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Abstract. For persuasion dialogues between a software system and user, a user
should be able to present arguments. Unfortunately, this would involve natural
language processing which is not viable for this task in the short-term. A com-
promise is to allow the system to present potential counterarguments to the user,
and the user expresses his/her degree of belief in each of them. In this paper,
we present a protocol for persuasion that supports this type of move, and show
how the system can use the epistemic approach to probabilistic argumentation to
model the user, and thereby optimize the choice of moves.

1 Introduction

Computational models of argument can potentially be used for systems to persuade
users to change their behavior (e.g. to eat less, to exercise more, to use less electricity,
to vote, to not text while driving, etc) [14]. A system (the persuader running for ex-
ample as an app) enters into a dialogue with a user (the persuadee using the app) to
persuade them to believe a specific argument called the persuasion goal (e.g. eat more
fruit because it is healthy for you).

By choosing appropriate arguments to present to the user, the system may raise
the user’s belief in the persuasion goal. However, for the system, there is a problem
of how to get arguments from the user in order to support a fair and frank persuasion
dialogue. We assume the system cannot understand arguments presented in natural lan-
guage given the complexity of processing arguments in free text. Hence, the interface
with the user is restricted. Our solution is for the system to give a menu of arguments,
and the user presents agreement/disagreement in each argument by giving it a score (as
in a Likert scale [20]). This score is in the unit interval and denotes the belief that the
user has in the argument (i.e. the degree to which the user thinks the premises are true
and the claim follows from the premises).

Example 1. Suppose the system gives argument A in Figure 1 as its persuasion goal.
It is aware of two potential counterarguments B and C. So it presents these in a menu,
and asks the user for his/her degree of belief in them. If the user declares belief greater
than 0.5 in B (resp. C), then the system presents D (resp. E) with the aim of lowering the
user’s belief in B (resp. C) and increasing the user’s belief in A.

The above example is a kind of asymmetric dialogue where the moves available to
the persuader are different to those available to the persuadee. There is a recent pro-
posal for asymmetric persuasion dialogues with a general definition for probabilistic



user models, and a general definition for updating user models in terms of mass redis-
tributions [16]. However, [16] does not consider the following issues: how a menu of
potential counterarguments could be presented to the user, how the user could express
his/her belief in each of them, or how these moves can be used in a protocol that is
fair to the user. We address these issues by making the following contributions in this
paper: (1) A dialogue protocol that incorporates the menu move and that is fair to the
persuadee; (2) A probabilistic model of the persuadee that can be updated through the
dialogue and used by the persuader to predict whether the persuasion is successful; and
(3) A method for simulation of the persuadee by the persuader when deciding on which
moves to make in the dialogue.

A = Giving up
smoking will be

good for your health

B = My appetite will increase and
so I will put on too much weight

C = My anxiety will increase and
so I will lose too much weight

D = You can join a healthy eating
course to help you manage your weight

E = You can join a yoga class to help you
relax, and thereby manage your anxiety

Fig. 1. Example of argument graph for persuasion. It contains the arguments known (but not
necessarily believed) by the system. Argument A could be a persuasion goal and so B and C are
potential counterarguments for the user.

2 Dialogues via restricted interfaces

We base our paper on abstract argumentation [6]. We assume our dialogues concern an
argument graph G where Args(G) is the set of arguments in G, and Attacks(G) is the
set of attack relations in G. Also Γ ⊆ Args(G) is conflict-free iff there is no A,B ∈ Γ
s.t. (A,B) ∈ Attacks(G). We assume that G contains the arguments known (but not
necessarily believed) by the system.

A dialogue is a sequence of moves D = [m1, . . . ,mk]. Equivalently, we use D as
a function with an index position i to return the move at that index (i.e. D(i) = mi).



A move is one of the following: (1) A posit A where A ∈ Args(G); (2) A menu
[A1/X1, . . . , An/Xn] where for each A/X ∈ [A1/X1, . . . , An/Xn], A ∈ Args(G)
and X ∈ [0, 1] is the belief of the user in A; and (3) A system termination ⊥.

A protocol specifies what moves should/can follow each move in a dialogue. For
this paper, the protocol assumes that: (1) the first move is a posit called the persuasion
goal which is the argument that the persuader wants the persuadee to believe (with
a probability greater than 0.5); (2) a dialogue does not continue after the system has
terminated (i.e. if 1 ≤ i < k, then D(i) 6= ⊥); (3) each argument in a menu is a
counterargument to the posit given immediately before the menu (i.e. if D(i) = A,
and D(i + 1) = [A1/X1, . . . , An/Xn], then for each Aj/Xj ∈ D(i + 1), (Aj , A) ∈
Attacks(G)); and (4) the user gives the same belief to an argument if it is repeated (i.e.
If ∃i, j s.t. A/X ∈ D(i) and A/X ′ ∈ D(j) then X = X ′). A dialogue D is finite iff
D = [m1, . . . ,mk] and k is finite.

We assume that the system controls the dialogue. At each point in the dialogue, the
system makes a posit, or menu, or termination move. If it is a menu move, then the user
provides his/her belief in each argument in the menu.

Example 2. For Figure 1, if the system gives the persuasion goal A, then [B/0.9, C/0.2]
is a menu move where B and C are from the system, and 0.9 and 0.2 are from the user.

For a dialogue D = [m1, . . . ,mk], let Steps(D) = {1, . . . , k}. For dialogues D′

and D, the subsequence relation, denoted D′ v D, holds iff for all i′, j′ ∈ Steps(D′),
if i′ < j′, then there are i, j ∈ Steps(D) such that i < j and D′(i′) = D(i) and
D′(j′) = D(j). For example, [[F/0.9, G/0.2], D] v [A, [F/0.9, G/0.2], C, D, E,⊥]. Also
D′ < D is defined as D′ v D and not D v D′.

3 Fair dialogues

In this section, we ensure dialogues are fair by allowing the persuadee to express belief
in potential counterarguments.

Definition 1. For A,B ∈ Args(G), A indirectly attacks B iff (1) A 6= B and (2)
either (A,B) ∈ Attacks(G) or there are (A,A′), (A′, A′′) ∈ Attacks(G) s.t. A 6= A′

and A′ 6= A′′ and A′′ indirectly attacks B.

Example 3. Let ; denote the “indirectly attacks” relationship. So for the following
graph A ; B, A ; D, B ; A, B ; C, B ; E, C ; D, C ; B, D ; A, D ; E, D ; C,
E ; B, and E ; D.

A B C D E

Proposition 1. LetX ⊆ Args(G) be s.t. there is noA ∈ X where (A,A) ∈ Attacks(G).
X is conflict-free iff for all A,B ∈ X , it is not the case that A indirectly attacks B.

Definition 2. For A,B ∈ Args(G), A defends B iff (1) A 6= B and (2) either there is
a (A,C), (C,B) ∈ Attacks(G) s.t. A 6= C and C 6= B, or there is a C s.t. A defends
C and C defends B.



Proposition 2. ForB,A ∈ Args(G), ifB indirectly attacksA, then there is a (B,C) ∈
Attacks(G) s.t. C = A or C defends A.

To compose the menus, we assume in Definition 4 that each posit is followed by a
menu of arguments that attack the posit according to the argument graph, and that have
not already appeared in a menu and indirectly attacked by the posit. As we cover in
Section 5, we will aim for belief in the posit and disbelief in the counterargument, and
so informally, if a posit indirectly attacks a counterargument in an earlier menu, then
we do not need to present it to the user in a menu again.

Definition 3. For a dialogue D, a graph G, an argument A, and a step i. The fair
attacks, FairAttacks(G,D,A, i), is {B | (B,A) ∈ Attacks(G) and there is no j <
i s.t. B/Y ∈ D(j) and A indirectly attacks B}.

Definition 4. A dialogue D is fair for G iff for each i,

if D(i) = A and FairAttacks(G,D,A, i) 6= ∅
then D(i+ 1) = [B1/X1, . . . , Bn/Xn]

where FairAttacks(G,D,A, i) = {B1, . . . , Bn}.

Example 4. The dialogue [A, [B/0.9], C,⊥] is fair for both the following graphs.

A B C A B C

Example 5. For Figure 1, [A, [B/1, C/0], D,⊥], [A, [B/0, C/0.7], E,⊥], [A, [B/0, C/0],⊥],
[A, [B/0.9, C/1], C, [B/0.9],⊥], and [A, [B/0.9, C/0.65], D, E,⊥], are fair.

Example 6. The dialogue [A, [B/0.9, C/0.7], C,⊥] is fair for the left graph and the di-
alogues [A, [B/0.5],⊥] and [A, [B/1], C, [A/0.9], B, [C/0.9], A, [B/1], . . .] are fair for the
right graph.

A B C A B C

Example 7. For the following graph, C does not indirectly attack C and so the self-
attacks causes the fair dialogue [A, [B/1, C/1], C, [C/1], C, [C/1], . . .] to be infinite.

A B C

An odd cycle is a sequence of arguments A1, . . . , Am s.t. each Ai+1 attacks Ai and
A1 attacks Am where m is odd.

Proposition 3. If argument graph G contains no odd cycles, and D is a fair dialogue,
then D is finite.

We can assign responsibility of arguments to the persuadee and persuader as fol-
lows.



Definition 5. Let D be a dialogue, the persuader arguments are Persuader(D) =
{A | ∃i ∈ Steps(D) s.t. D(i) = A} and the persuadee arguments, are Persuadee(D)
= {B | ∃i ∈ Steps(D) s.t. B/X ∈ D(i)}.

Example 8. For D = [A, [B/0.9], C,⊥], Persuader(D) = {A, C} and Persuadee(D) =
{B}.

From the perspective of the user, if the dialogue is fair, then s/he has been able to
express his/her belief/disbelief in the potential counterarguments known by the system.

4 Probabilistic user models

We use the epistemic approach to probabilistic argumentation [25, 13, 17, 1].

Definition 6. A mass distribution P over Args(G) is such that
∑
Γ⊆Args(G) P (Γ ) =

1. Let Dist(G) be the set of mass distributions overG. The probability of an argument
A is P (A) =

∑
Γ⊆Args(G) s.t. A∈Γ P (Γ ).

For a mass distribution P , and A ∈ Args(G), P (A) is the belief that an agent has
in A (i.e. the degree to which the agent believes the premises and the conclusion drawn
from those premises). When P (A) > 0.5, then the agent believes the argument to some
degree, whereas when P (A) ≤ 0.5, then the agent disbelieves the argument to some
degree.

Definition 7. The epistemic extension for mass distribution P is Extension(P ) =
{A ∈ Args(G) | P (A) > 0.5}.

Example 9. Consider the graph in Figure 1. If P (A) = 0.2, P (B) = 0.9, P (C) = 0.4,
P (D) = 0.2, and P (E) = 0.8, then Extension(P ) = {B, E}.

The epistemic approach provides a finer grained assessment of an argument graph
than given by Dung’s definition of extensions. By adopting constraints on the distribu-
tion, the epistemic approach subsumes Dung’s approach [25]. However, there is also a
need for a non-standard view [17] where we adopt weaker constraints on the distribu-
tion. For instance, an important aspect of the epistemic approach is the representation of
disbelief in arguments even when they are unattacked. In this case, a key constraint for
the non-standard view is the following which ensures that the mass distribution respects
the structure of the graph, without forcing an unattacked argument to be believed [13].

Definition 8. A mass distribution P is rational for G iff ∀(A,B) ∈ Attacks(G), if
P (A) > 0.5, then P (B) ≤ 0.5.

Example 10. Examples of mass distribution for Figure 1 .

A B C D E Rational
P1 0.6 0.9 0.4 0.6 0.7 No
P2 0.3 0.9 0.3 0.1 0.8 Yes
P3 0.9 0.1 0.2 0.8 0.2 Yes



The system (the persuader) uses a mass distribution as a model of the user (the per-
suadee). It can update the model at each stage of the dialogue. This is useful for asym-
metric dialogues where the user is not allowed to posit arguments/counterarguments. So
the only way the user can treat arguments that s/he does not accept is by disbelieving
them (and the user model is intended to reflect this). In contrast, in symmetric dialogues,
the user can posit counterarguments to an argument that s/he does not accept.

5 Winning dialogues

In this paper, we consider two mass distributions for a dialogue. The first is the initial
distribution, denoted P0, which is the model of the user before the dialogue starts, and
the second is the final distribution, denoted Pk which is the model of the user once
the dialogue of k steps has terminated. In this section, we assume we have the final
distribution, and in Section 7 we discuss how the final distribution can be obtained from
the initial distribution using the moves in the dialogue.

The next definition ensures that every menu item that is changed from believed
(when the user presents belief in the menu item) to disbelieved (by the end of the dia-
logue) has an attacker that is posited later in the dialogue and is believed.

Definition 9. A dialogueD is frank for final distribution Pk iff for 1 ≤ i ≤ k, for each
B/X ∈ D(i), if X > 0.5, and Pk(B) ≤ 0.5, then there is an index j and argument
C such that i < j and D(j) = C and (C,B) ∈ Attacks(G) and Pk(C) > 0.5 and
C 6= B.

Example 11. The dialogue [A, [B/1, C/0.8], D, E,⊥] is fair and frank for the following
argument graph G and rational final distribution Pk where Pk(A) = 0.8, Pk(B) = 0.2,
Pk(C) = 0.2, Pk(D) = 0.9, and Pk(E) = 0.9.

D B A C E

From the perspective of the persuader, if s/he wants to persuade the persuadee of the
persuasion goal A, then the aim is for Pk(A) > 0.5 where Pk is the final distribution,
and so the persuader can regard the dialogue as a winning dialogue, whereas if Pk(A) ≤
0.5, then the persuader can regard the dialogue as a losing dialogue. We formalize this
next.

Definition 10. Let Pk be a rational final distribution, and let D be a fair, finite, and
frank, dialogue w.r.t. Pk and G s.t. D(1) = A and D(k) = ⊥. If Pk(A) > 0.5, then D
is a winning dialogue, otherwise D is a losing dialogue.

Example 12. For the following argument graph G and rational mass distribution Pk
where Pk(A) = 0.9, Pk(B) = 0, Pk(C) = 1, Pk(D) = 0, and Pk(E) = 0.6.

A B C D E

Let D = [A, [B/0.9], C, [D/0.6], E,⊥]. So D is fair, finite, and frank for Pk, and D is a
winning dialogue. Also Persuader(D) = {A, C, E} and Persuadee(D) = {B, D}.



Example 13. For the following argument graph G and rational final distribution Pk
where Pk(A) = 0, Pk(B) = 0, and Pk(C) = 1.

A B C

Let D = [A, [B/0, C/1], C,⊥]. So D is fair, finite, and frank for Pk, and D is a losing
dialogue. Also Persuader(D) = {A, C} and Persuadee(D) = {B, C}.

Example 14. For the graph in Figure 1 and rational distribution Pk where Pk(A) = 0.7,
Pk(B) = 0,Pk(C) = 0,Pk(D) = 1, andPk(E) = 1. LetD = [A, [B/0.9, C/0.8], D, E,⊥].
SoD is fair, finite, and frank forPk, andD is a winning dialogue. Also Persuader(D) =
{A, D, E} and Persuadee(D) = {B, C}.

We now introduce the notion of minimality of a dialogue to remove superfluous
moves.

Definition 11. Let D be a winning dialogue w.r.t. Pk and G. D is minimal iff for all
D′ v D, D′ is not a winning dialogue w.r.t. Pk and G.

Example 15. Fair dialogues for the graph include D1 = [A, [B/0.8], C, [E/0.9], F,⊥],
D2 = [A, [B/0.8], D, [F/0.9],⊥], and D3 = [A, [B/0.8], C, [E/0.9], F, G,⊥]. Let Pk(A) =
0.8, Pk(B) = 0, Pk(C) = 0.8, Pk(D) = 0, Pk(E) = 0, Pk(F) = 0.8, and Pk(G) = 0.8.
So D1 and D3 are winning. D2 is not frank and so losing. Also D1 is minimal but D3

is not minimal.

A B

C

D

E

F

G

The following results show that minimal winning dialogues are well-behaved in that
(1) the persuader arguments are conflict-free, (2) each persuadee argument is either not
believed by the persuadee (as indicated in the menu) or is countered by the persuader,
(3) the persuader and persuadee arguments are disjoint, and (4) all persuader arguments
are believed and no persuadee argument is believed.

Proposition 4. Let G be an argument graph and Pk be a rational final distribution. If
D is a minimal winning dialogue w.r.t. Pk and G, then Persuader(D) is conflict-free.

Proposition 5. Let G be an argument graph and Pk be a rational final distribution.
Also letD be a minimal winning dialogue w.r.t.Pk andG. For all (B,A) ∈ Attacks(G),
if A ∈ Persuader(D), then either B/X ∈ D(i) for some i and X ≤ 0.5 or there is
C ∈ Persuader(D) s.t. (C,B) ∈ Attacks(G).

Note, we do not assume that the user is always consistent. For example, in Figure
1, the final distribution could be s.t. Pk(B) = 0.9 and Pk(C) = 0.8. This would give
Extension(Pk) = {B, C} which is not conflict-free. Of course, this would mean that the
dialogue is not a winning dialogue for the persuader.

Proposition 6. LetG be an argument graph and P be a rational final distribution. IfD
is a minimal winning dialogue w.r.t. Pk andG, then Persuader(D)∩Persuadee(D) = ∅.



Proposition 7. Let G be an argument graph and Pk be a rational final distribution.
If D is a minimal winning dialogue w.r.t. Pk and G, then for all A ∈ Persuader(D),
Pk(A) > 0.5 and for all B ∈ Persuadee(D), Pk(B) ≤ 0.5.

The following example shows that a winning dialogue does not necessarily have all
its persuader arguments being in the epistemic extension.

Example 16. Consider the following graph with final distribution Pk(A) = 1, Pk(B) =
0, Pk(C) = 0, Pk(D) = 1, and Pk(E) = 1. So Extension(Pk) = {A, D, E}. The dia-
logue D = [A, [B/1], C, [D/1], E,⊥] is winning w.r.t. Pk and G. Also Persuader(D) =
{A, C, E}. So the persuader arguments are not a subset of the epistemic extension. How-
ever,D′ = [A, [B/1], E,⊥] is a subdialogue where Persuader(D′)⊆ Extension(Pk) and
it is winning w.r.t. Pk and G.

A B C D E

Proposition 8. If Pk is a rational final distribution, and D is a minimal winning dia-
logue w.r.t. Pk and G, then Persuader(D) ⊆ Extension(Pk) holds.

So a minimal dialogue uses arguments in the epistemic extension of Pk to present a
winning position for the goal.

6 Delineated subgraphs

The aim of this section is to better understand the proposal so far. For this, we consider
properties of the subgraph of the argument graph as delineated by the dialogue.

Definition 12. Let D be a dialogue and let G′ be a subgraph of G. D delineates G′ iff
Args(G′) = {A | ∃i s.t. D(i) = A or A/X ∈ D(i)} and Attacks(G′) = {(A,B) ∈
Attacks(G) | A,B ∈ Args(G′)}.

Example 17. For the following graph (left), D1 = [A, [B/1], C, [B/1], C, . . .] delineates
the graph (left), whereas D2 = [A, [B/1],⊥] delineates the subgraph (right).

A B C A B

So when a dialogue D delineates a graph G, the nodes in G are exactly the argu-
ments that appear in the posits and menus of D, and the arcs are just the arcs from the
argument graph that involve those arguments.

A user declaration is what a user initially believes in an argument in a menu. Only
some arguments have a user declaration, and the aim of the dialogue is to change the
user’s beliefs in some of these user declarations in order to have a winning dialogue.

Definition 13. For a dialogue D, let Declarations(D) = {B/X | ∃i s.t. B/X ∈
D(i)} be the arguments in a menu, let Declared(D) = {B | B/X ∈ Declarations(D)}
and let Undeclared(D) = {A ∈ Args(G) | A 6∈ Declared(D)}.



Example 18. Consider the graph in Figure 1. For the dialogue [A, [B/0.9, C/0.1], D,⊥],
we get Declared(D) = {B, C} and Undeclared(D) = {A, D, E}.

The next definition retrieves the belief that the user assigns to each argument in a
menu, and assigns belief of 0 to any argument that does not appear in a menu.

Definition 14. The declared belief, denoted QD, of the persuadee in dialogue D is

QD(B) =

{
X for each B/X ∈ Declarations(D)
0 for each B ∈ Undeclared(D)

Example 19. Continuing Example 18, QD(A) = 0, QD(B) = 0.9, QD(C) = 0.1,
QD(D) = 0, and QD(E) = 0.

The following definition captures the subgraph of argument graph G that contains
all the relevant arguments given the user beliefs. It is based on a partition of the nodes
in the subgraph. One partition denotes the persuader arguments and the other parti-
tion denotes the persuadee arguments. Essentially, for each persuader argument in the
subgraph, all the attackers of the argument are also in the subgraph, whereas for each
persuadee argument in the subgraph, all the attackers of the argument are also in the
subgraph, or the persuadee argument is not believed by the persuadee.

Definition 15. Let QD be the declared belief in D. G′ v G is a good subgraph of
G for D iff there is a partition of Args(G′) into sets Φ and Ψ (i.e. Φ ∩ Ψ = ∅ and
Φ ∪ Ψ = Args(G′)), such that the persuasion goal is in Φ, and for each A ∈ Φ ∪ Ψ ,

– if A ∈ Ψ , then QD(A) ≤ 0.5 or ∃(B,A) ∈ Attacks(G) s.t. (B ∈ Φ and (B,A) ∈
Attacks(G′))

– if A ∈ Φ, then ∀(B,A) ∈ Attacks(G), (B ∈ Ψ and (B,A) ∈ Attacks(G′))

We call (Φ, Ψ) the partition of the good subgraph.

So a good subgraph is identified just by the declared beliefs expressed by the user
in the menu moves. As shown below, not every fair dialogue has a good subgraph.

Example 20. The dialogue [A, [B/1, C/1], D, E,⊥] is winning for Figure 1 and the final
distribution Pk where Pk(A) = 1, Pk(B) = 0, Pk(C) = 0, Pk(D) = 1, and Pk(E) = 1.
The graph is the good subgraph for D with partition Φ = {A, D, E} and Ψ = {B, C}.

Example 21. The dialogue [A, [B/1], C,⊥] is winning for the following graph and the
final distribution Pk where Pk(A) = 1, Pk(B) = 0, and Pk(C) = 1. The graph is the
good subgraph for D with partition Φ = {A, C} and Ψ = {B}.

A B C

Example 22. Dialogues [A, [B/1, C/1], C,⊥] and [A, [B/1, C/0], C,⊥] are losing for the
graph and any final rational distribution. There is no good subgraph for the above dia-
logues, whereas the dialogue [A, [B/0.3, C/0.1],⊥] is winning for the graph and a good
subgraph (which is the graph itself) has the partition Φ = {A} and Ψ = {B, C}.



A B C

Example 23. [A, [B/1], C, [A/1], B, [C/1], A, [B/1], . . .] is a losing dialogue for the graph
(left), and any rational final distribution. There is no good subgraph for the above dia-
logue, whereas the dialogue [A, [B/0],⊥] is winning for the graph and its good subgraph
(right) has the partition Φ = {A} and Ψ = {B}.

A B C A B

Next we show that the partition of a good subgraph splits the arguments between
persuader and persuadee.

Proposition 9. If D is a winning dialogue w.r.t. Pk and G and (Φ, Ψ) is the partition
of the good subgraph of G for D, then Φ = Persuader(D) and Ψ = Persuadee(D).

The following result shows that if the persuasion goal of dialogue D is believed
(according to the final distribution Pk), and G′ is a good subgraph of G for D, then G′

does not contain any odd cycles.

Proposition 10. If G′ is a good subgraph of G for D, then G′ contains no odd cycles.

We now consider how the declarative notion of a good subgraph corresponds to win-
ning dialogues (and the associated delineated subgraph). We show that we get a good
subgraph from a minimal winning dialogue, and then we show that we can construct a
winning dialogue from a good subgraph.

Proposition 11. Let D(1) = A. If D is a minimal winning dialogue w.r.t. Pk and G,
then there is a G′ s.t. G′ is a good subgraph of G for D where D delineates G′ and Pk
is rational for G′ and Pk(A) > 0.5.

Proposition 12. If G′ is a good subgraph of G for D, where (Φ, Ψ) is the partition of
G′, and Pk is a mass distribution s.t. Pk(B) > 0.5 for each B ∈ Φ, and Pk(C) ≤ 0.5
for each C ∈ Ψ , then there is a dialogue D, where D is a winning dialogue w.r.t. Pk
and G, and D delineates G′.

So the notion of the good subgraph provides a declarative perspective on winning
dialogues.

7 Updating mass

Given an initial distribution P0, representing the system’s model of the user’s beliefs at
the start of the dialogue, we update the model to give the final distribution Pk. For this,
we introduce the notion of an update method which generates a mass distribution Pk
from P0 based on the moves in D.

Definition 16. Let P0 be an initial distribution and let D be a dialogue. An update
function, Update(P0, D), returns a final distribution Pk such that if D = [⊥], then
P0 = Pk.



There are many possibilities for defining an update function. Here we give a basic
update function (below) as an example. It updates the belief in an argument based on
the belief in the arguments appearing after it in the dialogue. For D(i) = A, belief in
the arguments in the menu D(i + 1) = [B1/X1, . . . , Bn/Xn] determines the belief in
A. Similarly, for D(i) = [B1/X1, . . . , Bn/Xn], and each Bj in the menu, belief in the
posits that occur after move D(i) (i.e. moves that occur from i+ 1 to k) determine the
belief in Bj .

Definition 17. For initial distribution P0 and dialogue D, a basic update function is
Update(P0, D) = Pk s.t. for each A ∈ {B | ∃i s.t. D(i) = B or B/X ∈ D(i)}:

Pk(A) =


0.2 if A ∈ Persuader(D) and ∃B ∈ Opp(D,A) s.t. Pk(B) > 0.5
0.2 if A ∈ Persuadee(D) and ∃B ∈ Pro(D,A) s.t. Pk(B) > 0.5
0.8 if A ∈ Persuader(D) and ∀B ∈ Opp(D,A), Pk(B) ≤ 0.5
QD(A) if A ∈ Persuadee(D) and ∀B ∈ Pro(D,A), Pk(B) ≤ 0.5

where Opp(D,A) = {B | ∃i s.t. D(i) = A and B/X ∈ D(i + 1)} and Pro(D,A) =
{B | ∃i, j s.t. i < j and A/X ∈ D(i) and D(j) = B and (B,A) ∈ Attacks(G)}.

Example 24. Consider the graph in Figure 1. For D = [A, [B/0.9, C/0.4], D,⊥], with
P0(A) = 0.1, P0(B) = 0.7, P0(C) = 0.5, P0(D) = 0.1, and P0(E) = 0.1. For the basic
update function, Update(P0, D) = Pk where Pk(A) = 0.8, Pk(B) = 0.2, Pk(C) = 0.4,
Pk(D) = 0.8, and Pk(E) = 0.1.

The values 0.2 and 0.8 in the basic update definition are indicative of possible as-
signments. More sophisticated modelling of users allows for the calculation of the value
as a function of the value assigned to the counterarguments.

Proposition 13. If Update(P0, D) = Pk is basic, and D delineates G′, then Pk is
rational for G′.

There is a range of alternatives to the basic update in [16] that allow for a range
of different kinds of user to be modelled. These include options for modelling more
credulous and more skeptical users.

8 Using a user model to optimize dialogues

The system wants a final distribution Pk s.t. Pk(A) > 0.5 for persuasion goal A. This
is done in one of two modes.

In interaction mode, the system gives posit and menu moves, and the user gives
belief in each argument in each menu (as in Example 24). At the end of the dialogue, the
final mass Pk is obtained using an update function, and Pk(A) is used as a prediction
of the degree to which the user believes the persuasion goal D(1) = A.

In simulation mode, the system simulates a dialogue with the user in order to pre-
dict the outcome. For this, the initial mass P0 is used for the user responses (and so P0

is a proxy for the user answers). If this simulation is run with each possible dialogue, a
dialogue can be chosen that maximizes Pk(A) where A is the persuasion goal.



In this section, we focus on simulation mode. For optimization, we consider the fair
and finite dialogues for a particular persuasion goal A and initial mass P0. We denote
this set Fair(G,A, P0). The set of simulated dialogues is the subset where each user
response is specified by the initial distribution. We use the simulated dialogues when
we consider what would be the optimal choice of dialogue before undertaking the actual
dialogue.

Definition 18. The set of simulated dialogues, denoted Simulate(G,A, P0), is {D ∈
Fair(G,A, P0) | for each i, if B/X ∈ D(i), then P0(B) = X}.

Example 25. Consider Figure 1 with the initial distribution P0 where P0(A) = 0.2,
P0(B) = 0.9, P0(C) = 0.7, P0(D) = 0.1, and P0(E) = 0.5. So the fair dialogue
[A, [B/0.9, C/0.7], D, E,⊥] is a simulated dialogue.

Definition 19. For a dialogue D, with the initial distribution P0, a basic update func-
tion Update(P0, D) = Pk, and persuasion goal D(i) = A, the score function is
defined as Score(D,P0) = Pk(A).

Example 26. For a basic update function with Example 25, Score(D,P0) = 0.8.

We define the locally optimal dialogues as dialogues for which all subdialogues
have a lower score, and all superdialogues do not have a higher score. So a locally
optimal dialogue is minimal in the sense that every move in the dialogue is required in
order to get the score, and it is minimal in the sense that adding further moves will not
improve the score.

Definition 20. The locally optimal dialogues are the dialogues Local(G,A, P0) =
{D ∈ Simulate(G,A, P0) | ∀D′ ∈ Simulate(G,A, P0), ifD′ < D, then Score(D′, P0)
< Score(D,P0) and if D < D′, then Score(D′, P0) ≤ Score(D,P0)}.

A globally optimal dialogue is a locally optimal dialogue that has the maximum
score of locally optimal dialogues.

Definition 21. The globally optimal dialogues are the dialogues Global(G,A, P0) =
{D ∈ Local(G,A, P0) | ∀D′ ∈ Local(G,A, P0) Score(D′, P0) ≤ Score(D,P0)}.

Example 27. For the following graph, let P0(A) = 0.6, P0(B) = 0.3, P0(C) = 0.3, and
P0(D) = 0.9.

A B C D

The final distribution Pk for each dialogue is given below. So D1 and D2 are winning
dialogues for Pk, but only D2 is locally optimal (and therefore globally optimal).

A B C D

D1 = [⊥] 0.6 0.3 0.3 0.9
D2 = [A, [B/0.3],⊥] 0.8 0.3 0.3 0.9

Proposition 14. If there is a winning dialogueD forG andPk, where Update(P0, D) =
Pk, then there is a D′ ∈ Global(G,A, P0) s.t. Score(D′, P0) > 0.5.

So if there is a winning dialogue, then there is a globally optimal dialogue with the
same outcome.



9 Discussion

In this paper, we have made the following contributions: (1) Introduced the menu move
to get the user’s belief in potential counterarguments; (2) Presented a fair and frank
protocol for persuasion dialogues; and (3) Used the user model to optimize the choice
of moves in the persuasion dialogues. For this, we have used the epistemic approach
to probabilistic argumentation. This contrasts with the constellations approach (e.g. [7,
19, 12]) which is concerned with the uncertainty about the structure of the graph rather
than belief in arguments.

The proposal in this paper relies on a user model. This can be generated by query-
ing the user, or by learning from previous interactions with similar users. Some recent
studies indicate the potential viability of an empirical approach [5, 24].

Most proposals for dialogical argumentation focus on protocols (e.g. [21, 22, 8, 4]).
Some strategies have been investigated (e.g. [26, 9, 18, 3]) but the important issue of un-
certainty is under-developed. A probabilistic model of the opponent has been used in a
dialogue strategy allowing the selection of moves for an agent based on what it believes
the other agent is aware of [23]. The history of previous dialogues is used to predict the
arguments that an opponent might put forward [10]. For modelling dialogues, a proba-
bilistic finite state machine can represent the possible moves that each agent can make
in each state of the dialogue [15]. This has been generalized to POMDPs when there is
uncertainty about what an opponent is aware of [11]. However, none of these proposals
consider the beliefs of the opposing agent or asymmetric dialogues. In [2], a probabilis-
tic model of persuadee beliefs is used by the persuader to optimize choice of beliefs to
present, but there is no consideration of how to get beliefs from the persuadee or how
to update the model based on the dialogue. Therefore, the proposal in this paper is an
important contribution towards the theoretical foundations for using argumentation in
apps for helping persuade users to change behaviour (e.g. eat less, exercise more, drive
more carefully, etc).
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