
An Argument-based Approach to Using Multiple
Ontologies

Elizabeth Black1, Anthony Hunter2, and Jeff Z. Pan3

1 Department of Engineering Science,
University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

2 Department of Computer Science,
University College London, Gower Street, London WC1E 6BT, UK

3 Department of Computing Science,
University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract. Logic-based argumentation offers an approach to querying and revis-
ing multiple ontologies that are inconsistent or incoherent. A common assump-
tion for logic-based argumentation is that an argument is a pair 〈Φ,α〉 where Φ is
a minimal subset of the knowledgebase such that Φ is consistent and Φ entails the
claimα. Using dialogue games, agents (each with its own ontology) can exchange
arguments and counterarguments concerning formulae of interest. In this paper,
we present a novel framework for logic-based argumentation with ontological
knowledge. As far as we know, this is the first proposal for argumentation with
multiple ontologies via dialogues. It allows two agents to discuss the answer to
queries concerning their knowledge (even if it is inconsistent) without one agent
having to copy all of their ontology to the other, and without the other agent hav-
ing to expend time and effort merging that ontology with theirs. Furthermore, it
offers the potential for the agents to incrementally improve their knowledge based
on the dialogue by checking how it differs from the other agent’s.

1 Introduction

Inconsistency and incoherence are recognized as significant problems in managing on-
tological knowledge (e.g. [11]). These problems are particularly an issue when using
multiple ontologies. Current solutions include the “maxcon” approach (which involves
merging ontologies by selecting a maximal consistent subset of the union of the multiple
ontologies) and the “oracle” approach (which involves constructing a merged consistent
ontology by getting extra information to help resolve the conflicts). Unfortunately, the
maxcon approach results in a loss of useful information, as it may not be certain which
subset to choose, and therefore an arbitrary choice is made, and the oracle approach in-
volves a lot of work that may not be necessary if for example a query can be answered
from a small part of the agents’ knowledge, and furthermore that this knowledge may
not even be in conflict.

To address these problems, here we explore an alternative approach which involves
only focusing on the subset of the union of the ontologies that is required for answering
queries. Our approach is to keep the ontologies separate, and associate each ontology
with an agent. Then, the agents enter into a dialogue in which arguments are exchanged



concerning some subject. To simplify our presentation, we restrict consideration to two
agents 1 and 2. Each agent i has a personal knowledgebase (or perbase) ∆i that is a
description logic ontology (e.g. OWL). We assume each perbase is finite, consistent
and coherent, but that normally ∆1 ∪∆2 is inconsistent or incoherent. We also assume
they use the same description logic, though not necessarily the same vocabulary (i.e.
they can use different names for the same concept and/or the same names for different
concepts). Each perbase is private (i.e. the contents of the perbase are only available
to the agent). The strategy used by the agent dictates what the agent will make public
from its perbase. We also assume a finite knowledgebase of lexical matching knowledge
called a lexbase Π that contains just formulae of the form A v B where A and B are
named concepts. Each formula in Π is obtained by a lexical matching algorithm, and
there is some reasonable probability that it is correct. Π is public knowledge (i.e. the
contents are available to both agents) and Π may be inconsistent with either of the
perbases. We assume some external agent has decided what formulae are in Π , and that
each agent can choose to draw on formulae from the lexbase as required.

The aim of each agent is to co-operate with the other to answer questions about the
ontological information they have, even though there may be conflicts between their
perbases. This will allow agents to efficiently and effectively use their own ontology
with the other agent’s knowledge even when there is conflict between them. A further
benefit (which we consider in the discussion) is that each agent can improve their own
perbase through the argumentation process, and so undertake a form of partial merging
of the other agent’s ontological knowledge with their own ontological knowledge.

In the rest of this paper, we consider arguments based on description logic, and
present a general framework for dialogical argumentation. We show that using dialog-
ical argumentation allows for agents to use multiple ontologies without having to dis-
tribute each ontology to every other agent, and without having to merge the ontological
knowledge.

2 Logical Arguments

The usual paradigm for logic-based argumentation is that there is a large repository
of information, represented by ∆, from which logical arguments can be constructed for
and against arbitrary claims (e.g. [15, 4, 1, 9, 7]). There is no a priori restriction on the
contents, and the pieces of information in the repository can be arbitrarily complex.
Therefore, ∆ is not expected to be consistent. It need not even be the case that every
single formula in ∆ is consistent.

Our framework adopts a very common intuitive notion of a logical argument. Essen-
tially, an argument is a set of formulae that can be used to prove some claim, together
with that claim. Each claim is represented by a formula. Provability is represented by
a consequence relation that may be for a logic such as classical logic, or a description
logic.

Here we focus on description logics (DLs) [2], which is a family of logic-based
knowledge representation formalisms used as the underpinning of the standard OWL
Web ontology language. DLs are characterised by the constructors (such as C u D,
∃R.C, ∀R.C) for building complex concept descriptions, such as Animalu∀Eat.Plant



(animals that eat only plants), and role descriptions. A DL ontology O can consist of
concept axioms, such as concept inclusion axioms C v D (e.g., Cow v Animal u
∀Eat.Plant), role axioms, such as transitive role axioms, and individual axioms, such
as concept assertions (e.g. Cow(daisy) and Plant(grass1)), C(a) and role assertions
R(a, b) (e.g. Eat(daisy, grass1)). We use A ≡ B as shorthand for A v B and B v
A. A DL ontologyO is consistent if there exists some interpretation J that satisfies all
its axioms. A concept C is satisfiable w.r.t.O if there exists some interpretation J ofO
such that CJ is non-empty. A DL ontology O is coherent if all the named concepts in
O are satisfiable. Negated axioms are closely related to inconsistencies and changes in
ontologies. Since well known DLs do not provide enough expressive power to represent
negations of all the axioms, we use two relaxed notions of negation proposed in [8],
namely consistency-negation and coherence-negation. Intuitively speaking, an axiom α
and any of its consistency-negation (coherence-negation) β are inconsistent (incoherent,
resp.) with each other; i.e., {α, β} is inconsistent (incoherent, resp.).

We let L denote a DL and ` denote the consequence relation of the DL. We use
α, β, γ, . . . to denote DL formulae (axioms),∆,Φ, Ψ, . . . to denote sets of DL formulae,
and Names(α) to denote the set of names for concepts, roles and individuals from which
a formula α is composed.

Definition 1. An argument is a pair 〈Φ, α〉 s.t.: (1) Φ ⊆ ∆; (2) Φ is consistent and
coherent; (3) Φ ` α; and (4) there is no Φ′ ⊂ Φ s.t. Φ′ ` α. We say that 〈Φ, α〉 is an
argument for α. We call α the claim and Φ the support of the argument.

An undercut is a counterargument that directly opposes the support of an argument.

Definition 2. Let 〈Φ, α〉, 〈Ψ, β〉 be arguments. 〈Ψ, β〉 is an undercut for 〈Φ, α〉 iff
{β} ∪ Φ is inconsistent or incoherent.

Example 1. Let ∆ = {A v B,B v C,A v D,A v ¬C}. Some arguments include
〈{A v B,B v C}, A v C〉 and 〈{A v ¬C}, A v ¬C〉 which undercut each other.

We can capture an argument
together with its undercuts, and by recursion, undercuts to undercuts, in a tree struc-

ture as follows. We assume that X denotes this set of arguments.

Definition 3. An argument tree for φ is a tree (N,E,X, f) where N is a set of nodes,
E is a set of edges, X is a set of arguments, and f : N 7→ X assigns an argument to
each node s.t. (1) the root is assigned with an argument for φ (the root argument); (2)
for each node n, ifm is a child of n, then f(m) is an undercut of f(n); and (3) for each
node n, if m is an ancestor of n in the branch, then the support of f(n) is not a subset
of the support of f(m).

The dialectical principle (widely adopted in the literature on argumentatation)
evaluates each argument as defeated or undefeated: An argument is undefeated if all
the undercuts for it are defeated, and an argument is defeated if there is a undercut to it
that is undefeated. Any argument with no undercuts is undefeated. For example, let A1

be the root argument, A2 and A3 be undercuts to A1, and A4 be an undercut to A3. In
this case, only A2 and A4 are undefeated.



3 Dialogue Framework

The communicative acts in a dialogue are called moves. We assume that there are al-
ways exactly two agents taking part in a dialogue, each with its own identifier taken
from the set I = {1, 2}. Each agent takes it in turn to make a move to the other agent.
We also refer to agents using the variables x and x such that if x is 1 then x is 2 and if
x is 2 then x is 1. The format for moves is shown in Table 1, and the set of all moves
meeting the format is denotedM. For a move m, the function Sender returns the agent
that made the move.

We now informally explain the different types of move: A query move 〈x, query, α〉
starts a dialogue with the topic α; A posit move 〈x, posit, 〈Φ, α〉〉 asserts an argu-
ment 〈Φ, α〉 by x for the topic, or an undercut for a previous posit; A concede move
〈x, concede, α〉 asserts agent x will regard α as valid; and a close move 〈x, close, γ〉
is used when an agent has no other moves it can make. Note, for a posit move m =
〈x, posit, 〈Φ, α〉〉, we say that m is a posit move for α.

A dialogue is simply a sequence of moves, each of which is made from one partic-
ipant to the other. As a dialogue progresses over time, we denote each timepoint by a
natural number. Each move is indexed by a timepoint and exactly one move is made at
each timepoint.

Definition 4. A dialogue, denoted Dt, is a sequence of moves m1, . . . ,mt involving
two agents in I = {1, 2}, s.t. (1) m1 is of the form 〈x, query, γ〉; (2) Sender(ms) ∈ I
for 1 ≤ s ≤ t; and (3) Sender(ms) 6= Sender(ms+1) for 1 ≤ s < t. The topic of the
dialogue Dt is returned by Topic(Dt) (i.e. Topic(Dt) = γ). The set of all dialogues is
denoted D.

The first move of a dialogue Dt must always be a query move (condition 1), every
move of the dialogue must be made to a participant of the dialogue (condition 2), and
the agents take it in turns to make moves (condition 3). In order to terminate a dialogue,
two close moves must appear one immediately after the other in the sequence (called a
matched-close).

Definition 5. LetDt be a dialogue s.t. Topic(Dt) = γ. We say thatms (1 < s ≤ t), is a
matched-close for Dt iff ms−1 = 〈x, close, γ〉 and ms = 〈x, close, γ〉. Dt terminates
at t iff mt is a matched-close for Dt and there does not exist an s s.t. s < t and Ds

terminates at s.

Move Format
query 〈x, query, γ〉
posit 〈x, posit, 〈Φ, φ〉〉
concede 〈x, concede, γ〉
close 〈x, close, γ〉

Table 1. The move format, where γ is a formula, 〈Φ, φ〉 is an argument and x ∈ {1, 2} is the
agent that makes the move.



Example 2. ∆1 = {¬C(b)}; ∆2 = {C(b), R(b, a), C v ∀R.C,D(a)}; Π = {C ≡
D}.

〈1, query, C(a)〉
〈2, posit, 〈{C(b), R(b, a), C v ∀R.C}, C(a)〉〉
〈1, posit, 〈{¬C(b)},¬C(b)〉〉
〈2, concede, D(a)〉
〈1, concede, C ≡ D〉
〈2, posit, 〈{C ≡ D,D(a)}, C(a)〉〉
〈1, close, C(a)〉
〈2, close, C(a)〉

Agent 2 posits an argument for the topic, and agent 1 provides an undercut to it. Then
each agent concedes a formula, and agent 2 uses these to posit an argument for the
topic.

Since all our examples are terminated dialogues, from now on we will omit the
matched-close moves.

We associate a commitment store with a dialogue, and let it grow monotonically
over the course of the dialogue: If an agent posits an argument, the support is added to
the commitment store; If an agent concedes a formula, it is added to the commitment
store. A commitment store is therefore the union of all the supports of all the arguments
that have been publicly posited along with all the formulae that have been publicly
conceded by the agents so far. For this reason, when constructing an argument, an agent
may make use of not only its own perbase but also those from the commitment store.

Definition 6. A commitment store Σt is ∅ at t = 0, and for all t ≥ 1, if mt =
〈x, posit, 〈Φ, φ〉〉, thenΣt =Σt−1∪Φ, else ifmt = 〈x, concede, α〉, thenΣt =Σt−1∪
{α}, otherwise Σt = Σt−1.

A protocol is a function that returns the set of moves that are legal for an agent to
make at a particular point in a particular type of dialogue. Here we give the specific
protocol that we require. It takes the dialogue and the identifier of the agent whose turn
it is to move, and returns the set of legal moves that the agent may make.

Definition 7. Let Dt be a dialogue s.t. Sender(mt) = x, and Topic(Dt) = γ. The
protocol for agent x is a function Protocolx : D 7→ ℘(M) s.t. Protocolx(Dt) is

P posit
x (Dt) ∪ P concede

x (Dt) ∪ {〈x, close, γ〉}

where P posit
x (Dt) is { 〈x, posit, 〈Φ, φ〉〉 | 〈Φ, φ〉 is an argument } and P concede

x (Dt) is {
〈x, concede, φ〉 | φ 6∈ Σt }.

Note that it is straightforward to check conformance with the protocol as the proto-
col only refers to public elements of the dialogue (i.e. it does not refer to perbases). For
instance, the dialogue in Ex. 2 conforms to the protocol.

In general, a strategy for agent x is a function Strategyx : D 7→ ℘(M) that takes
the dialogue Dt and returns a subset of the legal moves. A strategy is personal to an
agent and the moves that it returns depends on the agent’s private beliefs (i.e. its perbase
∆x).



A well-formed dialogue is a dialogue that does not continue after terminated and
that is generated by the strategy.

Definition 8. A dialogue Dt is a well-formed dialogue iff, for all s (s < t), (1) Ds

does not terminate at s and (2) if Sender(ms) = x, then ms+1 ∈ Strategyx(Ds).

In the next section, we give a specific strategy for using inconsistent ontologies, and
then discuss alternatives to it.

4 An Example of a Strategy

We will shortly give a specific strategy function using the following subsidiary notions.

Definition 9. Let Ψ be a set of formulae. The set of arguments that can be formed from
Ψ is Args(Ψ) = {〈Φ,ψ〉 | Φ ⊆ Ψ and 〈Φ,ψ〉 is an argument }.

The posit moves that occur after and including the last posit move for the topic are
called live moves.

Definition 10. For Dt, the set of live moves, Live(Dt), is

{mk | there is an i s.t. i ≤ k ≤ t
and mi = 〈x, posit, 〈Φ,Topic(Dt)〉〉
and there is not a j s.t. (i < j ≤ t

and mj = 〈x, posit, 〈Ψ,Topic(Dt)〉〉)}

For instance, for Ex. 2, as sequence m1,m2, .. is made, the move m3 is live until
the move m6 is made.

Given a dialogue, we define as follows whether an argument can be a novel undercut
to extend the dialogue, as in Ex. 2, where each undercut is novel when posited.

Definition 11. 〈Φ, φ〉 is a novel undercut for Dt iff there is a set of posit moves
{n1, ..., nk} ⊆ Live(Dt) s.t. (1) n1 posits an argument for the topic, (2) 〈Φ, φ〉 is an
undercut for the posit of nk, (3) for each i, (1 < i ≤ k), ni is a posit for an undercut
for the posit of ni−1, (4) for each i, (1 ≤ i ≤ k), Φ is not a subset of the support of the
posit of ni.

We break a dialogue into phases. Intuitively, a phase is started by an agent positing
an argument for the topic, and ended either by the dialogue ending, or by the next move
being another posit move for the topic. So the live moves are in the latest phase in the
dialogue.

Definition 12. Let γ be the topic of Dt. A sequence of moves mi, ...,mk is a phase in
Dt iff mi, ...,mk is a subsequence of Dt (i.e. Dt is m1, ...,mi, ...,mk, ...,mt where
1 ≤ i ≤ k ≤ t), and mi is a posit for γ and either t is k or mk+1 is a posit of γ and for
all j s.t. i < j ≤ k, mj is not a posit for γ.



Strategyx(Dt) =


Scounter

x (Dt) iff Scounter
x (Dt) 6= ∅

Sarg
x (Dt) iff Sarg

x (Dt) 6= ∅ and Scounter
x (Dt) = ∅

Sconcede
x (Dt) iff Sconcede

x (Dt) 6= ∅
and Scounter

x (Dt) = ∅ and Sarg
x (Dt) = ∅

〈x, close,Topic(Dt)〉 otherwise

Fig. 1. The strategy function selects moves according to the following preference ordering (start-
ing with the most preferred): posit moves, concede moves, and close moves. The conditions on
the r.h.s. of each iff statement above imposes this ordering.

To ensure that each concede move is relevant, the formula being conceded must have
an atom in common with a formula already in the commitment store or with the topic
of the dialogue in order to ensure that it can potentially be used with other formulae in
a posit move.

Definition 13. A formula φ is relevant in Dt iff Names(φ) ∩ Names(Topic(Dt)) 6= ∅
or ∃ψ ∈ Σt s.t. Names(φ) ∩ Names(ψ) 6= ∅.

We also require the following subsidiary functions. Essentially, Sarg
x gives the posits

for the topic of the dialogue that have not been posited before, Scounter
x gives the under-

cuts for any argument in the current phase that have not been given so far in the current
phase, and Sconcede

x gives any formulae from its perbase or the lexbase that is relevant
to the topic of the dialogue or to any formula already used in the dialogue.

Definition 14. For the strategy function given in Fig. 1, we require the following sets
of moves where y ∈ {1, 2}.

Sarg
x (Dt) = {〈x, posit, 〈Φ, φ〉〉 ∈ P posit

x (Dt) |
〈Φ, φ〉 ∈ Args(∆x ∪Σt)
and φ = Topic(Dt)
and ¬∃mi s.t. mi appears in Dt

and mi = 〈y, posit, 〈Φ, φ〉〉}

Scounter
x (Dt) = {〈x, posit, 〈Φ, φ〉〉 ∈ P posit

x (Dt) |
〈Φ, φ〉 ∈ Args(∆x ∪Σt)
and 〈Φ, φ〉 is a novel undercut for Dt}

Sconcede
x (Dt) = {〈x, concede, φ〉 ∈ P concede

x (Dt) |
(φ ∈ ∆x or φ ∈ Π)
and φ is relevant in Dt}

For the strategy defined in Fig. 1, a posit for the topic is made if possible. Then, the
agents exhaustively present undercuts to this, and by recursion, undercuts to undercuts.
When this is exhausted, the first phase has finished. If another posit for the topic can be
made, then the second phase starts, and undercuts to this, and by recursion, undercuts
to undercuts are exhaustively presented, thereby bringing the second phase to a close.



Subsequent phases are constructed accordingly. The dialogue in Ex. 2 is generated by
this strategy.

Now, we consider how to evaluate these dialogues. The set of arguments posited in
a phase is called a constellation.

Definition 15. Let mi, ...,mk be a phase in Dt. X is the constellation for mi, ...,mk

iff X = {〈Φ, α〉 | mj = 〈x, posit, 〈Φ, α〉〉 and mj ∈ {mi, ...,mk}}.

Intuitively, a dialogue supports the topic iff there is a constellation that can be
obtained from a phase of the dialogue and that the constellation can be arranged as
an argument tree with an undefeated root argument for the topic of the dialogue. For
this property, we require the following: A complete argument tree is an argument tree
(N,E,X, f) such that if there is a node n ∈ N , and an argument A ∈ X where A
undercuts f(n) and there is not a node n′ ∈ N such that n′ is on the branch from the
root to n and the support of A is a subset of the support of f(n′), then there is a child
m of n such that f(m) is A.

Definition 16. For a dialogue Dt where Topic(Dt) = α, Dt supports α iff there is a
phasemi, ...,mk inDt s.t.X is the constellation formi, ...,mk and there is a complete
argument tree for α (N,E,X, f) s.t. its root argument is undefeated.

The dialogue in Ex. 2 has two phases and supports C(a).

Example 3. ∆1 = {¬D(a), D v A,A v ¬C}; ∆2 = {D(a), D v C,D v E,E v
¬A}; Π = ∅.

〈1, query, C(a)〉
〈2, posit, 〈{D(a), D v C}, C(a)〉〉
〈1, posit, 〈{D v A,A v ¬C}, D v ¬C〉〉
〈2, posit, 〈{D v E,E v ¬A}, D v ¬A〉〉
〈1, posit, 〈{¬D(a)},¬D(a)〉〉

Here there is just one phase (m2, ...,m5). Agent 2 gives an argument, then Agent 1
gives an undercut to it, and then Agent 2 gives an undercut to that. Finally, Agent 1
comes back with an undercut to the first argument by Agent 2. As a result, C(a) is not
supported.

So each dialogue generated with this strategy ensures that all the possible arguments
relevant to the query are presented, and these arguments can be assessed to determine
whether the query is supported in the dialogue. Because the strategy returns choices of
moves, the dialogue is not necessarily unique given a query, but the alternative dialogues
that can be obtained given a query are isomorphic, and hence the constellations will be
the same.

With the protocol, we can also define alternative strategies that ensure alternative
useful behaviour. For instance, we could define a strategy that stops the dialogue when
a phase has occurred that alone can be used to demonstrate support for the topic, or we
could define a strategy that also gives the arguments for the negation of the topic, or we
could define a strategy that only allows a concede move of a formula when that formula
is consistent with its perbase.



5 Properties of Dialogical Argumentation

The constraints on the strategy function are such that we can show that all dialogues
terminate (as agents’ perbases are finite, hence there are only a finite number of different
moves that can be generated and agents cannot repeat these moves ad infinitum).

Proposition 1. For any well-formed dialogue Dt, there exists a Du s.t. t ≤ u and Du

terminates at u and Du extends Dt (i.e. the first t moves of Du are given by Dt).

A dialogue is sound if and only if, if an argument is generated by the dialogue, then
it can also be constructed from the union of the perbases and the lexbase.

Definition 17. Let Dt be a well-formed dialogue. We say that Dt is sound iff, for each
s, if s ≤ t and ms = 〈x, posit, 〈Φ, φ〉〉, then 〈Φ, φ〉 is an argument s.t. Φ ⊆ (∆x ∪∆x ∪
Π).

When an agent posits an argument, it must be able to construct the argument from
its perbase and the commitment store. This is clear from the definition of the strategy.
From this, and the fact that the commitment stores are only updated when a posit or
concede move is made, we get that a commitment store is always a subset of the union
of the perbases and the lexbase. From these observations, we get soundness.

Proposition 2. If Dt is a well-formed dialogue, then Dt is sound.

Similarly, a dialogue is complete if and only if, if the dialogue terminates at t and
it is possible to construct an argument for the topic of the dialogue from the union of
the perbases and lexbase, then that argument will eventually be posited by one of the
agents.

Definition 18. Let Dt be a well-formed dialogue and Topic(Dt) = γ. We say that Dt

is complete iff, if there is a argument 〈Φ, γ〉 s.t. Φ ⊆ (∆x ∪∆x ∪Π), then there is a
move 〈x, posit, 〈Φ, γ〉〉 in Dt.

In order to show that all dialogues are complete, we need some further lemmas. The
first states: If an agent cannot produce, given their perbase and the commitment store,
an argument for the topic of the dialogue, then the strategy forces them to concede
formulae from their perbase and the lexbase, thus adding to the commitment store.

Lemma 1. Let Dt be a well-formed dialogue with Topic(Dt) = γ. If Sarg
x (Dt) = ∅

and Scounter
x (Dt) = ∅ and there is a β ∈ ∆x ∪Π s.t. β is relevant for Dt and β 6∈ Σt

then 〈x, concede, β〉 ∈ Strategyx(Dt).

Following from the above lemma, we obtain the following lemma that says if there
is an argument for the topic of the dialogue that can be obtained by pooling the agents’
perbases and the lexbase, then, once the dialogue has terminated, there is the support
for this argument in the union of the agent’s perbase with the commitment store.

Lemma 2. Let Dt be a well-formed dialogue that terminates at t with Topic(Dt) = γ.
If there is a Φ ⊆ (∆x ∪∆x ∪Π) s.t. 〈Φ, γ〉 is a argument, then Φ ⊆ (∆x ∪Σt)



The next lemma says that if there is an argument for the topic of the dialogue that
can be obtained from an agent’s perbase and the commitment store, then the strategy
will force the posit of that argument at some point in the dialogue.

Lemma 3. Let Dt be a well-formed dialogue that terminates at t with Topic(Dt) = γ.
If there is a Φ ⊆ (∆x ∪Σt) s.t. 〈Φ, γ〉 is an argument, then there is an s s.t. s < t and
ms = 〈x, posit, 〈Φ, γ〉〉.

Using the above lemmas, it is straightforward to now show that dialogues are com-
plete.

Proposition 3. If Dt is a well-formed terminated dialogue, then Dt is complete.

A dialogue is faithful if it supports the topic iff the arguments that can be constructed
from the union of the perbases and the lexbase can be arranged as a complete argument
tree for the topic where the root argument is undefeated.

Definition 19. LetDt be a well-formed dialogue, Topic(Dt) = γ, andX = Args(∆x∪
∆x ∪Π). We say that Dt is faithful when the following equivalence holds.

Dt supports γ iff
there is a complete argument tree (N,E,X, f) for γ
where f(n) is undefeated for root n

From completeness and soundness, for topic γ, we get that 〈Φ, γ〉 is an argument
from the union of the agents’ perbases and the lexbase iff there is a posit move of 〈Φ, γ〉
in the dialogue. Furthermore, there is exactly one phase for each of these arguments
〈Φ, γ〉. We can then generalize the completeness and soundness results so that for each
phase, if 〈Φ, γ〉 is the argument that starts the phase, then the posit moves made in the
phase contain exactly, the undercuts of 〈Φ, γ〉, and by recursion, the novel undercuts to
each undercut, that could be obtained from the union of the agents’ perbases and the
lexbase. Therefore, each phase is isomorphic to a complete argument tree for the topic
that can be obtained from the union of the agents’ perbases and the lexbase, and each
complete argument tree for the topic that can be obtained from the union of the agents’
perbases and the lexbase is isomorphic to a phase. Hence, we get the following.

Proposition 4. If Dt is a well-formed terminated dialogue, then Dt is faithful.

A corollary of this proposition is that all the minimal inconsistent subsets of the
union of the agents’ ontologies that involve the topic of the dialogue can be recovered
from the commitment store of the dialogue. In other words, from each phase of the
dialogue, the minimal inconsistent subsets involving the query can be obtained from
the posit starting the phase, and the undercuts to this posit.

So in this section, we have shown that the dialogues always terminate, they are
sound (any argument posited is an argument that can come from the union of the agents’
ontologies plus the lexbase), they are complete (any argument for the topic obtainable
from the union of the agents’ ontologies plus the lexbase, is posited in the dialogue),
they are faithful (any argument for the topic shown to be undefeated given the union



of the agents’ ontologies plus the lexbase, is shown to be undefeated in a phase in the
dialogue, and vice versa). These properties mean that the dialogical argumentation is
equivalent to argumentation with the union of the agents’ ontologies plus the lexbase,
but with the advantage that it is not necessary to copy all of each ontology to each agent
in order to undertake the argumentation. Rather, just enough knowledge is exchanged
in the posit and concede moves for the argument trees to be implicitly constructed in
the dialogue.

6 Conclusions

We have presented a dialogical argumentation framework for using multiple ontologies.
In comparison with the maxcon approach, we do not lose information, rather we keep
it all, and we do not make arbitrary choices. Furthermore, any inference that can be
obtained from the maxcon approach can be obtained from our approach, but not vice
versa. In comparison with the oracle approach, we may get inferior inferences (i.e.
inferences that with the benefit of some oracle are not deemed to be good), but the
significant advantage here is that we do not need to copy and merge all of the ontology
for each agent to use knowledge from other agents’ ontologies.

There are other proposals for argumentation with ontologies. In [10, 13], all the
ontological knowledge is in a centralized location, and so they do not get the advantages
that come from using dialogues, and in [12], dialogues are used for discussing ontology
alignments, but not for querying the ontological knowledge.

Another advantage of our approach is that it allows an agent to determine how its
perbase differs from another. This can then be used by the agent to decide how to update
its perbase. For instance, if it regards the other agent as more reliable, or if it has had
the same conflict with a number of agents, it may choose to delete some of its own
knowledge.

Our system also allows the definition of alternative strategies that ensure alternative
intelligent behaviour. For instance, we can define a more efficient strategy that only
builds a pruned version of the argument tree and yet still produces faithful dialogues.
Also we can refine how agents chose to concede a move from the lexbase (e.g. by
only allowing a formula to be conceded if it is consistent with the agent’s perbase,
or by more tightly coupling concession to the search for premises for arguments and
counterarguments).

Our proposal is influenced by [5], but it does involve some substantial developments
over it: (1) That paper was for a simple propositional defeasible logic whereas this paper
is for much richer description logics; (2) That paper was only about finding arguments
whereas this paper is about the more complex issue of finding warranted arguments; (3)
That paper has different moves, protocol and strategy to this paper; (4) This paper has
a more general framework based on phases that is valuable for supporting and auditing
diverse protocols and strategies for arguing about ontologies.

The dialogues generated by our system allow agents to jointly construct arguments
for a topic and to determine if this topic is supported given the union of available knowl-
edge. As far as we are aware, there are only three other dialogue systems that share
this same aim and have been shown to have similar properties to ours (i.e. are faith-



ful) [3, 16, 6]; However, none deal with ontological knowledge and the first two impose
restictions on the distribution of formulae between the agents. [14] also consider com-
pleteness properties for general classes of protocol that allow agents to jointly construct
argument trees, but they do not allow the joint construction of arguments nor do they
consider ontological knowledge.

In future work, we will develop a range of more refined strategies including for
conceding formulae from the lexbase. We will also extend our system to address wider
issues concerning semantic heterogenity arising between ontologies.

References

1. L Amgoud and C Cayrol. A model of reasoning based on the production of acceptable
arguments. Annals of Mathematics and Artificial Intelligence, 34:197–216, 2002.

2. F Baader, D L McGuiness, D Nardi, and P Patel-Schneider, editors. Description Logic Hand-
book: Theory, implementation and applications. Cambridge University Press, 2002.

3. J Bentahar, R Alam, and Z Maamar. An argumentation-based protocol for conflict resolution.
In KR2008-workshop on Knowledge Representation for Agents and Multi-Agent Systems,
pages 19–35, 2008.

4. P Besnard and A Hunter. A logic-based theory of deductive arguments. Artificial Intelli-
gence, 128:203–235, 2001.

5. E Black and A Hunter. A generative inquiry dialogue system. In 6th Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems, pages 1010–1017, 2007.

6. E Black and A Hunter. An inquiry dialogue system. Autonomous Agents and Multi-Agent
Systems, 19(2):173–209, 2009.

7. P Dung, R Kowalski, and F Toni. Dialectical proof procedures for assumption-based admis-
sible argumentation. Artificial Intelligence, 170:114–159, 2006.

8. G Flouris, Z Huang, J Z Pan, D Plexousakis, and H Wache. Inconsistencies, negations and
changes in ontologies. In 21st AAAI Conf., pages 1295–1300, 2006.

9. A Garcı́a and G Simari. Defeasible logic programming: An argumentative approach. Theory
and Practice of Logic Prog., 4(1):95–138, 2004.

10. S Gómez, C Chesñevar, and G Simari. An argumentative approach to reasoning with incon-
sistent ontologies. In Knowledge Representation and Ontologies Workshop, pages 11–20,
2008.

11. Z Huang, F van Harmelen, and A ten Teije. Reasoning with inconsistent ontologies. In 19th
Int. Joint Conf. on Artificial Intelligence, pages 454–459, 2005.

12. L Laera, I Blacoe, V Tamma, T Payne, J Euzenat, and T Bench-Capon. Argumentation
over ontology correspondences in MAS. In 6th Int. Joint Conf. on Autonomous Agents and
Multi-Agent Systems, pages 1293–1300, 2007.

13. M Moguillansky, N Rotstein, and M Falappa. A theoretical model to handle ontology de-
bugging & change through argumentation. In 2nd Int. Workshop on Ontology Dynamics,
2008.

14. S Parsons, P McBurney, E Sklar, and M Wooldridge. On the relevance of utterances in
formal inter-agent dialogues. In 6th Int. Joint Conf. on Autonomous Agents and Mutli-Agent
Systems, pages 1002–1009, 2007.

15. H Prakken and G Sartor. Argument-based extended logic programming with defeasible pri-
orities. Journal of Applied Non-classical Logic, 7:25–75, 1997.

16. M Thimm and G Kern-Isberner. A distributed argumentation framework using defeasible
logic programming. In 2nd Int. Conf. on Computational Models of Argument, pages 381–
392, 2008.


