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Abstract—Dynamically allocated and manipulated data struc-
tures cannot be translated into hardware unless there is an upper
bound on the amount of memory the program uses during all
executions. This bound can depend on thegeneric parameters
to the program, i.e., program inputs that are instantiated at
synthesis time. We propose a constraint based method for the
discovery of memory usage bounds, which leads to the first-
known C-to-gates hardware synthesis supporting programs with
non-trivial use of dynamically allocated memory,e.g., linked lists
maintained with malloc and free. We illustrate the practicality
of our tool on a range of examples.

I. I NTRODUCTION

C-to-gates synthesis promises to bring the power of hard-
ware based acceleration to mainstream programmers and to
radically increase the productivity of digital designers [17].
However, today’s C-to-gates synthesis tools do not supportone
of the most powerful and widely used features of high-level
programming in C—dynamically allocated data structures.
Thus, with today’s tools we usually cannot synthesize gates
from off-the-shelf C-based software. The support for dynamic
memory abstraction remains an on-going research problem
because of the need to efficiently and accurately determine
a bound on heap consumption.

This paper advances the state-of-the-art in hardware syn-
thesis by providing support for programs that dynamically
allocate, deallocate, and manipulate heap-based data struc-
tures. Our technical contribution is a constraint-based method
for finding a symbolic bound on the maximum heap size at
compile time. This symbolic bound is expressed as a function
on the generic parametersto the circuit description.1 With
our method for computing symbolic bounds we can then au-
tomatically translate C programs with dynamic memory usage
into equivalent programs that operate over statically allocated
arrays. That is, when circuit descriptions are instantiated in
their surrounding designs, the symbolic bounds can be used
to compute concrete bounds for use during synthesis.

Our method significantly increases the expressive power
available to the users of synthesis systems. For example, with
our new C-to-gates synthesis flow, a designer can think in
terms of a tree-based data structure (e.g.as used in a Huffman
encoder), yet generate hardware that operates on a flat fixed
sized array. Furthermore, off-the-shelf libraries can nowbe
used as subroutines by digital designers. This leads to better re-
use, as well as new avenues of adapting software verification
techniques for use in hardware systems.

1The term generic parameter is used in hardware design languages to
describe variables whose values will be known at compile-time.

Related work. C-to-gates synthesis is a maturing field with
notable systems—see [6], [7], [13], [18], [21], [26], [32],[33].
Some existing C-to-gates synthesis systems already support
pointers and pointer aliasing, seee.g. [31], but they do not
deal with dynamically allocated data structures.

Synthesis tools for other general purpose programming
languages also exist (e.g. tools supporting Scheme [29], or
Haskell [3]). In a few rare instances (e.g. [5]) tools have
been used not only to generate hardware but also the circuit’s
correctness proof as well. These tools usually require the user
to estimate the maximal amount of memory allocated by the
program and take this quantity as an input parameter to the
synthesis routine. Thus, the results of our work can perhaps
be used with these existing tools.

In the domain of pure functional programming languages,
the topic of heap-bounds analysis has been extensively inves-
tigated, seee.g. [19]. For imperative programs, [20] develops
a type system which tracks memory consumption. The Java
memory-bounds tool described in [1] uses a heap abstraction
and applies heuristics based on arithmetic simplification to
find a memory bound. In contrast, our method uses a more
precise numerical abstraction for dealing with heap, as we
keep track of the size of intermediate list segments identified
by the shape analysis when dissecting the heap, which was
crucial for dealing with our examples. Furthermore, instead of
using heuristics for finding the bound expression, we apply a
constraint based boundedness analysis which is complete for
linear bound expressions provable using linear invariants.

The semi-manual technique proposed in [4] uses the
Daikon [11] to collect likely program invariants—including
facts about memory consumption—and uses them to derive
an initial set of bound candidates.

In principle, the existing techniques for proving computa-
tional complexity,e.g.[14], can be used as a basis to design an
algorithm for discovery of memory usage bounds. However,
since we are only interested in bounds expressed over generic
parameters, a major challenge is to bias the bound discovery
method towards such well-formed bounds. Our constraint
based procedure solves this challenge.

Our approach for finding symbolic bounds uses several
known methods and tools as sub-procedures, such as shape
analysis (e.g. [10], [23], [25]) and abstraction methods based
on the introduction of new variables (e.g. [22], [24]). Our
new constraint-based method draws influence from previously
developed methods for invariant generation and rank function
synthesis (e.g. [9], [30]).



void prio(int n,in signal i,out signal o) {
LINK ∗tmp,∗c,∗buffer;
assert( n>0 );
while (1) {

buffer = NULL;
// Build up an n−sized sorted buffer
for (int k=0;k<n;k++) {

buffer = sorted insert(input(i),buffer);
}

// Send the sorted list to the output and
// deallocate the buffer as we walk it
c=buffer;
while(c!=NULL) {

output(o,c−>data);
tmp = c;
c = c−>next;
free(tmp);

}
}

}

Fig. 1. Priority queue circuit specification in C, using off-the-shelf imple-
mentation ofsorted_insert. The genericparametern is assumed to be
specified at compile-time.

II. EXAMPLE

Imagine that we would like to build ann-size priority queue
circuit that reads integers from an input signal and returns
everyn input integers on an output signal in sorted order—
such a circuit is key to the development of a Huffman encoder.
See the functionprio in Fig. 1 for an example of how we
might wish to write a specification of the desired hardware
in C. Our intention is that the variablen in Fig. 1 is a
generic parameter, whereasi ando should be thought of as
signal names. Our synthesis tool treats these in a special way
as standard C, of course, does not make this distinction. In
this example we assume that the circuit usesinput() and
output() as primitives for I/O on the signal variablesi and
o. LINK is a C struct used to represent singly-linked lists (with
fieldsdata andnext). We make use of an existing off-the-
shelf insertion-sort implementation,sorted_insert. See
Fig. 2 for the source code ofsorted_insert.

Note that in order to convert this program into hardware
we must first find ana priori bound on the amount of heap
during the execution ofprio, for any input or parameter.
The problem is thatsorted_insert does not guarantee
a concrete bound on the amount of heap allocated while its
executing, instead it preserves a bound–it takes a state where
k heap cells have been allocated and returns a state in which
k+1 have been allocated. Thus we must hope to find a bound
on the amount of heap used bysorted_insert from states
limited to those reachable fromprio.

If we can find this bound, then we can convert the program’s
operations on the heap into operations on statically-allocated
arrays, thus facilitating synthesis. We aim to find a bound that
holds across the entire program, but is expressed symbolically
using only the generic parameters to the top-level function(i.e.
the parametern of the circuitprio). This allows us to pre-

LINK ∗ sorted insert(int data, LINK ∗l) {
LINK ∗ elem = l;
LINE ∗ prev = NULL;
LINK ∗ x = (LINK∗)malloc(sizeof(LINK));
assert(x!=NULL);
x−>data = data;
while (elem != NULL) {

if (elem−>data >= x−>data) {
x−>next = elem;
if (prev == NULL) { l = x; return l; }
prev−>next = x;
return l;

}
prev = elem;
elem = elem−>next;

}
x−>next = elem;
if (prev == NULL) { l = x; return l; }
prev−>next = x;
return l;

}

Fig. 2. Off-the-shelf implementation of incremental insertion sort procedure.

allocate a shared array when creating instances of the circuit
prio.

The procedure given later in Section III is designed to find
a functionf such that it is a program invariant thatf(n) is
larger than the number of heap cells allocated at any given
time during its execution. In this case the procedure described
later will find the functionf(n) = n ∗ 8, assuming that
sizeof(LINK) = 8 in the encoding.

With f we can now re-encode the program using a pre-
allocated array. In essence, when we know the valuations to
the input parameters we can then pre-allocate an array usingf .
We then convert dereferences like*c into a[c]. Field offsets
are explicitly encoded:c->data is encoded asa[c+0], and
c->next is encoded asa[c+4].

From this program (and via a translation into VHDL) we
then used the Altera Quartus II 9.0 tools to construct an
implementation for the Stratix III FPGA architecture. Using
default synthesis and implementation options and withn = 10,
the generated circuit uses 5859 adaptive look-up tables, 4598
logic registers and 8192 block memory.

III. F ROM HEAPS TO ARRAYS

In this section we describe an analysis that automatically
discovers symbolic bounds on the heap usage. We will assume
that the size parameters passed tomalloc are fixed constants.
Through the use of static analysis, we annotate each call to
free with the amount of memory the call is freeing. For
example, we would transform the callfree(tmp) from
Fig. 1 to free(tmp,sizeof(LINK)). For simplicity of
presentation we will assume that programs allocate and free
heap cells of a single fixed size. We can support multiple size
allocations through the use of compile-time partial evaluation,
but at the cost of complexity in the notation in this section.
We currently do not support arbitrary DAGs or hash-tables,
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due to the limitations of existing separation logic based shape
analysis tools [8], [10], [23], [25] of which we are dependent.

Our procedure is divided into the following steps.
a) Numerical heap abstraction:First, we augment the

program with a new variableh, which is used to track the
amount of heap that is currently allocated. The variableh is
incremented whenmalloc is called, and decremented when
free is called. For memory-safe programs such behavior ofh is
correct. We use the shape analysis tool THOR [25] to determine
the shape of the data structures used during the program’s
execution, and to prove memory safety. Using techniques from
[24], THOR can be used to produce a new program without
heap that is a sound abstraction of the original program—
additional integer variables are added by THOR to summarize
the sizes of data-structures. Thus, bounds found onh in the
abstraction imply bounds in the original program. Note that
the new program variables range over integers of arbitrary size
(i.e. they cannot be represented in 32 or 64 bits).

b) Numerical bounds analysis:Next, we apply our
constraint-based boundedness analysis to the numeric program
to find a symbolic boundf on the maximum value ofh.
For improved scalability we combine our constraint-based
synthesis approach with a counterexample-guided method of
checking and refining candidate bounds.

c) Array-based heap management and synthesis:Once
we have computed a symbolic bound (assuming that a bound
can be found) we throw away the abstraction and then convert
the original program into an array-based program operating
over a pre-allocated shared array and then apply off-the-shelf
synthesis tools to produce a gate-level design. Note that,
although we may sometimes compute a conservative over-
approximation for a bound on memory usage, it is often the
case that a downstream synthesis tool can perform further
pruning to yield a gate level implementation that does indeed
have a better (or even ideal) bound. A simple case of this
scenario is when a list is used to represent a bit-vector which
is used in arithmetic expressions with known range at synthesis
time allowing some of the upper bits to be pruned.

The following sections discuss the above procedures in more
detail.

IV. N UMERICAL HEAP ABSTRACTION

A shape analysis tool is designed to take a program and
compute an invariant for each program location describing the
shape of the heap. The invariant describes the data structures
stored in the heap during the program’s execution. Shape
analysis tools are based on symbolic simulation together with
abstraction techniques.

Using techniques described in [24], the shape analysis tool
THOR can be used to introduce new variables which soundly
track the sizes of data structure shapes inferred by the shape
analysis. In the example of the functionprio, THOR would
introduce a variablekb recording the length of the linked list
starting frombuffer. At the commandbuffer = NULL,
we initialize kb to zero. At the linesprev->next = x
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[n>0];
h=0; kb=0;

k=0;

[kc==0];

[k>=n];
kc=kb;

[k<n];
k++;
kb++;
h++;

[kc>0];
kc--;
h--;

Fig. 3. Numerical abstraction of procedureprio shown from Fig. 1.
Commands of the form[e]; denote assume statements.

within sorted_insert, the length of that linked list is
increased; therefore the abstraction will incrementkb. Sim-
ilarly, THOR will introduce another variablekc recording
the length of the linked list fromc. Corresponding to the
assignmentc=buffer, the abstraction will setkc=kb, and at
the assignmentc=c->next, the abstraction decrementskc.
Also, when we exit thewhile(c!=NULL) loop, we know
thatc==0, and hence alsokc=0.

Fig. 3 shows the control-flow graph (CFG) of the resulting
abstraction ofprio. The CFG contains three nodes corre-
sponding to the three loops in theprio function. These
nodes are connected by the edges which are annotated with
the code occurring between the locations. The transitions
between locations come in two forms: assignmentsv=e; and
assumption checks[e];. The assumptions prune executions
in which the conditione does not hold.

For brevity, calls to the functionsorted_insert in
Fig. 3 have been summarized as the transition{kb++;h++;}
from location 7 to 7, but our technique is designed to work
for a fully expanded CFG of the code.

V. NUMERICAL BOUNDS ANALYSIS

Preliminaries. Our shape analysis procedure produces a pro-
gram P = (V, h, P,L, `init , T ) that consists of a set of
variablesV , a heap consumption variableh ∈ P , a set of
generic parametersP ⊆ V \ {h}, a set of locationsL, an
initial location `init ∈ L and a set of abstract transitionsT .
Each transitionτ ∈ T is given by a tuple(`, ρ, `′) where
`, `′ ∈ L andρ is a constraint overV ∪V ′, where the variables
in V ′ represent the values of variablesV after the transition
is executed. Each transition relation preserves the valuesof
generic parameters,i.e., for each(`, ρ, `′) ∈ T we have

∀V ∀V ′ : ρ → P ′ = P .

A states is a valuation ofV . A computationis a sequence of
location and state pairs(`1, s1), (`2, s2), . . . such that̀ init is
the initial location,i.e., `1 = `init , and for each consecutive
pair (`i, si) and(`i+1, si+1) there is a transition(`i, ρ, `i+1) ∈
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T such that(si, si+1) |= ρ. A states is reachable at a location
` if the pair (`, s) appears in some computation.

An invariant at a location` ∈ L is a superset of all
reachable states at`. We represent invariants by formulas over
the variablesV . An invariant mapInv assigns an invariant
to each location. In particular, we haveInv(`init ) = true,
i.e., every state is reachable at the initial location. We will
use primed notationInv(`)′ for Inv(`)[V ′/V ]. An invariant
map Inv is parametric if it does not restrict the values of
program variables besides the generic parameters and the heap
consumption variable,i.e., for each` ∈ L we have

∀V : Inv(`) ↔ (∃V \ (P ∪ {h}) : Inv(`)) .

An invariant mapInv is inductiveif for each program transi-
tion (`, ρ, `′) ∈ T we have

∀V ∀V ′ : (Inv(`) ∧ ρ) → Inv(`′)′ .

We are interested in a parametric invariant mapBnd that
bounds the heap consumption. Formally, we will search for
Bnd such that for each̀ ∈ L we have

∀P ∃c ∈ N ∀V \ P : Bnd(`) → h ≤ c .

Then, the maximal value of the constantc among all program
locations determines the maximal amount of memory that is
dynamically allocated during the program computation.

For proving thatBnd is valid we will need an inductive
invariant mapInv . Formally, we require that for each̀∈ L
holds

∀V : Inv(`) → Bnd(`) .

Bounds analysis algorithm.Fig. 4 presents our constraint-
based procedure BOUND for discovering heap consumption
bounds. The procedure takes as parameters a programP , an in-
variant template mapInv

T , and a bound template mapBnd
T .

It returns either a valid bound map or an exception if no such
map can be found.

The template maps used by BOUND are reminiscent of
those used in constraint-based invariant generation [9], [30]
and rank function synthesis [27]. A template map assigns an
assertion over program variables andtemplateparameters to
each program location. The template mapInv

T may use a
template of the form

α1v1 + ... + αnvn ≤ α ∧ β1v1 + ... + βnvn ≤ β ,

which is a conjunction of two linear inequalities with the
template parametersα1, ..., αn, α, β1, ..., βn, β and program
variablesV = {v1, . . . , vn}.

The bound template mapBnd
T given to BOUND as input

assigns to each program location a bound template of the form

h ≤ δ1p1 + · · · + δmpm + δ ,

where δ1, . . . , δm, δ are template parameters andP =
{p1, . . . , pm} aregenericparameters. SinceBnd

T only refers
to P andh, it guarantees to yield parametric bound invariants
only.
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procedure BOUND

input
P = (V, h, P,L, `init , T ): program
Inv

T : invariant template map
Bnd

T : bound template map
var

Q: template parameters inInv
T andBnd

T

Ψ: auxiliary constraint overQ
begin

Ψ := true

foreach ` ∈ L do
Ψ := Ψ ∧ ∀V : Inv

T (`) → Bnd
T (`)

foreach (`, ρ, `′) ∈ T do
Ψ := Ψ ∧ ∀V ∀V ′ : (Inv

T (`) ∧ ρ) → Inv
T (`′)′

Q := free variables inΨ
if existsM such thatΨ(M) then

return Bnd
T [M/Q]

else
raise “no bound found”

end
Fig. 4. BOUND discovers bounds on the value of the variableh, which keeps
track of the amount of dynamically allocated memory.

BOUND collects a conjunction of constraintsΨ over tem-
plate parameters for both template maps in lines 1–5. These
constraints encode the condition that the computed bounds
must be valid. Lines 2–3 state that the bounds hold for
all reachable states, which are represented by an invariant
map induced by the invariant template mapInv

T . Lines 4–5
encode the condition thatInv

T in fact represents all reachable
program states.

We collect all template parameters in line 6. If our constraint
solving procedure can find a satisfying assignment toΨ, then
this assignment defines a bound map in line 8. Otherwise,
BOUND raises an exception.

The transition relations in the programP produced during
the shape analysis phase are conjunctions of linear inequalities
overV andV ′. For our templates consisting of linear inequali-
ties, we eliminate the universally quantification overV andV ′

in lines 3 and 5 of BOUND by applying a standard technique,
see e.g. [9], based on Farkas’ lemma [12]. The resulting
constraintΨ is a conjunction of non-linear inequalities and
can be efficiently solved using the existing tools,e.g. [15],
[16].

The soundness and completeness of BOUND is formalized
in the following theorem.

Theorem 1. The procedureBOUND is complete for bound
expressions in linear arithmetic provable using linear arith-
metic invariants,i.e., in this case it computes a bound map.
The procedureBOUND is also sound,i.e., it computes a bound
map that represents an upper bound on the memory usage.

Example.Consider the program in Fig. 3 over the variablesn,
h, k, kb, andkc. The only generic parameter is the variablen.
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We consider a template mapInv
T that assigns to each

program location a conjunction of two linear inequalities.For
example, for the locatioǹ7 we have

Inv
T (`7) : αnn + αhh + αkk + αkb

kb + αkc
kc ≤ α ∧

βnn + βhh + βkk + βkb
kb + βkc

kc ≤ β ∧

γnn + γhh + γkk + γkbkb + γkckc ≤ γ

The bound template at this location is

Bnd
T (`7) : h ≤ δnn + δ .

Next, BOUND creates a conjunction of constraintsΨ over
the template parameters from all program locations. We only
present two constraints fromΨ that are created at lines 3 and
5 for the locatioǹ 7 and the loop transition at the location`7

respectively. The first constraint is the implication

∀n ∀h ∀k ∀kb ∀kc : Inv
T (`7) → Bnd

T (`7) .

The second constraint involves the transition relation of the
loop:

∀n ∀h ∀k ∀kb ∀kc ∀n′ ∀h′ ∀k′ ∀k′
b
∀k′

c
:

(Inv
T (`7) ∧

k < n ∧ n
′ = n ∧ h′ = h + 1 ∧ k

′ = k + 1 ∧

k
′
b

= kb + 1 ∧ k
′
c

= kc) →

Inv
T (`7)

′

We solveΨ and obtainδn = 1 and δ = 0 for the bound
template parameters occurring in the location`7, i.e., we have

Bnd
T (`7) = (h ≤ n) .

The corresponding invariant map assignsh ≤ kb∧kb ≤ k∧h ≤
n to the location`7. In our example, the bound occurs in
the corresponding inductive invariant; in general, however, this
need not be the case.

Incremental bounds analysis.The constraint-based proce-
dure BOUND performs an expensive computation—non-linear
constraint solving—and does not scale beyond medium-sized
programs. We improve the scalability of BOUND by per-
forming the boundedness analysis in an incremental fashion
using the idea of path invariants [2]. We apply the expensive,
constraint-based procedure only to certain program fragments,
which are determined automatically.

Fig. 5 presents our BOUND-based procedure INCBOUND

for an incremental discovery of heap consumption bounds
for the full program from its fragments. Initially, the bound
map states that no heap consumption takes place, see line 3.
Then, this claim is verified in lines 6–7 using a verification
tool for proving program safety. Such a tool is applied on
an augmented program that is obtained fromP by adding a
distinguished error locatioǹerr that is reachable if the heap
bound claimed byBnd is not valid. In the case of a false
bound, the algorithm will return a counterexample in the form
of a sequence of transitionsπ that leads to heap consumption
beyond the claimed bound.
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procedure INCBOUND

input
P = (V, h, P,L, `init , T ): program
Inv

T : invariant template map
Bnd

T : bound template map
var

Bnd : bound map
`err : distinguished error location
TE : transitions for bound assertion checking

function PATHPROGRAM

input
π : sequence of transitions

begin
return (V, h, P,L, `init ,

{τ | τ = (`, ρ, `′) occurs inπ and`′ 6= `err})
end;
begin

Bnd := λ` ∈ L.h ≤ 0
repeat
TE := {(`,¬Bnd(`) ∧ V ′ = V, `err) | ` ∈ L}
if existsπ ∈ (T ∪ TE)∗ from `init to `err

such thatρπ 6= ∅ then
Pπ := PATHPROGRAM(π)
try

Bndπ := BOUND(Pπ, Inv
T , Bnd

T )
catch

return “unbounded consumption pathπ”
Bnd := λ` ∈ L.Bnd(`) ∨ Bndπ(`)

else
return “bound assertion mapBnd ”

done
end

Fig. 5. INCBOUND performs an incremental boundedness analysis using
guidance from spurious counterexamples.

In case a counterexampleπ is found, we identify a fragment
of P that is traversed by the transitions occurring inπ. This
code fragment is defined by a path programPπ for π [2],
see lines 1–2. In particular, the path programPπ traverses the
same loops ofP that are visited byπ.

We compute an adjustmentBndπ for the bound map by
apply the procedure BOUND on the path program, see line 10.
The adjustment is used to weaken the claimed bound, see
line 13.

This sequence of incremental adjustments continues until
either the full programP satisfies the claimed bound map or
a path that for which no heap consumption bound can be found
is discovered.

The soundness and completeness properties of INCBOUND

are inherited from the procedure BOUND and the notion of
path invariants.

Theorem 2. The procedureINCBOUND is complete for bound
expressions in linear arithmetic provable using linear arith-
metic invariants,i.e., in this case it computes a bound map
and terminates. The procedureINCBOUND is also sound,i.e.,
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[n>0];
h=0; kb=0;

k=0;

[k>=n];
kc=kb;

[k<n];
k++;
kb++;
h++;

Fig. 6. Path program for the program from Fig. 3 and a path consisting of
transitions between the locations(`init , `4), (`4, `7), (`7, `7), and(`7, `13).

1 32 4 5 6 7 8 9
10 153 0 9... ... ... ...

ml

a
1 3 6 7 9
10 0 ... ... ...3

8
15 127

2 54

xelemprev

ml

a

Fig. 7. Creation of a newLINK structure in the array-based heap imple-
mentation.

it computes a bound map that represents an upper bound on
the memory usage.

Example.Consider finding a bound forh in the program from
Fig. 3. In the algorithm from Fig. 5 we start with a candidate
boundh ≤ 0 at each location. We can then attempt to prove
that h ≤ 0 at every location using a symbolic model checker
(this corresponds to lines 5-7 of Fig. 5. In this caseh ≤ 0 is
not necessarily true at location7 in Fig. 3, in which case the
symbolic model checker will return a witness counterexample
path. Imagine that we get the pathπ = 4 → 7. In this case
PATHPROGRAM(π) will return a sub-program of Fig. 3, as
found in Fig. 6. We can then find a bound on this sub-program,
resulting in h ≤ n. Thus, we refine the candidate whole-
program bound to beh ≤ 0 ∨ h ≤ n. Repeating the steps
from lines 5-7 allows us to prove thath ≤ 0 ∨ h ≤ n is a
valid bound for the whole program. After simplification, we
returnh ≤ n.

VI. A RRAY-BASED HEAP MANAGEMENT

Numerical boundedness analysis computes a bound on the
maximal amount of memory that is dynamically allocated
during program computation, and represents this bound as a
function of generic parameters. When synthesizing a hardware
implementation, the generic parameters are instantiated.Hence
we obtain a concrete bound, sayN .

Next, we replace all heap operations in the programP by
operations on a statically allocated arraya of size N . Each
pointer to the heap becomes an array index. Field accesses
are converted into arithmetic operations over array indices. For

example, the statementc = c->next; from the program in
Fig. 1 becomesc = a[c+4];.

We use a list of array indices that is embedded into the
arraya to keep track of free array cells. Each list element is
an index of a free cell. We introduce a global variablem that
stores the head of the list, and hence the cell at indexm is
free. Then, the value ofa[m] is the next list element, which
is the index of the second free cell stored in the list. We obtain
the third element by accessinga[a[m]] and so on. Initially
m = 0 and the arraya is initialized in the following way:

∀0 ≤ i < N : a[i] = i + 1 .

A call to malloc() consumes the head of the list. That
is, x = malloc() is implemented by the sequence of in-
structionsx = m; m = a[m];, where the first assignment
delivers the free cell and the second assignment ensures that
the subsequent call tomalloc will return the next free cell in
the list. We do not need to check whether the free list empty
because the boundedness analysis guarantees that it will never
happen, i.e., we havem ≤ N .

Fig. 7 illustrates the array-based treatment ofmalloc.
We assume that the heap stores data structureLINK, whose
size is two integers, and that each array cell is of size one
integer. The array on the left is free starting at the index 7,
as represented by the valuationm = 7, a[9] = 9, etc. After
executingx = malloc(2);, assigningx->data = 12;,
the cell at index 7 is no longer free. It stores the data value 12.
The next free cell becomes the first one available, i.e., we
havem = 9. After identifying the predecessor and successor
of x, i.e., inserting x into the sorted heap, we obtain the array
show on the right in Fig. 7.

A call to free(x) pushesx onto the free list. That is, this
call translates to a pair of statementsa[x] = m; m = x;.
The last freed cell will be the first free cell in the list of free
cells, i.e., the subsequent call tomalloc will return the last
freed cell.

VII. E XPERIMENTAL RESULTS

In this section we discuss the results of our
experiments with the proposed synthesis procedure on
a number of real-world examples. The original input
C programs and the resulting outputs are available at
http://www.cs.cmu.edu/∼jsimsa/c2vhdl.tar. Before discussing
the outputs of our tool, we first describe the problems solved
by the C-based software models.

Priority queue – This is our running example from Figure 1.
The design has one input signal and one output signal. The
implementation repeatedly inputsn elements, sorts them, and
outputs them in a sorted order. For the sake of experimental
evaluation we chosen = 10.

Merge sort – This example implements a merger of two
sorted sequences. The design has two input signals and one
output signal. The implementation repeatedly receivesn1

sorted elements through the first input signal andn2 sorted
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elements through the second input signal. Using the merge
sort it combines the two sequences into one sorted sequence,
which is then output. For the sake of experimental evaluation
we chosen1 = 10 andn2 = 10.

Packet sorting –This example implements a simple network
element. The design has two input signals and one output
signal. The implementation repeatedly inputs packet data
through the first input signal and packet identifier through
the second input signal. It inserts these packets into a buffer
while ignoring duplicate identifiers, until it fills a bufferwith
n packets. It then sorts the received packets by their identifier
and outputs them. For the sake of experimental evaluation we
chosen = 10.

Binary search tree dictionary – This example implements
a data structure for storing a set of elements with a test for
membership. The design has two input signals and one output
signal. The implementation repeatedly inputsn1 elements
through the first input signal and builds a binary search tree
out of them. This is followed by receivingn2 queries through
the second input signal and producing the correct response
through the output signal. For the sake of experimental
evaluation we chosen1 = 10 andn2 = 10.

Huffman encoder – This example implements a data
structure for encoding symbols. The design has three input
signals and one output signal. The implementation repeatedly
inputs n1 symbols through the first input signal, their
frequencies through the second input signal, and builds a
Huffman encoder using this data. This is then followed by
receiving n2 symbols through the third input signal and
producing their binary encoding through the output signal.
For the sake of experimental evaluation we chosen1 = 10
andn2 = 10.

Each of these models was succesfully run through the
sequence of procedures described in this paper: shape analysis,
bounds analysis, and array transformation.

Table I lists the symbolic bounds for our examples in
bytes2. These symbolic bounds were then concretized using
the aforementioned values and run through our translation tool
which inputs a C program and a concrete bound and generates
a functionally equivalent VHDL program. The Table I also lists
lines of code (LOC) for both the hand-written C models and
their automatically generated VHDL counterparts. Note that,
due to last minute changes to the bounds search algorithm, we
were unable to produce a consistent set of run-times for all of
the examples in time for this submission: the circuits were
computed on various machines with different architectural
specifications. The run-times range from minutes to hours
depending on the example.

Our VHDL generation step is carefully crafted to work

2Data types size and structure alignment of a 32-bit architecture (e.g. 4-byte
pointers) is assumed.

Program Bound C LOC VHDL LOC
merge 8 ∗ n1 + 8 ∗ n2 80 1927
prio 8 ∗ n 56 1475
packet 12 ∗ n + 8 95 2430
huffman 52 ∗ n1 − 12 202 5855
bst dict 24 ∗ n1 142 2703

TABLE I
BOUNDS AND LINES OF CODE

Program ALUTs Registers Block Mem Blocks Speed
merge 5,157 4,694 8,192 2 90MHz
prio 5,859 4,598 4,096 1 83MHz
packet 9,413 9,158 8,192 2 76MHz
huffman 20,678 11,116 12,288 3 76MHz
bst dict 5,786 5,660 8,192 2 125MHz

TABLE II
SYNTHESIS AND IMPLEMENTATION RESULTS

well with FPGA synthesis tools. The generated VHDL files
were synthesized using the Altera Quartus II 9.0 tools (build
184 04/29/2009 SP1 SJ Web Edition) targeting Stratix III
FPGAs. The results are shown in Table II. The ALUT (Altera’s
adaptive look-up tables) column gives an indication of the
size of the combinational elements in the generated design.
The registers column indicates how many flip-flops in the
logic fabric were used for registers. The block mem column
indicates how many memory bits in the generated design
were implemented using embedded memory blocks and the
following column shows how many independent memories
were synthesized. The last column shows the maximum
speed. In all cases the tools automatically picked the smallest
EP3SL50F484C2 FPGA and package and the timing results
are given for this part.

Most of the synthesized circuits occupy only a small portion
of the smallest Stratix-III FPGA. The largest design is huffman
which utilizes 55% of the combinational ALUTs but less than
1% of the available block memory and only 29% of the
available logic registers. The smallest design is prio which
occupies 15% of the available combinational ALUTs, 12% of
the available logic registers and less than 1% of the available
block memory. The operating frequency of these circuits is in a
range which is typical for FPGA circuits used as co-processing
circuits. We have tested several of our examples running on
a Cyclone II FPGA on the Altera DE2 board. For example,
the priority encoder circuit was synthesized, implemented
and run on the Altera Cyclone II EP2C35F672C6 FPGA
(supporting 33,216 logic elements) and we have observed the
correct behavior on actual hardware using the SignalTap logic
analyzer. Our conclusion from these preliminary results isthat
we have identified a viable approach for translating heap-based
C programs into VHDL designs which have acceptable area
utilization and performance.

Examples of failure. Our approach for symbolic bounds
synthesis can fail in various ways. For example, the input
program might operate over DAGs (e.g.BDDs) or hash tables;
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in which case, we would currently fail to produce an arithmetic
abstraction. Note that—even in the case of programs with
simple linked data structures—improving the scalability and
accuracy of shape analysis is an area of active research.
When we successfully generate arithmetic abstractions, our
constraint-based synthesis algorithm can also fail. The abstrac-
tion may be too coarse, or the problem may be too complex
(e.g.highly non-linear). Consider the case of a “watcher list”
for a literal ` in a SAT solver, which tracks the clauses in the
clause database in which̀appears. A bound on the size of
this list certainly exists, but our tool cannot work out what
this bound is.

VIII. C ONCLUSION

C-to-gates synthesis aims to bring together the agility of
software development with the speed of raw gates. Until
now, C-to-gates synthesis systems were lacking support for
non-trivial dynamic allocation and deallocation on the heap,
thus limiting the wider applicability of these tools. This
paper has introduced a new method that synthesizes symbolic
heap bounds expressed on generic parameters. The method
uses computed shape invariants and abstractions together
with a constraint solving based approach to find a symbolic
expression representing the bound. Our system facilitatesthe
use of common software abstractions and libraries (potentially
with no memory bounds) within C-to-gates synthesis systems.
Thus, designers can potentially use high-level abstractions
(e.g. dynamically allocated trees and lists) when designing
circuits.

Future work. Using techniques described in [28], and
with some modification to our shape analysis tool, we can
determine the symbolic footprint of each command with
respect to the global heap—allowing us to break a monolithic
computation over a single memory into several smaller
computations that work on independent memories. We can
perhaps exploit this independence to build more parallel
circuits, as well as to find potential energy savings.

In this paper we have focused on the application of our
heap-bounds procedure to the problem of hardware synthesis,
though it may also have application in other areas. As future
work it might be fruitful to investigate its application to
problems such as compilation for embedded systems, or model
checking for infinite-state systems.
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