9

Iteration2: N ={nl1,n5}, S ={n0nl,n5}

Iteration 3: N ={n2,n6}, S ={n0,n1,n5n2,n6}
Iteration4: N ={n3,n7}, S ={n0,n1,n5n2,n6,n3,n7}

In the final iterationP SYNTH p discovers the predicate paifpc =

lo,t > x) and(pc = £2,t < ). Notice that the second predicate is
over a program variable other thgpc — in the next example we will
see thapcis not always sufficient to distinguish paths. Running the
VCTL verifier one more time yields no counterexamples. Hence the
original LTL property holds.

Example 10. In the examples above, almost all predicates were
over the program counter variabjec. In many cases, the program
counter serves as a convenient way of distinguishing paths through
the program. However, this is not always the case. Consider proving
the property(G z = 0) v (F = = 20) for the following program:

lo:

X 0;
while(x<20)

x = (x==0)%{0,1} + (x==1)%20;
while(true)

skip

l1:
0o

The notation{0, 1} represents nondeterministic choice between 0
or 1. The LTL property holds because in traces where this non-
deterministic choice is always 0, the propegyz = 0 holds. For
any trace in which the nondeterministic choice is 1, the property
F z =20 holds.



We shall represent the state §3] wherez ¢ N. An VCTL
prover will generate the following counterexample (tdG =
0) v (AF z=20):

(CEX., (CEXAG{&J::{ﬁ}::[é},(CEXA [;IE))
(CEXar [ ][0 ][0 ],1d, (CEX. [£])))
For this counterexampl®EFINE would explore the corresponding
CEFG, and discover the decision predicate pdits= 0,z = 1) and
(z = 0,z # 1) which distinguish the transition| ¢, |, [/, ]) from
([2].[2 ])- Importantly, there is no predicate over the program
counter variable alone which distinguishes these two transitions.

We can now synthesize a prophecy variable corresponding to this

decision predicate and anCTL prover will discover a proof of the
VCTL property, implying that the original LTL property holds.

6. Implementation

In this section we discuss some details of our implementation of
the algorithm in Figure 1, our implementation of €& TL prover,
and the results of our tool when applied to example programs.

Predicate synthesis. In Section 5, we have assumed the existence
of a predicate synthesis mechanismyR$Hp that met the con-
straints given in Figure 5:

{(a,b),(a,-b)} suchthatr c [a A b']}
andR’ ¢ [a A -b']R
if no sucha, b exist

PSYNTHp(R,R) =
@

Depending on the configuration of the systems considered by the

tool, PSYNTHp will need to be implemented in different ways.

Here we describe a particular method of synthesizing predicates

for counterexamples drawn from the style of programs typically ac-

cepted by modern model checking tools for infinite-state programs.

As is true in many symbolic model checking tools for software,

we will assume that counterexamples are sequences of commands

drawn from a path in the program. We will assume that these

commands are over a finite set of arithmetic variables, and that
the conditional checks and assignment statements only use linea
arithmetic. Given this context, an implementation can represent the

relations passed to R8TH p as conjunctions of inequalities using
variables. For example, the command sequence

ly1: x:=x-1;
lo1: assume(x > 0);
Zlo LYy E=EX

which might represent a piece of a counterexample can be repre-

sented as a relation from valuations @y, pc) to valuations on
(x',y’, pc") where

3X17X07y17y0'

M

pc="La Apc =lig Ax=x0 AX =x1 Ay =Yyo Ay =y1
x1=%X0—1Ax1>0Ay1 =x1

expressible as the conjunction of inequalities usfndhe second
and third constraints force the functiga—which is expressed only
over the primed variables—to distinguish between two transitions.
As done elsewhere [35], we can apply Farkas’ lemma [23] and
an SMT solver €.9.2Z3 [2] or Yices [20]) to find linear functions
fi and g; that satisfy the above constraints. Thus, to implement
PSYNTHp (R1, R2) we find familiesf andg satisfying the above
constraints. We then return the predicate péirsh) and (a, -b)
where

and b

A 9i(V)>0

iedom(g)

a =

N fi(V)>0

iedom( f)

Awitness to3V’. Ry A 3V'. R, can be computed using a quantifier
elimination procedure, or alternatively, an additional application of
Farkas’ lemma. In practice, however, a good guess is simply to take
the valuation ofpc from both R; and R», i.e. S = pc = ¢, where

Ry = pc=/fandRy = pc = /.

Proving VCTL for infinite-state systems. We useVCTL verifi-
cation tool for infinite-state programs, described elsewhere [17].
Our VCTL prover works by reducing the task ®fCTL verifica-

tion, via a program transformation, to an interprocedural program
analysis problem. Thus, we can use known safety analysis tools
[5, 11, 19, 26] combined with techniques for refining termination
arguments [7, 8, 18, 22, 37] to obtain &CTL verification tool
whose power is limited only by the power of these underlying
tools. The transformation uses recursion and nondeterminism in
such a way that when these tools are applied to the transformed pro-
gram, they effectively perform the necessary reasorgngkack-
tracking, eventuality checking, tree counterexamples, abstraction,
abstraction-refinement, etc.) to prove branching-time behaviors of
the original program. Formally, our transformati@nworks as fol-
lows: For a progran® and anvCTL propertyoc,

IM. T (P, M, pc) cannot returralse

whereM is assumed to be a finite set of disjunctively well-founded
relations [36]. The new program (P, M, ¢c) is constructed by

= P':cgﬂc

'recursively walking the structure @bc. Instances ofAF(p) is

syntactically decomposed into proving termination to a set of states
in which p holds; AG(p) can be decomposed into checking that
holds at each line of the program, ei4 can be thought of as
the argument of progress when provipg. Once a suitable set
M has been found, proving th@i( P, M, ¢c) cannot return false
can be accomplished with existing interprocedural analysis tools.
Satisfying instances of can be found using the same technique
as is used in ERMINATOR [18]. In our implementation we use
SLAM [5] as the underlying safety prover, ancARk FINDER [35]

as the method of finding new ranking functiofisrom spurious
counterexampleg.

Experiments. We have drawn out a set of LTL challenge prob-
lems from industrial code bases. Examples were taken from code
models of the 1/0 subsystem of the Windows kernel, the back-end
infrastructure of the PostgreSQL database server, and the Apache

We can reduce the search for predicates in this setting to the wep server. We also include a few toy examples, as well as the ex-
SeaI’Ch for funCtlonS Sat|Sfy|ng a set Of constraints. In th|S Instance amp|e from Figure 8in [15] Further details on our benchmarks‘

we hope to find families of affine functionsandg such that the
following conditions are true

1. (3V".R1 A3V".R2) = Ajegom(s) fi(V) >0
2. R = /\iedom(g) gl(vl) >0
3. Ry = _‘(/\iedom(g) gl(vl) > 0)

The set of pre-states common to both relati®asand R, are given
S = 3V'.Ry A 3V'.R,, i.e. we are existentially quantifying out

including sources are available in our companion technical re-
port [16].

In many cases, heap-commands from the original sources have
been abstracted away using the approach due to Magill [30].
This abstraction introduces new arithmetic variables that track the
sizes of recursive predicate found as a byproduct of a suctessfu
memory safety analysis using an abstract domain based on separa-
tion logic. This abstraction also may introduce extra nondetermin-

the post-states by quantifying out the variables that are used toism into the transition relation which, in more complex cases, may

represent them. We then find an over-approximatiors ghat is

force our method to synthesize decision predicates.



Fair termination tool [15] || Decision predicates tool (Figure 1)

Program LOC || Property Time (s) | M| | Result || Time(s) | M| | || | Result
Example from Section 2 51 FGp 2.32 1 v 1.98 1 1 v
Example from Fig. 8 of [15] 34 || G(p=Fq) 209.64 1 v 27.94 0 0 v
Toy acquire/release example 14 || G(p = Fq) 103.48 3 v 14.18 1 0 v
Toy linear arith. 1 13 || p=Fq 126.86 1 v 34.51 1 0 v
Toy linear arith. 2 13 || p=Fgq T.O. 1+ ?2?7? 6.74 1 0 v
PostgreSQL strmsrv 259 || G(p = FGq) T.O. 5+ ??7? 9.56 0 0 v
PostgreSQL strmsrv+bug 259 || G(p = FGq) 87.31 0 X 47.16 1 0 X
PostgreSQL pgarch 61 || FGp 31.50 2 v 15.20 0 0 v
PostgreSQL dropbuf 152 || Gp T.0. 2+ ?2?? 1.14 0 0 v
PostgreSQL dropbuf 152 || G(p = Fq) 53.99 1 N 27.54 2 0 N
Apacheaccept () liveness 314 || Gp = GFq T.O. 1+ 2?? 197.41 1 2 N
Apache progress 314 || G(p= (Fq1 vFq2)) 685.34 0 N 684.24 0 0 v
Windows OS fragment 1 180 || G(p = Fq) 901.81 2 v 539.00 2 0 v
Windows OS fragment 2 158 || FGp 16.47 0 v 52.10 3 3 v
Windows OS fragment 2+bug 158 || FGp 26.15 0 X 30.37 0 0 X
Windows OS fragment 3 14 || FGp 4.21 0 v 15.75 1 1 v
Windows OS fragment 4 327 || G(p = Fq) T.O. 7+ 2?? 1,114.18 1 0 v
Windows OS fragment 4 327 || (Fa) v (Fb) 1,223.96 5 v 100.68 1 0 N
Windows OS fragment 5 648 || G(p= Fq) T.O. 1+ | 2?22 T.O. 0 0 ?7?7?
Windows OS fragment 6 13 || FGp 149.41 2 v 59.56 1 0 v
Windows OS fragment 6+bugg 13 || FGp 6.06 0 X 22.12 0 0 X
Windows OS fragment 7 13 || GFp T.O. 1+ ?2?7? 55.77 1 0 N
Windows OS fragment 8 181 || FGp T.O. 1+ 2?? 5.24 1 0 v

Table 1: Comparison of fair termination based LTL prover [15] to denigi@dicate based algorithm from Figure 1 . Examples drawn from
PostgreSQL database server, Apache web server, as well as théoBgstem of the Windows OS. The property column indicates the shape
of the temporal properties, whepeandq are atomic propositions specific to the program/Andicates that the tool has proved the property,
whereas g indicates that a valid LTL counterexample has been folfadndicates the number of decision predicates needed|Mdifthe
number of progress measures requife@. indicates that the experiment timed out after 4 hours, and in such casgsawify at least how
many termination arguments were needed (denejed

The only previously known tool for automatically proving LTL- We implemented support for fairness in our decision predicate
like properties of infinite-state programs is described in [15], which based approach tool in order to support Figure 8 of [15]. This is
is a TERMINATOR-like [18] procedure with an extension for fair-  due to the fact that one of the fairness constraints actually comes
ness. [TL2BA [24] is used to convert LTL formulae toiBhi au- from an environment assumption and thus must still be modeled.
tomata. As we have done in our implementation of Figure 1, the Our support for fairness uses essentially the same recipe as given
implementation of [15] uses SLAM as the underlying safety model in [15], combined with the source-to-source transformation.
checker, and RNK FINDER [35] as the rank function synthesis tool. As mentioned in Section 1, a limitation to our approach is that

Table 1 reports the results of our experiments. The first column there are cases when we see a minor performance penalty for our
describes the code artifact. We added bugs into several of thestrategy of only tracking correlations on demaady(in “Windows
examples. The second column “LOC” reports the number of lines OS fragment 2.”) We also see some minor overhead when comput-
of code for each example. We studied the results for properties of ing real counterexamples.g.in “Windows OS fragment 2+bug”).
differing shapes (e.gG(p = Fq), FGp, GFp, etc.). Experiments The most dramatic aspect of Table 1 is the overall result: our
were run using Windows Vista and an Intel 2.66GHz processor.  decision predicate based LTL prover was able to prove/disprove all

For both tools we report the total time, the number of ranking but 1 example in usually a fraction of a minute, whereas the fair
functions required (denoteldM|), and the result for each of the  termination based tool fails on nearly a quarter of the benchmarks.
benchmarks. A/ indicates that the tool proved the property, and This is due to our strategy of first trying to us€TL proof strate-

X is used to denote cases where bugs were found. In the case thagies, and only tracking subtle relationships between families of
the tool exceeded the timeout threshold of 4 houfQ"” is used traces on demand using decision predicates. Without our approach
to represent the time, the result is listed &7, and we simply we could not reliably use aCTL-based proof strategy with pre-
report the current size gM| at the time that the tool was killed  cision equal to native LTL-based approaches. In each of thé€xe
together with a “+” symbol. cases but one our decision predicate based tool proves all of the ex-

For our approach we report the number of decision predicates amples with reasonable runtimes (resulting i Furthermore,
required|Q?|. For these examples relatively few prophecy variables our tool reported no spurious counterexamples: in the cases where
are usually required. This confirms our assumption that faster CTL- a purely VCTL-based approach would have been incomplete for
based techniquassuallywork, so long as we have a fast method LTL (resulting in a spurious counterexample), our refinement pro-
for evaluating the potential spuriousness of CTL counterexamples, cedure quickly found and then symbolically shifted the problematic
and an effective strategy of refinement when CTL methods fail. We nondeterminism into the state-space of the system.
also observe thgM] is typically smaller when using the decision
predicates based tool.
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vol. 4144 ofLNCS Springer, pp. 81-94.

EsPARzA, J., KUCERA, A., AND SCHWOON, S. Model-checking
LTL with regular valuations for pushdown systems.TRCS(2001).

7. Conclusion

We have described a new algorithm for proving LTL properties
of infinite-state systems. Our algorithm searches for instances of
nondeterminism that preclude the use of CTL-based proof methods.
We characterize these instances of nondeterminism using decision
predicates, and then symbolically shift them into the state-space
using a partial-determinization procedure. The advantage to this (21]
approach is that CTL proof methods can be used where they would )
have previously failed. We find in practice that most instances of [22] FANG, Y., PITERMAN, N., PNUELI, A., AND ZUCK, L. Liveness

nondeterminism is harmless to CTL proof methods. Thus, in many
cases, we see performance improvements when using this strategy.
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