
Learning to Decipher the Heap for Program Verification

Marc Brockschmidt1, Yuxin Chen2, Byron Cook3, Pushmeet Kohli1, Daniel Tarlow1

1 Microsoft Research 2 ETH Zurich 3 University College London

Abstract

An open problem in program verification is to ver-
ify properties of computer programs that manip-
ulate memory on the heap. A key challenge is to
find formal descriptions of the data structures that
are instantiated, which are used as input to a proof
procedure that verifies the program. Standard ap-
proaches to the problem are to severely restrict
the space of data structures that can be recognized
(e.g., just lists), or to use search guided by hand-
specified heuristics. In this work, we explore a
machine learning-based approach, where we exe-
cute the program and then learn to map the state of
heap memory (represented as a labelled directed
graph) to a logical description of the instantiated
data structures. We formulate the learning prob-
lem as one of mapping from graphs to an element
of a grammar over data structure descriptions. We
report preliminary empirical results showing this
to be a promising new direction.

1. Problem Description
Consider the following program fragment:

int maxLen(ToL* t) {
if (t == NULL) return 0;
int len = length(t->value);
int rLen = maxLen(t->right);
int lLen = maxLen(t->left);
int cLen = rLen > lLen ? rLen : lLen;
return (len > cLen ? len : cLen);

}

where length computes the length of a list. Suppose
that we would like to prove that all pointer dereferences in
this program are valid and will not cause the program to
crash. How can we characterize the program’s heap at the
beginning of maxLen so as to guarantee this property? One
answer is “a binary tree of lists”, i.e., a nested data structure
whose top level is a binary tree, and each tree node points to
a (linked) list. In separation logic, a logic used to describe

Proceedings of the Constructive Machine Learning workshop @
ICML 2015. Copyright 2015 by the author(s).

heap structures, this can be expressed as follows:

listtree(x) ≡ x = NULL

∨ ∃v, l, r.list(v) ∗ listtree(l) ∗ listtree(r)
∗ x 7→ {val : v, left : l, right : r}

list(x) ≡ x = NULL

∨ ∃v, n.list(n)
∗ x 7→ {val : v, next : n}

Here, x 7→ {val : v,next : n} means that x points to a
memory region that contains a structure with val and next
fields whose values are in turn v resp. n. The ∗ connective
is a conjunction as ∧ in Boolean logic, but additionally
requires that its operators refer to “separate” parts of the
heap. Thus, listtree(x) implies that x is either NULL, or
that it points to three values v, l, r on the heap, where the
“value” v has to satisfy the list predicate and l and r are
in turn again described by listtree. We can then prove
that under the assumption listtree(x), no program run will
fail due to dereferencing an unallocated memory address
(this property is called memory safety) using a Hoare-style
verification scheme (Hoare, 1969),

The hardest part of this process is coming up with the de-
scription of data structures, and this is where we propose to
use machine learning. Given a candidate description, tools
from static program verification (Piskac et al., 2014) can
determine whether the description is accurate and whether
the description allows one to prove that the program satisfies
the desired properties (e.g., memory safety). Thus, from the
machine learning perspective, we can focus on generating
a small number of candidate descriptions, and if any one is
correct, then we have succeeded on the example.

Given a new program at test time, we will run it a small
number of times, extract the state of memory at relevant
program locations (e.g., at the beginning of method calls),
and then predict a separation logic formula. In reality we
will map from several memory states from the same program
location to a separation logic formula, but in this paper for
simplicity we treat the problem as mapping from a single
memory state to a separation logic formula. This paper
describes our initial approach to this problem.

Learning to Decipher the Heap for Program Verification

1
x

23 4

5
t

6

7

8

9

10
t

11
t

12

13

14

15
t

0
1 2

1

1

1
1

0

1

1
1

0
1

1 10

1
1

Figure 1. Binary tree of panhandle lists described by the formula
ψ = tree(x, λi1, i2, i3, i4 → ∃t.ls(i2, t, λi5, i6, i7, i8 → >) ∗
ls(t, t, λi9, i10, i11, i12 → >)). > denotes the “true” formula
which holds for any heap, often used to express that there is no
further description of a nested data structure.

2. Formalization
Input Representation. As inputs we consider directed,
possibly cyclic graphs representing the heap of a program.
These graphs can be automatically constructed from a pro-
gram’s memory state; an example graph appears in Fig. 1.
Intuitively, each graph node v corresponds to an address in
memory at which a sequence of pointers v0, . . . , vk is stored.
For the purpose of this work, we discard non-pointer values.
Edges reflect these pointer values, i.e., v has edges labeled
with 0, . . . , k that point to nodes v0, . . . , vk, respectively. A
subset of nodes are labelled as corresponding to program
variables (x but not t; see below).

Output Representation. To describe the shape of the heap,
we use separation logic, which is a common tool to reason
about heap-manipulating programs in formal verification.
Just as a first order formula φ(x1, . . . , xn) denotes a set
of allowed valuations of variables x1, . . . , xn, a separation
logic formula describes a set of allowed heaps. We refer
to O’Hearn et al. (2001); Reynolds (2002) for a precise
description of the semantics of separation logic.

As we have seen in §1, inductive data structures such as lists
or trees are described using inductive predicates such as ls
for list segments and tree for trees. We do not define a pred-
icate listtree for trees of lists, but generalize our predicates
such that they allow for nested subformulas that restrict the
shape of values included in the data structure, following
Berdine et al. (2007). For example, tree(x, ϕ) means there
is a binary tree that starts at variable x, and each value of the
list is described by the formula ϕ. For this, the subformula
ϕ takes 4 arguments, which are instantiated by the corre-
sponding values of fields. So for example, in Fig. 1, the
subformula of the tree predicate is instantiated by values 1,
2, 3 and 4 at the root x, where the first value is the only argu-

Formula

∃Var.Heaplets

t Heaplet

ls(Expr,Expr,λ Var,Var,Var,Var → Formula)

Var Var i5 i6 i7 i8 Heaplets

i2 t >

Figure 2. Parse tree of ∃t.ls(i2, t, λi5, i6, i7, i8 → >) subformula
of ψ from Fig. 1. Terminal symbols underlined. ∗> fragments
dropped for brevity.

ment of the tree predicate, and the next three correspond to
the values of fields val, left, right. Thus, the formula
∃t.ls(2, t, λi5, i6, i7, i8 → >) ∗ ls(t, t, λi5, i6, i7, i8 → >)
is derived, describing the “panhandle” shape of the list.

The formula ψ in the caption of Fig. 1 describes a tree of
so-called “panhandle lists.” In the figure, nodes contain the
address they are representing and are labeled with variable
names to the side. Blue nodes are elements of the tree
data structure, having three outgoing edges labeled 0, 1, 2.
Edges which are not displayed lead to the special NULL
value. Green nodes are part of the nested list data structures.
Each of the green boxes corresponds to a subheap, which
is the inner part of a nested data structure. Note that t
is not a program variable, but a name that is introduced
through existential quantification. We have found it useful
to explicitly label the heap graph node(s) that correspond to
existentially quantified variables (the t’s in Fig. 1), so we
may assume that these correspondences are also included
in the output representation (though they are not needed to
specify the separation logic formula or by the downstream
verifier).

3. Approach
Our aim is to automatically predict a separation logic for-
mula from a given heap H , i.e., given the graph in Fig. 1,
obtain ψ from the caption. We consider separation logic
formulae described by the following grammar:

Formula→Heaplets | ∃Var.Heaplets | ∃Var,Var.Heaplets | . . .
Heaplets→> | Heaplet ∗ Heaplets
Heaplet→ls(Expr,Expr, λVar,Var,Var,Var→ Formula)

| tree(Expr, λVar,Var,Var,Var→ Formula)
Expr→NULL | Var

We denote the symbols occurring in the grammar with S,
and use N ⊂ S to refer to the subset of nonterminal sym-
bols that have appear on the left side of a production. The
nonterminal Formula is the start symbol of the grammar.

Learning to Decipher the Heap for Program Verification

Any formula in the fragment of separation logic we consider
has a unique parse tree according to this grammar. An
example parse tree is displayed in Fig. 2. Based on this, we
can assume we observe full parse trees for each formula in
the dataset. The benefit is that it allows a directed model
over trees, where at training time all quantites are fully
observed. This means that maximum likelihood training
can be treated as independent classification problems of
predicting the child of each parent nonterminal in the tree.

Notationally, we represent parse trees as tuples T =
(A, g(·), ch(·)) where A = {1, . . . , A} is the set of nodes,
g : A → S maps a node to a terminal or nonterminal node
in the separation logic grammar, and ch : A → A∗ maps
a node to a tuple of nodes that are its children in the tree.
Nodes are labeled from smallest to largest according to a
depth-first, left-to-right traversal of the parse tree.

A partial tree T<a is a parse tree T restricted to nodes
{1, . . . , a − 1}. We formulate the model over trees as a
sequential prediction task where we traverse over nodes, at
each step predicting the next node conditional upon every-
thing that has been predicted so far. That is,

P (T) =
∏

a:g(a)∈N

p(ch(a) | H, T<a). (1)

For each nonterminal type, we extract nonterminal-specific
features of both the input heap graph and the partial tree
that has been generated so far. There are two key challenges
here: first, there are several non-standard prediction prob-
lems; for example, when deciding to declare an existential
variable within a nested data structure, this amounts to simul-
taneously choosing a corresponding heap node within each
subheap, which we view as a structured prediction problem.
These correspondences are used in later feature computa-
tions. Another example is when predicting the child of a Var
nonterminal, there are a variable number of possible vari-
ables to choose from, so we define a model that keeps track
of which variables are in scope and only ever choose from
amongst the legal options. Second, it is important to craft
features that depend jointly on the partial tree that has been
generated so far and the input heap graph; we experimented
initially with a feature set that was simply a concatenation
of features φ(H) and φ(T<a), and performance was poor.

As an example, consider observing a heap graph correspond-
ing to a list that originates at variable x and ends at variable
y, and suppose we have generated a partial tree that corre-
sponds to the formula ls(x, ?, ?); that is, we have decided
that there is a list that originates at x, but we have not spec-
ified where it terminates or what values the list has. Our
task is now to predict where the list terminates. If we have
a set of candidate variables and want to determine which
could be chosen for the first ’?’, a useful feature is whether
the variable is reachable if one starts at the node in the heap

graph labelled x and traverses edges in the forward direction
(since all nodes in a list should be reachable from the start
point). We call this a joint feature because it is jointly a
function of decisions we have made so far about the formula
(that the list in question starts at x) and the heap graph (the
reachability determination). Further details of the features
and nonterminal-specific prediction problems are omitted
due to space constraints.

4. Data & Experiments
We can generate synthetic (labeled) datasets of arbitrary
size and complexity using a simple enumeration strategy.
First, fix a set of predicates, which in our case are ls and
tree (extensions could consider doubly-linked list segments,
multi-trees, . . .) together with their inductive definitions.
Second, decide on a set of shapes constructed from these
basic predicates. In the current version of the dataset, these
are simple lists, cyclic lists, panhandle lists and trees. Then,
given a set of program variables and a maximal nesting
depth of data structures, we obtain separation logic formu-
las by enumerating all possible combinations of basic shapes
instantiated by the given program variables. This yields 127
formulas for one variable and one level of nesting, 33254
for the case of two variables and one nesting level, and 3515
for four variables and no nesting. The dataset size grows ex-
ponentially in the size of all parameters. Given a separation
logic formula, we can then enumerate corresponding heap
graphs of a growing size to obtain a dataset of (heap graph,
separation logic) pairs.

For this work, we have produced one dataset of 1757 for-
mulas sampled from the four variable, no nesting set, with
500 heap graphs per formula, which yields 878,500 for-
mula/heap graph combinations. To evaluate, we split the
data into training, validation and test sets using a 6:2:2 split
on the formulas (i.e., the formulas encountered in the test
set were not encountered in the training set). We measure
correctness by whether the full heap graph produced at test
time is logically equivalent to the ground truth; equivalence
is approximated by canonicalizing names and orders of the
formulas then comparing for exact equality. We evaluate
top K accuracy (how often was the ground truth was in a
set of K predictions) for K = 1 and 10. We compare our
model with a variant that uses a concatenation of syntax
tree and heap features (note this subsumes a probabilistic
context free grammar conditional upon the heap graph).

Method Top 1 Acc. Top 10 Acc.
Concatenation features 0.05% 0.07%
Joint features 91.5% 91.6%

Table 1. Test Results

Learning to Decipher the Heap for Program Verification

The difference in performance between the two models is
dramatic, which shows that a machine learning approach is
viable, but significant care must be taken in the definition
of features in order to make it work. An example instance,
which was labelled correctly, appears in the Appendix.

5. Related Work & Discussion
In program verification over the past decade, several data-
driven program analysis methods have been proposed (e.g.,
(Ernst et al., 2007; Csallner et al., 2008; Khyzha et al.,
2012) and many others). In the data-driven setting, a set of
(hopefully representative) program runs is observed, and a
program invariant is deterministically derived by generaliz-
ing from these observations. This prediction is then verified
using a theorem prover, and a proof failure can be viewed
as another program run that needs to be generalized.

Recently, implementing this generalization step for the re-
stricted class of “numeric programs” with machine learning
techniques has been shown to be viable (Sharma et al., 2012;
2013; Garg et al., 2014; Krishna et al., 2015). In these ap-
proaches, a binary classifier is trained to separate states
occurring in program executions from those that do not.
The learned classifier is then interpreted as the program in-
variant; e.g., a separating hyperplane is viewed as a linear
expression (Sharma et al., 2012), or a decision tree as a
disjunctive invariant (Krishna et al., 2015). Our approach
is unique in the richness of the invariants that can be out-
put, and in the approach of directly outputting a symbolic
description of the occuring states.

In addition to doing larger-scale experimentation, we are
now working on integrating our model into a full verification
framework, and we expect the resulting tool to succeed on
program verification tasks far beyond the reach of existing
methods.

References
Berdine, Josh, Calcagno, Cristiano, Cook, Byron, Diste-

fano, Dino, O’Hearn, Peter, Wies, Thomas, and Yang,
Hongseok. Shape analysis for composite data structures.
In Proceedings of the 19th International Conference on
Computer Aided Verification (CAV ’07), volume 4590
of Lecture Notes in Computer Science, pp. 178–192.
Springer, 2007.

Csallner, Christoph, Tillmann, Nikolai, and Smaragdakis,
Yannis. DySy: dynamic symbolic execution for invari-
ant inference. In Proceedings of the 30th International
Conference on Software Engineering (ICSE ’08), pp. 281–
290. ACM Press, 2008.

Ernst, Michael D., Perkins, Jeff H., Guo, Philip J., McCa-
mant, Stephen, Pacheco, Carlos, Tschantz, Matthew S.,

and Xiao, Chen. The Daikon system for dynamic detec-
tion of likely invariants. Sci. Comput. Program., 69(1-3):
35–45, 2007.

Garg, Pranav, Löding, Christof, Madhusudan, P., and Neider,
Daniel. ICE: A robust framework for learning invariants.
In Proceedings of the 26th International Conference on
Computer Aided Verification (CAV ’14), volume 8559 of
Lecture Notes in Computer Science, pp. 69–87. Springer,
2014.

Hoare, Charles Antony Richard. An axiomatic basis for
computer programming. Communications of the ACM,
12(10):576–580, 1969.

Khyzha, Artem, Parizek, Pavel, and Pasareanu, Corina S.
Abstract pathfinder. ACM SIGSOFT Software Engineer-
ing Notes, 37(6):1–5, 2012.

Krishna, Siddharth, Puhrsch, Christian, and Wies, Thomas.
Learning invariants using decision trees. CoRR,
abs/1501.04725, 2015.

O’Hearn, Peter, Reynolds, John C., and Yang, Hongseok.
Local reasoning about programs that alter data structures.
In Proceedings of the 15th International Workshop on
Computer Science Logic (CSL ’01), volume 2142 of Lec-
ture Notes in Computer Science, pp. 1–19. Springer, 2001.

Piskac, Ruzica, Wies, Thomas, and Zufferey, Damien.
GRASShopper - complete heap verification with mixed
specifications. In Proceedings of the 20th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS ’14), volume 8413
of Lecture Notes in Computer Science, pp. 124–139.
Springer, 2014.

Reynolds, John C. Separation logic: A logic for shared
mutable data structures. In Proceedings of the 17th IEEE
Symposium on Logic in Computer Science (LICS ’02), pp.
55–74. IEEE Computer Society, 2002.

Sharma, Rahul, Nori, Aditya V., and Aiken, Alex. Inter-
polants as classifiers. In Proceedings of the 24th In-
ternational Conference on Computer Aided Verification
(CAV ’12), volume 7358 of Lecture Notes in Computer
Science, pp. 71–97. Springer, 2012.

Sharma, Rahul, Gupta, Saurabh, Hariharan, Bharath, Aiken,
Alex, Liang, Percy, and Nori, Aditya V. A data driven ap-
proach for algebraic loop invariants. In Proceedings of the
22nd European Symposium on Programming (ESOP ’13),
volume 7792 of Lecture Notes in Computer Science, pp.
574–592. Springer, 2013.

Learning to Decipher the Heap for Program Verification

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

arg2: 0

arg3: 7

arg0: 1 arg1: 4

28

v 0: 10

10

19

25

31

16

37

13

22

34

43

40

1 4

7

Figure 3. Example input graph from dataset and correctly predicted formula, ∃v0.ls(arg0, v0,>)∗ls(arg1, arg3,>)∗ls(arg3, arg3,>)∗
ls(v0, v0,>).

