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Abstract

Reasoning with inconsistency involves some compromise on classical logic. There is a range

of proposals for logics (called paraconsistent logics) for reasoning with inconsistency each with

pros and cons. Selecting an appropriate paraconsistent logic for an application depends on

the requirements of the application. Here we review paraconsistent logics for the potentially

signi�cant application area of technology for structured text. Structured text is a general

concept that is implicit in a variety of approaches to handling information. Syntactically, an

item of structured text is a number of grammatically simple phrases together with a semantic

label for each phrase. Items of structured text may be nested within larger items of structured

text. The semantic labels in a structured text are meant to parameterize a stereotypical

situation, and so a particular item of structured text is an instance of that stereotypical

situation. Much information is potentially available as structured text including tagged text

in XML, text in relational and object-oriented databases, and the output from information

extraction systems in the form of instantiated templates. In this review paper, we formalize

the concept of structured text, and then focus on how we can identify inconsistency in items

of structured text, and reason with these inconsistencies. Then we review key approaches to

paraconsistent reasoning, and discuss the application of them to reasoning with inconsistency

in structured text.

1 Introduction

Inconsistency is a ubiquitous phenomenon in the real-world, and so as computers are used in ever

more sophisticated roles, it is an increasingly important issue in computer science. Inconsistency

is not necessary a bad thing. Rather an inconsistency can be useful. For example, it can be an

alert to a potential problem, or o�er the basis for conict resolution, or indicate an interesting

anomalous situation. For a discussion on the value of inconsistency see [GH91, GH93].

The best approach to inconsistency is not necessarily immediate eradication. Rather, we need

to analyse each inconsistency and then act on it in a context-sensitive way. In this paper, we

will consider some of the issues of handling inconsistency, and in particular look at ways that
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we can reason in the presence of inconsistency, analyse inconsistency, and act on inconsistency.

In order to compare proposals for reasoning with inconsistency, it is worthwhile considering the

needs of applications. Di�erent logics are appropriate for di�erent applications. Here we focus on

the potentially signi�cant application area of technology for structured text.

Syntactically, an item of structured text is a data structure containing a number of grammatically

simple phrases together with a semantic label for each phrase. The set of semantic labels in a

structured text is meant to parameterize a stereotypical situation, and so a particular item of

structured text is an instance of that stereotypical situation. Using appropriate semantic labels,

we can regard a structured text as an abstraction of an item of text.

For example, news reports on corporate acquisitions can be represented as items of structured text

using semantic labels including buyer, seller, acquisition, value, and date. Each semantic

label provides semantic information, and so an item of structured text is intended to have some

semantic coherence. Each phrase in structured text is very simple | such as a proper noun, a

date, or a number with unit of measure, or a word or phrase from a prescribed lexicon. For an

application, the prescribed lexicon delineates the types of states, actions, and attributes, that

could be conveyed by the items of structured text.

Much material is potentially available as structured text. This includes items of text structured

using XML tags (see for example [GQ99, Pfa99]), the output from information extraction systems

given in templates (see for example [CL96, Gri97, ARP98]), and databases used by some online

news agencies where journalists �le reports as structured text and these entries are used by editors

to generate free text news reports in di�erent languages. The notion of structured text also overlaps

with semi-structured data (for reviews see [Abi97, Bun97]).

Whilst structured text is useful as a resource, there is a need to develop techniques to handle,

analyse, and reason with it. We may want to check consistency of structured text with what

we already know, and we may want to draw inferences from structured text even if there are

inconsistencies between items of structured text and the domain knowledge. To support this, we

also require a domain knowledgebase, which may include integrity constraints, default rules (rules

that normally hold but can have exceptions), and various database resources.

We have assumed the words and phrases are su�ciently simple and restricted to not require natural

language processing. In most cases, we will represent each word or phrase by a constant symbol

in the logic. For some phrases, we may represent it as a function symbol with constant symbols as

arguments (Eg. a date could be a function symbol with arguments for the day, month, and year).

In this paper, we provide basic de�nitions for structured text, and for the notion of a stereotype.

We then show how structured text can be translated into classical logic to allow reasoning with

domain knowledge. We then review some key approaches to reasoning with inconsistent information

in knowledgebased systems, and show how we can use them for reasoning with inconsistency in

structured text.

2 Formalizing structured text

In this section we will formalize the notions of structured text and of stereotype.
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2.1 Structured text

Here we adopt some basic de�nitions that should be easy to view as an adaptation of ideas in

a variety of �elds in XML, relational and object-oriented databases, language engineering, and

knowledgebased systems.

De�nition 2.1 A word is a string of alphanumeric characters, and a phrase is a string of one

or more words. A text entry is either a phrase or a null value. A semantic label is a phrase.

Example 2.1 Examples of words include John, France, drive, happy, 23, and 3i, and example-

ples of phrases include University of London, John, 23 April 1999, and warm and sunny.

Assumption 2.1 In this paper, we will assume the set of semantic labels and the set of text

entries are disjoint.

De�nition 2.2 If � is a semantic label, and  is a text entry, then h� :  i is an atomic feature.

Example 2.2 Examples of atomic features include:

hname : Johni

hname: University of Londoni

htoday's weather: sunny and windyi

De�nition 2.3 Complex features are de�ned as follows: (1) if h� :  i is an atomic feature,

then h� :  i is a complex feature; and (2) if � is a semantic label and �

1

; :::; �

n

are complex

features, then h� : �

1

; :::; �

n

: �i is a complex feature. An item of structured text is just a

complex feature.

Assumption 2.2 In this paper, we assume that the order of the items �

1

; :::; �

n

in a complex

feature h� : �

1

; :::; �

n

: �i is not important. So for example, the following two are assumed to be

equivalent:

hcustomer : hname : John Smithi; hfax number: 0171 111 2222i : customeri

hcustomer : hfax number: 0171 111 2222i; hname : John Smithi : customeri

Example 2.3 An example of a complex feature is:

hweather report:

hdate: 23 April 1999i;

hcity: Londoni;

htoday's weather: cold and weti;

htomorrow's weather: sunny and windy and cooli

:weather reporti
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2.2 Stereotypes

Essentially, a set of semantic labels, called a stereotype, is used to delineate a recurring situation.

A structured report is then an item of structured text where the semantic labels are those of the

stereotype

1

.

De�nition 2.4 If � is a semantic label, and 	 is a set of text entries, then [� : 	] is an atomic

stereotype.

De�nition 2.5 An atomic feature h� :  i is an instance of an atomic stereotype [� : 	] i�  2 	.

De�nition 2.6 Each atomic stereotype is a complex stereotype, and if � is a semantic label, and

�

1

; :::;�

n

are complex stereotypes, and �; :::;� are complex stereotypes, then the following is a

complex stereotype

[� : �

1

; :::;�

n

:: �

1

; :::;�

m

: �]

The complex stereotypes on the left of the :: symbol are compulsory stereotypes and the complex

stereotypes on the right are optional stereotypes.

We will view a complex feature as being an instance of a complex stereotype if and only if the

complex feature is composed of an instance of each of the compulsory stereotypes and possibly an

instance of one or more of the optional stereotypes. This is captured in the following de�nition.

De�nition 2.7 A complex feature h� : �

1

; ::; �

k

: �i is an instance of a complex stereotype

[� : �

1

; :::;�

n

:: �

1

; :::;�

m

: �]

i� �

1

is an instance of one of �

1

; :::;�

n

;�

1

; :::;�

m

and .... and �

k

is an instance of one of

�

1

; :::;�

n

;�

1

; :::;�

m

and for each �

i

2 f�

1

; :::;�

n

g there is a �

j

2 f�

1

; ::; �

k

g such that �

j

is an

instance of �

i

.

Example 2.4 An example of a stereotype called weather report is:

hweather report:

hdate: X1i;

hcity: X2i;

htoday's weather: X3i;

::

htomorrow's weather: X3i

:weather reporti

where X1 is the set of all dates, and X2 is the set all cities, and X3 is the following set.

fsunny and cold, wet and cold, sunny and warm, wet and warm and windy, ......g

Note, the notion of a complex stereotype does not incorporate an explicit form of disjunction. So

for example for the following two complex stereotypes, where X1 is a set of �rstnames and X2 is a

set of surnames,

1

This subsection could be easily skipped on a �rst reading of this paper.
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hname:hfirstname: X1i:namei

hname:hsurname: X2i:namei

we cannot collapse them into one stereotype where there is a disjunction of the stereotypes

hfirstname: X1i and hsurname: X2i.

De�nition 2.8 If a complex feature � is an instance of a complex stereotype �, then � is a struc-

tured report, and the stereotype of the structured report is �. If � is

[� : �

1

; :::;�

n

:: �

1

; :::;�

m

: �]

then the name of the stereotype is �. Note, more than one stereotype can have the same name.

A stereotype is a generalization of a number of concepts in computing including relational database

schema, templates in information extraction, and frames in knowledgebased systems.

There is also a similarity between stereotypes and document type declarations (DTDs) in XML.

However, DTDs incorporate many implementation features that are not appropriate here such

as default values, a form of structural inheritance, and a framework for the surprisingly involved

question of handling escape characters.

3 Logical reasoning with structured text

To represent items of structured text, we adopt classical �rst-order logic.

Assumption 3.1 For logical reasoning we assume the usual language of classical �rst-order logic

using the usual symbols 8 and 9 for quanti�cation and the usual symbols ^;_;! and : for logical

connectives.

Assumption 3.2 Domain knowledge is some set of classical �rst-order formulae.

An item of structured text is isomorphic to a tree. A tree formed from an item of structured text

is called a structured text tree. Using the following de�nition helps us to consider translations of

items of structured text into logical formulae by using a structured text tree as an intermediate.

De�nition 3.1 To form a structured text tree from an item of structured text, apply the following

two rules exhaustively:

Complex feature rule For a complex feature of the form h� : �

1

; ::; �

n

: �i, let � be the root of

the tree, and let each of �

1

; :::; �

n

be used to give a subtree. For each �

i

, if �

i

is a complex

feature, apply the complex feature rule by recursion, and if �

i

is an atomic feature, then apply

the atomic feature rule.

Atomic feature rule For an atomic feature of the form h� :  i, let � be the root, and let  be

the child of �.
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housesale (e)

buyer (b)

name (b1)

seller (s)

name (s1)

firstname (b2)

John

surname (b3)

Smith

firstname (s2)

Mary

surname (s3)

Jones

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

�

�

�

�

@

@

@

@

�

�

�

�

@

@

@

@

Figure 1: The structured text tree generated for Example 3.1. The unique reference label is given

in parentheses.

For each node in the structured text tree that is a semantic label, we assume that the node also has

a unique reference label.

So each node in the structured text tree is labelled with either a semantic label or a text entry.

If a semantic label has come from an atomic feature, then we call it an atomic semantic label,

otherwise we call it a complex semantic label. From this de�nition, we see that for an item of

structured text the following hold: (1) all non-leaf nodes are semantic labels; (2) all leaf nodes are

text entries; and (3) all penultimate nodes are atomic semantic labels.

Furthermore, if the item of structured text is a structured report, then we can see the structured

text tree excluding the leaves gives the structure of the corresponding stereotype, and the name

of the stereotype of the item of structured text is the root of the tree.

Example 3.1 To illustrate generating a structured text tree, consider the following item of struc-

tured text, giving the tree in Figure 1.

hhousesale :

hbuyer : hname : hfirstname : Johni; hsurname : Smithi : namei : buyeri;

hseller : hname : hfirstname : Maryi; hsurname : Jonesi : namei : selleri

: housesalei

Now we consider how we can obtain a classical logic formula from one of these structured text

trees.

De�nition 3.2 X is an o�spring node of Y i� X is a child of Y or there is a Z such that Z is

a child of Y and X is an o�spring node of Z.
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De�nition 3.3 The set of formulae that can be formed from a structured text tree is obtained by

exhaustively applying the following rules: (1) If X is a complex semantic label in the tree, and

Y is the unique reference label for the parent of X, and Z is the unique reference label for X,

then X(Y; Z) is a formula; (2) If X is an atomic semantic label in the tree, and Y is the unique

reference label for the parent of X, and Z is the text entry for the child of X, then X(Y; Z) is

a formula; (3) If X is the root of the tree and X is not an atomic semantic label, and Y is the

unique reference label for X, then X(Y ) is a formula; and (4) If X is the root of the tree and X

is an atomic semantic label, and Y is the unique reference label for X, and Z is the text entry,

then X(Y; Z) is a formula.

In De�nition 3.3, rule (1) gives the unique identi�er for the item of structured text, rule (2) gives

the path from the root node to any other non-leaf node, rule (3) gives text entry for each branch,

and rule (4) gives the text entry when the tree represents an atomic feature.

Example 3.2 Continuing Example 3.1, we obtain formulae including the following using De�ni-

tion 3.3:

housesale(e); buyer(e; b);seller(e;s);

name(b; b1); firstname(b1; John);surname(b1;Smith);

name(s; s1); firstname(s1;Mary);surname(s1;Jones)

In the following section, we review key paraconsistent logics, and then in Section 5, we will use

paraconsistent logics for reasoning with the logical representation of items of structured text.

4 Paraconsistent logics for knowledgebased systems

Approaches to inconsistent information include database revision and paraconsistent logics. The

�rst approach e�ectively removes data from the database to produce a new consistent database.

In contrast, the second approach leaves the database inconsistent, but prohibits the logics from

deriving the trivial inferences that follow from ex falso quodlibet. Unfortunately, the �rst approach

means we may lose useful information | we may be forced to make a premature selection of our

new database, or we may not even be able to make a selection. We focus here on the advantages

and disadvantages of key proposals for a paraconsistent approach.

In the following subsections, we consider a range of paraconsistent logics that give sensible in-

ferences from inconsistent information. We consider (1) Weakly-negative logics which use the full

classical language, but a subset of the classical proof theory; (2) Four-valued logic which uses a

subset of the classical language and a subset of the classical proof theory, together with an intuitive

four-valued semantics; (3) Argumentative logics which reason with consistent subsets of classical

formulae; and (4) Quasi-classical logic which uses classical proof theory but restricts the notion

of a natural deduction proof by prohibiting the application of elimination proof rules after the

application of introduction proof rules.

These options behave in quite di�erent ways with data. None can be regarded as perfect for

handling inconsistent information in general. Rather, they provide a spectrum of approaches.

However, in all the approaches we cover, we aim to stay as close to classical reasoning as possible,

since classical logic has many appealing features for knowledge representation and reasoning. We

therefore do not aim to cover approaches based on defeasible logics or modal logics.
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4.1 Weakly-negative logics

To avoid trivialization, weakly-negative logics compromise on classical proof theory. They allow,

for example, normal notions of conjunction, such as � ^ � gives �, but they are substantially

weaker in terms of negation. There are a number of ways in which this can be achieved. One way

is to drop some of the axiom schema of classical logic so that ex falso quodlibet and reductio

ad absurdum do not hold. One proposal is a paraconsistent logic called C

!

logic proposed by da

Costa [dC74]. Below we give a presentation of C

!

. All the schema in the logic C

!

are schema in

classical logic.

De�nition 4.1 The logic C

!

is de�ned by the following axiom schema together with the modus

ponens proof rule.

�! (� ! �)

(�! �)! ((�! (� ! )) ! (�! ))

� ^ � ! �

� ^ � ! �

�! (� ! � ^ �)

�! � _ �

� ! � _ �

(�! )! ((� ! )! (� _ � ! ))

� _:�

::�! �

This proof theory gives the C

!

consequence relation.

Example 4.1 To illustrate the use of C

!

, consider the following set of formulae.

f�! (� ^ );  ! �; � ! :�; �g

In this example, there is a symmetry about whether or not � is a �. In other words, there is an

argument that � is a �, and an argument that � is :�. Using the proof theory we can derive

inferences including �; � and . We can also derive both � and :�.

In C

!

, rules such as modus tollens and disjunctive syllogism fail.

�! �;:� [Modus tollens]

:�

� _ �;:� [Disjunctive syllogism]

�

Many useful equivalences fail also such as the following,

:� _ � 6� �! �

::� 6� �
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In this sense weakly-negative logics are sub-systems of classical logic. In particular compromising

on negation means that many classical inference steps involving negation fail in weakly-negative

logics. Furthermore, the removal of certain classical inference rules means that the propositional

connectives in the language do not behave in a classical fashion. In the case of C

!

the classical

\sense" of negation { and as a result also the interde�nability of the classical connectives { has

been traded in exchange for non-trivialisation. One manifestation of this, as discussed by Besnard

[Bes91], is the following.

Example 4.2 In C

!

, disjunctive syllogism, ((� _ �) ^ :�) ! �, does not hold, whereas modus

ponens, (� ^ (� ! �)) ! �, does hold. So, for example, � does not follow from the database:

f(� _ �);:�g, whereas � does follow from the database: f(:� ! �);:�g.

The logic C

!

is only one of a number of interesting weakly-negative logics. Further proof rules can

be added to C

!

to give a stronger, and yet still non-trivializable, logic. For example, PI

s

logic by

Batens [Bat80] and V I logic by Arruda [Arr77]. Other weakly-negative logics can be de�ned by

alternative, but similar weakenings, such as for relevant logics by Anderson and Belnap [AB75].

Weakly-negative logics are useful for rule-based reasoning with information since the logic sup-

ports modus ponens. They can be used to give guidance on the nature of an inconsistency and

facilitate actions that should be taken on the database. Furthermore, they can be used without

recourse to consistency checks. Finally, paraconsistent logics can be used as a formal basis for

truth maintenance [MS88].

4.2 Four-valued logic

The four-valued logic of Belnap [Bel77] provides an interesting alternative to the logics presented

in the previous section in that it has an illuminating and intuitive semantic characterization to

complement its proof theory.

De�nition 4.2 The language for four-valued logic is a subset of classical logic. Let P be the usual

set of formulae of classical logic that is formed using the connectives :;^ and _. Then the set of

formulae of the language, denoted Q, is P [ f� ! � j �; � 2 Pg, and hence implication is not

nestable.

De�nition 4.3 A formula in the language can be one of \true", \false", \both" or \neither",

which we denote by the symbols T, F, B, and N, respectively.

Example 4.3 For the database f�;:�; �g, an acceptable assignment of truth values is such that

� is B, :� is B, � is T, and  is N.

Intuitively we can view this form of assignment in terms of an \Approximation" lattice (see Figure

2 (left)). As more \information" is obtained about a formula, the truth-value \increases". In other

words, if we know nothing about a formula, it is N . Then as we gain some information, it becomes

either T or F . Finally, if we gain too much information it becomes B.

De�nition 4.4 For the semantics, we assume a distributive lattice, the \Logical" lattice (see

Figure 2 (right)). We also assume an involution operator � satisfying the conditions (1) � = �

��

,

and (2) if � � � then �

�

� �

�

, where � is the ordering relation for the lattice.
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Figure 2: The \Approximation" lattice (left) and the \Logical" lattice (right)

De�nition 4.5 The semantic assignment function observes monotonicity and complementation,

in the logical lattice, so x^y is the meet of fx; yg and x_y is the join of fx; yg, giving the following

truth tables (Tables 1 { 3) for the :;^, and _ connectives. Let �; � be formulae. The inference �

from � is valid i� � � �, where � is the ordering relation for the logical lattice. Let �! � signify

that the inference from � to � is valid in all four values, ie. that � entails �.

There is no � 2 Q such that the semantic assignment function always assigns the value T . However,

there are formulae that never take the value F , for example �_:�. Though the set of formulae that

never take the value F is not closed under conjunction. For example, consider (�_:�)^ (� _:�)

when � is N and � is B.

To complement the semantics, the following is a de�nition for the proof theory for four-valued

logic.

De�nition 4.6 Let �; �;  2 L. The following are the proof rules for four-valued logic. Let �$ �

signify that � and � are semantically equivalent, and can be intersubstituted in any context.

�

1

^ :::^ �

m

! �

1

_ :::_ �

n

provided some �

i

is some �

j

(� _ �) !  i� �!  and � ! 

�! (� ^ ) i� �! � and �! 

�! � i� :� ! :�

�! � and � !  implies �! 

�! � i� �$ (� ^ �) i� � $ (� _ �)

In addition, the following extends the de�nition of the proof theory.

� _ � $ � _ �

� ^ � $ � ^ �

� _ (� _ )$ (� _ �) _ 

(� ^ �) ^  $ �^ (� ^ )

� ^ (� _ ) $ (� ^ �) _ (� ^ )

� _ (� ^ )$ (� _ �) ^ (� _ )::�$ �

:(� ^ �) $ :�_ :�

:(� _ �) $ :�^ :�

�$ � and � $  implies �$ 
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� N F T B

:� N T F B

Table 1: Truth table for negation

^ N F T B

N N F N F

F F F F F

T N F T B

B F F B B

Table 2: Truth table for conjunction

_ N F T B

N N N T T

F N F T B

T T T T T

B T B T B

Table 3: Truth table for disjunction

.

Example 4.4 To illustrate the use of the proof theory consider the following example. As with

the use of C

!

, there is an argument for � and an argument for :�.

�! (� ^ )

 ! �

� ! :�

�

From � ! (� ^ ), we get � ! � and � ! . From � ! � and � ! :�, we get � ! :�.

From � !  and  ! �, we get � ! �. Hence, � is equivalent to � ^ � and � ^ :�. However,

the four-valued consequence relation deviates from the C

!

consequence relation in that we cannot

detach � from � nor :� from �. This is in part due to proof theory incorporating neither modus

ponens nor and elimination.

Four-valued logic provides a natural and intuitive form of paraconsistent reasoning. The semantic

characterization based on the approximation lattice and logical lattice could be applicable for

reasoning with facts. In particular, the logic seems useful for aggregating conicting information.

However, there are problems with reasoning with rules, particularly with respect to the lack of

modus ponens and disjunctive syllogism. As with weakly-negative logics, the four-valued proof

theory can be used without recourse to consistency checks.

There is a range of proposals for logics that are based on increasing the set of truth values beyond

the Boolean values. A number of interesting proposals are based on three values with various

meanings placed on the third value such as by Kleene and Bochvar (for a review see [Haa78]).

More recently, some interesting variants of four valued logic have been developed (for a review see

[VM98]).
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4.3 Argument systems

One of the most obvious strategies for handling inconsistency in a database is to reason with

consistent subsets of the database. This is closely related to the approach of removing information

from the database that is causing an inconsistency. Here, we explore some of the issues relating

these approaches in the context of classical proof theory.

De�nition 4.7 Let � be a database. Then:

CON(�) = f� � �j� 6` ?g

INC(�) = f� � �j� ` ?g

MC(�) = f� 2 CON(�)j8� 2 CON(�)� 6� �g

MI(�) = f� 2 INC(�)j8� 2 INC(�)� 6� �g

FREE(�) =

T

MC(�)

Hence MC(�) is the set of maximally consistent subsets of �; MI(�) is the set of minimally

inconsistent subsets of �; and FREE(�) is the set of information that all maximally consistent

subsets of � have in common. We also have the following relationship.

\

MC(�) = ��

[

MI(�)

We can consider a maximally consistent subset of a database as capturing a \plausible" or \co-

herent" view on the database. For this reason, the set MC(�) is important in many of the de�ni-

tions presented in the rest of this section. Furthermore, we consider FREE(�), which is equal to

T

MC(�), as capturing all the \uncontroversial" information in �. In contrast, we consider the

set

S

MI(�) as capturing all the \problematical" data in �.

Example 4.5 Let � = f�;:�; �! �;:�! �; g. This gives two maximally consistent subsets,

�

1

= f�; � ! �;:� ! �; g, and �

2

= f:�; � ! �;:� ! �; g. From this

T

MC(�)=f� !

�;:�! �; g, and a minimally inconsistent subset 	 = f�;:�g.

A problem with using inferences from consistent subsets of an inconsistent database is that they are

only weakly justi�ed in general. To handle this problem, we can adopt the notion of an argument

from a database, and a notion of acceptability of an argument. An argument is a subset of the

database, together with an inference from that subset. Using the notion of acceptability, the set of

all arguments can be partitioned into sets of (arguments of) di�erent degrees of acceptability. This

can then be used to de�ne a class of consequence relations (see for example [BDP93, EGH95]).

De�nition 4.8 Let � be a database. An argument from � is a pair, (�; �), such that � � � and

� ` �. An argument is consistent, if � is consistent. We denote the set of arguments from � as

An(�), where An(�) = f(�; �)j� � � ^� ` �g. � is an argument set of � i� � � An(�).

De�nition 4.9 Let � be a database. Let (�; �) and (�;  ) be any arguments constructed from �.

If ` �$ : , then (�; �) is a rebutting defeater of (�;  ). If  2 � and ` �$ :, then (�; �) is

an undercutting defeater of (�;  ).

Rebutting defeat, as de�ned here, is a symmetrical relation. One way of changing this is by use

of priorities, such as in systems based on explicit representation of preference (eg [Bre89, CRS93,

BDP95]), or as in systems based on speci�city (eg [Poo85]).
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For a database �, an argumentative structure is any set of subsets of An(�). The intention behind

the de�nition for an argumentative structure is that di�erent subsets of An(�) have di�erent

degrees of acceptability. Below, we present one particular argumentative structure A

�

, and then

explain how the de�nition captures notions of acceptability.

De�nition 4.10 The following sets constitute the argumentative structure A

�

, where � is a

database.

AT(�) = f(;; �)j; ` �g

AF(�) = f(�; �)j� � FREE(�) ^� ` �g

AB(�) = f(�; �)j� 2 CON(�) ^� ` � ^ (8� 2 MC(�);  2 �� `  )g

ARU(�) = f(�; �)j� 2 CON(�) ^� ` �^

(8� 2 MC(�)� 6` :�) ^ (8� 2 MC(�);  2 �� 6` : )g

AU(�) = f(�; �)j� 2 CON(�) ^� ` � ^ (8� 2 MC(�);  2 �� 6` : )g

A8(�) = f(�; �)j� 2 CON(�) ^� ` � ^ (8� 2 MC(�)� ` �)g

AR(�) = f(�; �)j� 2 CON(�) ^� ` � ^ (8� 2 MC(�)� 6` :�)g

A9(�) = f(�; �)j� 2 CON(�) ^� ` �g

The naming conventions for the argument sets are motivated as follows. T is for the tautological

arguments - i.e. those that follow from the empty set of premises. F is for the free arguments

- (due to Benferhat et al [BDP93]) - which are the arguments that follow from the data that

is free of inconsistencies. B is for the backed arguments - i.e. those for which all the premises

follow from all the maximally consistent subsets of the data. RU is for the arguments that are

not subject to either rebutting or undercutting. U is for the arguments that are not subject to

undercutting. 8 is for the universal arguments - (essentially due to Manor and Rescher [MR70],

where it was called inevitable arguments) - which are the arguments that follow from all maximally

consistent subsets of the data. R is for the arguments that are not subject to rebutting. 9 is for

existential arguments - (essentially due to Manor and Rescher [MR70]) - which are the arguments

with consistent premises.

The de�nitions for A9, AF, AT should be clear. We therefore focus on the remainder. AR allows

an argument (�; �) only if there is no maximally consistent subset that gives :�. AU allows an

argument (�; �) only if for all items  in �, there is no maximally consistent subset that gives

: . ARU combines the conditions of the AR and AU. Notice that AR and A8 have very similar

de�nitions, with the only di�erence being \� 6` :�" in AR versus \� ` �" in A8. A similar remark

applies to AU and AB. Therefore A8 and AB are strengthenings of AR and AU, respectively (i.e.

\6` :�" replaced with \` �"). We summarize the relationship between these sets in the diagram

in Figure 3. The main features to notice are that A

�

is a linear structure, and that there is an

equivalence of AF, AB, ARU, and AU.

Example 4.6 We give an example of a database, and some of the items in each argument set. Take

� = f�;:�g. Then (f�;:�g; �^:�) 2 An(�), (f�g; �) 2 A9(�), (f�g; �_�) 2 AR(�), if � 6` �,

(fg; �_ :�) 2 A8(�). Furthermore, A8(�) = AF(�) = AB(�) = ARU(�) = AU(�) = AT(�).

Example 4.7 As another example, consider � = f:�^�; �^�g. Then for � = f�^�g, (�; �) 2

A9(�), (�; �) 2 AR(�), and (�; �) 2 A8(�). But there is no � � � such that (�; �) 2 AU(�),

(�; �) 2 ARU(�), (�; �) 2 AB(�), or (�; �) 2 AF(�).

Each argument set in A

�

induces a consequence relation.
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AT(�)

j

AF(�) = AB(�) = ARU(�) = AU(�)

j

A8(�)

j

AR(�)

j

A9(�)

j

An(�)

Figure 3: Partial order on A

�

induced by �. Sets lower in the diagram are subsets of sets higher

in the diagram.

De�nition 4.11 A consequence closure for each argumentative structure is denoted Cx, where x

2 fT;F;B;RU;U; 8;R;9; ng, and de�ned as follows,

Cx(�) = f�j9� � �(�; �) 2 Ax(�)g

A consequence relation, denoted `

x

, can then be generated from the consequence closure as ex-

pected.

� `

x

� i� � 2 Cx(�)

The argumentative logics are, in a key sense, far more restricted than the other paraconsistent

logics considered in this review: If a pair of formulae are mutually inconsistent, then none of these

argumentative logics will derive any consequences from the conjunction of the two formulae (as

an example see Example 4.8). This is not the case with any of the weakly-negative, four-valued or

quasi-classical logics. Another signi�cant drawback is the computational complexity of reasoning

with argumentative logics since the reasoning is based on consistency checking.

Example 4.8 Consider f� ^ �;:� ^ (� ! g. There is no consistent subset which gives the

inference . In a sense,  is locked into the inconsistency.

The concept of an argumentative structure, with the two notions of argument and acceptability,

are a convenient framework for developing practical reasoning tools. Although, they are based

on simple de�nitions of arguments and acceptability, the concepts carry many possibilities for

further re�nement. It remains to be seen whether there is a general taxonomy of argumentative

structures, such as suggested by Pinkas and Loui [PL92], and universal properties of the logics

that they induce.

There are also a number of other argument-based systems that have been proposed, including

by Vreeswijk [Vre91, Vre97], Wagner [Wag91], Prakken [Pra93], Roos [Roo93], Fox et al [FKA92,

KAEF94, DFK96], Simari and Loui [SL92], Lin [Lin94], and Parsons [Par96]. For a review of

modelling argumentation in non-classical logics see [PV99]. These di�er from argumentative logics

in that they focus on defeasible reasoning: They incorporate defeasible, or probabilistic, connectives

into their languages, together with associated machinery.
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Another approach to acceptability of arguments is by Dung [Dun95]. This approach assumes a set

of arguments, and a binary \attacks" relation between pairs of subsets of arguments. A hierarchy

of arguments is then de�ned in terms of the relative attacks \for" and \against" each argument

in each subset of arguments. In this way, for example, the plausibility of an argument could be

defended by another argument in its subset.

The common feature in argument systems is that they incorporate formal representation of in-

dividual arguments and techniques for comparing conicting arguments. In these frameworks, if

there are a number of arguments for and against a particular conclusion, an aggregation function

determines whether the conclusion holds in the framework. These aggregation functions can be

described as being binary since they just consider the existence of arguments for and against, and

so they are not sensitive to the number of arguments for or against.

4.4 Quasi-classical logic

As we have seen with weakly-negative logics and with four-valued logics, the weakening of the

proof theory means that the connectives do not behave in a classical fashion. To address this, an

alternative called quasi-classical logic has been proposed by Besnard and Hunter [BH95, Hun99a].

In this, the proof theory is restricted so that the application of introduction rules cannot be followed

by the application of elimination rules. The proof theory allows any formula to be rewritten into

CNF (using distributivity, associativity, de Morgan's laws, double negation elimination, and arrow

elimination

2

), and for conjunction elimination and resolution to be applied. From the resulting

resolvents, the following rules can be applied to obtain an inference: distributivity, associativity, de

Morgan's laws, double negation introduction, conjunction introduction, disjunction introduction,

and arrow introduction

3

.

Example 4.9 For � = f�_ �; �_:�;:�^ �g, consequences of � include �_ �, �_:�, �, :�,

and �, but do not include :�, ,  _�, or : ^:�. For � = f�_ (�^ );:�g, consequences of �

include �_ �, �_ , �, and :�. For � = f�_ �;:�; �! ; � ! :g, consequences of � include

�,, �, and � ^  ^ �.

QC logic is motivated by the need to handle beliefs rather than the need to address issues of

verisimilitude for given propositions. The aim is for a logic of beliefs in the \real-world" rather

than a logic of truths in the real-world. In this logic, we can regard each formula as a belief.

The heart of the QC proof theory is resolution. Resolution can be regarded as a process of focusing

beliefs. So a resolvent  is more focused than the clause :� _ . Similarly, for the pair of beliefs

�_ � and :�_ , the resolvent � _  is more focused. In general, a clause � is more focused than

a clause � if Atoms(�) � Atoms(�). Hence, as one or more applications of resolution decomposes

a set of assumptions, it focuses the beliefs from the assumptions.

A useful property of resolution is that � is a resolvent only if all the literals used in � are literals

used in the set of assumptions (assuming, of course, that resolution is the only proof rule used).

This means that any resolvent, and hence any belief from the assumptions, is a non-trivial inference

from the assumptions. This holds even if the set of assumptions is classically inconsistent. As a

result, resolution can constitute the basis of useful paraconsistent reasoning. Restricting the proofs

so that the introduction proof rules are not followed by the elimination proof rules, as discussed

above, means that the paraconsistent reasoning is preserved.

Now, we introduce the following de�nition for a model.

2

Arrow elimination applied to a formula �! � gives :�_ �.

3

Arrow introduction applied to a formula :�_ � gives �! �.
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De�nition 4.12 Let A be the set of atoms in the language for QC logic. Let O be the set of

objects de�ned as follows, where +� is a positive object, and �� is a negative object.

O = f+� j � 2 Ag [ f�� j � 2 Ag

Any X 2 }(O) is a model. So +� 2 X means that in X there is a reason for the belief � and

that in X there is a reason against the belief :�. Similarly, �� 2 X means that in X there is

a reason against the belief � and that in X there is a reason for the belief :�.

A model just contains reasons for/against beliefs | it incorporates no notion of truth or falsity.

Since we can allow both an atom and its complement to be satis�able, we have decoupled, at the

level of the model, the link between a formula and its complement. We now consider a key part

of the de�nition for the satis�ability relation for the logic.

De�nition 4.13 Let j=

s

be a satis�ability relation, called strong satisfaction. For X 2 }(O), we

de�ne j=

s

as follows, and �

1

; :::; �

n

are literals in L, and � is an atom in L.

X j=

s

� if +� 2 X

X j=

s

:� if �� 2 X

X j=

s

�

1

_ :::_ �

n

i� [X j=

s

�

1

or ::: or X j=

s

�

n

]

and 8i s.t. 1 � i � n [X j=

s

��

i

implies X j=

s

Focus(�

1

_ :::_ �

n

; �

i

)]

where � �

i

is the complementary literal of �

i

, and Focus(�

1

_ ::: _ �

n

; �

i

) is just the original

formula �

1

_ :::_ �

n

without the disjunct �

i

.

The �rst two parts of this de�nition covers literals. The third part covers disjunction. This def-

inition for disjunction is more restricted than the classical de�nition. In addition to at least one

disjunct being satis�able, there is also a notion of focusing incorporated into the de�nition. Es-

sentially, for each disjunct �

i

in the formula, �

1

_ ::: _ �

n

, if the model satis�es the complement

��

i

of that disjunct, then the model must also satisfy the focused formula Focus(�

1

_ :::_�

n

; �

i

),

where the focused formula is just the original formula without the disjunct �

i

. The de�nition for

satisfaction is easily extended to any formula of the language, and we can use it for a de�nition

for entailment.

The reason we need this de�nition for disjunction that is more restricted than the classical version,

is that we have decoupled the link between a formula and its negation in the model. Therefore,

in order to provide a meaning for resolution, we need to put the link between each disjunct, and

its complement, into the de�nition for disjunction. As a result, to ensure a clause is satis�able, we

need to ensure that if necessary, every more focused clause is also satis�able.

Example 4.10 Let � = f(:�_:�)_;:�_;:g, where �; �;  2 A, and let X = f��;��;�g.

So X j=

s

:�, X j=

s

:� and X j=

s

:. Hence, X j=

s

:� _ , X j=

s

:�_ , and X j=

s

:� _ :�.

Finally, X j=

s

(:� _:�) _ . So every formula in � is satis�able in X.

The QC consequence relation o�ers many more non-tautological inferences from data than either

the weakly-negative or four-valued logics. For example, via disjunctive syllogism, QC logic gives �

from f:�; �_ �g, whereas neither the weakly-negative logic C

!

nor the four-valued logic gives �.
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In addition, there is a form of relevancy in the reasoning. If there is an inference of � from

some assumption, then there is at least one propositional atom in common between � and the

assumptions.

Developing a non-trivializable, or paraconsistent logic, necessitates some compromise, or weaken-

ing, of classical logic. The compromises imposed to give QC logic seem to be more appropriate than

other paraconsistent logics for applications in computing. QC logic provides a means to obtain

all the non-trivial resolvents from a set of formulae, without the problem of trivial clauses also

following. Furthermore, QC logic is tractable unlike argumentative logics. Though the constraints

on QC logic result in tautologies from an empty set of assumptions being non-derivable, this is

not usually a problem for applications.

Whilst all paraconsistent logics fail to adhere to all the properties of the classical consequence

relation, QC logic does fail a particularly signi�cant combination of these properties. In particular,

the following properties do not hold for the QC consequence relation:

� ` � and � ` �! � implies � `

Q

� right modus ponens

� [ f�g `

Q

� implies � `

Q

�! � conditionalization

� `

Q

�! � implies � [ f�g `

Q

� deduction

� [ f�g `

Q

� and � `

Q

� implies � [ � `

Q

� cut

� `

Q

� and ` �! � implies � `

Q

� right weakening

Failure of these properties can be detrimental for some applications. However, for applications

where inferences are obtained as a one-step process, for example in a system that just provides a

user with inferences from an item of structured text, these properties are often not required.

5 Paraconsistent reasoning with structured text

Now we have reviewed key approaches to paraconsistent reasoning, we return to the question of

paraconsistent reasoning with structured text. First, we summarize the application requirements.

We assume we have a set of items of structured text, and that we will represent these by a set of

positive literals. We also assume that we have domain knowledge represented by a set of classical

formulae. In addition, let us assume that we are using paraconsistent reasoning to look at the

structured text, to identify possible inferences from the structured text and domain knowledge,

and let us also assume the domain knowledge is consistent.

To illustrate, we will consider weather reports in the form of structured text. In this application we

may assume some scienti�c knowledge about the nature of weather. We will regard this scienti�c

knowledge as the domain knowledge. We will also assume that the aim of paraconsistent reasoning

with the weather reports is to �nd useful inferences from each weather report and perhaps to

merge information from the reports. We look at this example in more detail below.

We have considered four options for paraconsistent reasoning, namely C

!

logic, four-valued logic,

quasi-classical logic, and argumentative logics. We summarize the pros and cons of each of these

options for handling structured text as follows, taking into account the application requirements

we have assumed:

� C

!

could be too weak for reasoning with domain knowledge. In particular key classical

proof rules such as modus tollens and disjunctive syllogism do not hold and various classical

equivalences do not hold. This means that unless there is a full appreciation of the intricacies

of the proof theory, it will be di�cult to engineer a knowledgebase to behave as expected. As
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a simple example, if a clause is inserted into the knowledgebase using disjunction as opposed

to implication, then obvious inferences that would follow by modus ponens would not follow

by resolution. Another problem with this logic is that there is no quali�cation of inferences.

� Four-valued logic could be useful for aggregating information about literals, but the proof

theory is too weak for reasoning with domain knowledge. In particular the notion of impli-

cation is much weaker than the classical notion, and there are no proof rules such as modus

ponens or resolution. Whilst there is some quali�cation of inferences, via truth values, it

only says whether or not there is a conict.

� Argumentative logics give useful inferences that are intuitive plus there is a quali�cation of

these inferences. The proof theory is based on classical logic, and in many respects these

logics behave as classical logic. There is no need to restrict the language of the domain

knowledge, and so long as the domain knowledge is consistent, then there is no problem with

knowledge being locked into formulae. In other words, under these conditions argumentative

logics are ideal

4

. Furthermore, the inferences are quali�ed.

� Quasi-classical is in some respects more powerful

5

than argumentative logics and quali�cation

can be incorporated as discussed in [HN98]. However, if we assume that the domain knowl-

edge is consistent and correct, then quasi-classical logic does not seem necessary. Though,

the computational complexity of QC logic is signi�cantly better than argumentative logics.

If we were to allow inconsistent domain knowledgebases, then QC logic would be ideal.

The net conclusion we can draw from this is that argumentative logics are ideal for reasoning with

structured text if we assume that the domain knowledge is consistent.

Since each item of structured text is represented by a set of positive literals, we can only obtain an

inconsistency in a structured report, or in a set of structured reports, by reasoning with domain

knowledge. So each inconsistency in a structured report is de�ned with respect to the domain

knowledge, and as we will see we need to axiomatize this inconsistency. Some of the axiomatization

may involve unique name axioms and domain closure axioms that are de�ned using the appropriate

stereotypes.

Now to illustrate using argumentative logics for reasoning with inconsistency in structured text,

we will consider the problem of the following two conicting weather reports.

hweather report:

hsource: TVi;

hdate: 19.5.1999i;

hcity: Londoni;

htoday's weather: suni;

htomorrow's weather: suni

:weather reporti

4

As we saw in Section 4.3, there is a range of argumentative logics. However, they are all based on reasoning with

maximally consistent subsets. So we can use the argumentative logics in parallel by �nding these subsets, drawing

all existential arguments, and then qualifying them according to whether they are also universal, backed, etc.

5

By \more powerful", we mean that amongest some of the advantageous properties of quasi-classical logic,

information does not get locked into inconsistent subsets of formulae (cf. argmentative logics with Example 4.8).

18



hweather report:

hsource: Radioi;

hdate: 19.5.1999i;

hcity: Londoni;

htoday's weather: suni;

htomorrow's weather: raini

:weather reporti

The reports can be represented by the following two formulae.

report(r1)^ date(r1; 19:5:1999)^ city(r1; London)^ today(r1; sun)^ tomorrow(r1; sun)

report(r2)^ date(r2; 19:5:1999)^ city(r2; London)^ today(r2; sun)^ tomorrow(r2; rain)

Let us assume we have the following domain knowledge for identifying inconsistency in weather

reports:

date(X; D)^ date(Y; D)^ city(X; C)^ city(Y; C)

^ today(X; A)^ today(Y; B)^ incoherent(A; B)! ?

date(X; D)^ date(Y; D)^ city(X; C)^ city(Y; C)

^ today(X; A)^ tomorrow(Y; B)^ incoherent(A; B)!?

incoherent(sun; rain)

incoherent(cold;hot)

incoherent(cool;hot)

incoherent(cold;warm)

incoherent(cool;warm)

incoherent(sun; snow)

8X; Y incoherent(X; Y)! incoherent(Y; X)

8X coherent(X; X)

8X; Y coherent(X; Y)$ :incoherent(X; Y)

Let us also assume we have domain knowledge for merging weather reports where + is a func-

tion denoting a form of conjunction. This domain knowledge includes axioms for associativity,

commutativity and idempotence for the + function symbol:

today(X; A)^ today(Y; B)^ X 6= Y ^ coherent(A; B)! today(X+ Y; A+ B)

today(X; (A+ B) + C)$ today(X; A+ (B + C))

today(X; A+ B)$ today(X; A+ B)

today(X; A+ (B+ B))$ today(X; A+ B)

So for example from today(r1,sun) and today(r2,sun), we get today(r1+r2,sun+sun), and

hence today(r1+r2,sun).

Now we return to qualifying inferences. Using this example we obtain today(r1+r2,sun) as a free

inference from �, whereas tomorrow(r1,sun) and tomorrow(r2,rain) are existential inferences

from �.
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Now suppose we have the followng further formulae in the domain knowledge:

8X(tomorrow(X; sun)! :snow-is-forecast-tomorrow)

8X(tomorrow(X; rain)! :snow-is-forecast-tomorrow)

Also suppose we restrict universal inferences to maximally consistent subsets that contain all

domain knowledge, then all maximally consistent subsets imply :snow-is-forcast-tomorrow,

and so this inference is a universal inference. The reason we need to restrict the universal inferences

is that we are assuming the domain knowledge is consistent and \correct". So if the union of the

domain knowledge and structured text is inconsistent, then we assume it is because the structured

text contains inaccuracies. Hence, we adopt the following de�nition of univeral inference: Let �

be the domain knowledge, and let � be the formulae representing the structured text, then � is

a universal inference from (�;�) i� � is an inference from every set in f�[ �

0

j �

0

is a maximal

subset of � such that �

0

[� is consistentg.

6 Analysing and acting on inconsistency

Paraconsistent reasoning is only really useful as part of a wider framework for inconsistency han-

dling. Here we consider two key aspects of inconsistency handling that incorporate paraconsistent

reasoning. These are analysing inconsistency and acting on inconsistency.

6.1 Analysing inconsistency

Analysis of inconsistency is needed to make better informed decisions on how to handle an incon-

sistency. In [HN98], we propose the use of labelled QC logic that records and tracks information

used in reasoning. Proof rules of labelled QC logic can be used to track inconsistent information by

propagating these labels (and their associated information) during reasoning. Using this approach

we can provide a \logical analysis" of inconsistent information. We can identify the likely sources

of the problem, and use this to suggest appropriate actions. This \auditing" is essential if we are

to facilitate further development in the presence of inconsistency.

In [GH98, Hun99b], we explore further techniques for analysing sets of inconsistent information.

In particular, we give measures of inconsistency for a set of formulae � and use this for de�ning

ways to say \a set (of classical formulae) � is more inconsistent than a set 	" and to say \a set �

is more inconsistent with a set � than a set 	 is with �". These measures are based on features of

a set of formulae include: the number of minimally inconsistent subsets; the number of maximally

inconsistent subsets; the number of atomic symbols occuring in the minimally inconsistent subsets;

the proportion of formulae occurring in a minimally inconsistent subset; and the proportion of for-

mulae in more than one minimally inconsistent subset. These measures can be useful in describing

inconsistency in prioritizing resolution tasks, and in particular in selecting appropriate actions.

In the context of structured text, such as weather reports, analysis might include trying to iden-

tify certain factors that could be the root of the inconsistencies. For example, we may �nd that

one newspaper may frequently conict with domain knowledge, and so should be regarded with

increased doubt. Or we may �nd that a number of newspapers may largely agree for four out of

the next �ve days, but on one day they signi�cantly disagree | in this case we may regard that

predicting the weather for that day is subject to a high degree of uncertainty and so prone to

error.
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6.2 Acting on inconsistency

There are various proposals for resolving inconsistency including truth maintenance systems

[Doy79, Kle86], knowledgebase merging [BKMS92, CH97, KP98, KP99, LS98, CH99], and belief

revision (starting with [AGM85, Gar88] and with developments including iterated belief revision

[DP97, Leh95], and relationships with database updating [KM92]. For a review of belief revision

theory see [DP98]. Yet we may not always want to immediately restore inconsistency. Since by

restoring inconsistency, we may lose valuable information. We may want to harbour the incon-

sistency until we are better able to resolve it. This may involve seeking further information or

advice.

In [GH91, GH93] we argue that dealing with inconsistencies is not necessarily done by restoring

consistency but by supplying rules telling one how to act when the inconsistency arises. To illus-

trate, we can continue with the example of weather reports. For acting on inconsistency in a set

of weather reports, we can choose to ignore some reports because they come from less reliable

sources, or we can seek more up to date information by say switching on the radio, or we can

seek more authoritative information by phoning a government weather service, or if there is a high

degree of conict we may just proceed in the basis that the worst case weather will occur.

E�ective action in the presence of inconsistencies requires gathering a wider appreciation of the

nature and context of these inconsistencies. If we accept that acting in the presence of inconsistency

requires external input, we can adopt a meta-level approach to prescribe inconsistency handling

rules of the form: Inconsistency implies Action.

One approach is to deploy an action-based temporal logic that allows us to specify the past con-

text and source of an inconsistency in order to prescribe future actions to handle the inconsistency

[GH93, FGH

+

94]. We can consider actions as being: (1) Ignoring the inconsistency completely

and continuing development regardless; (2) Circumventing the inconsistent parts of the speci�ca-

tion being developed and continuing development; (3) Removing the inconsistency altogether by

correcting any mistakes or resolving conicts; and (4) Ameliorating the inconsistent situations by

performing actions that \improve" these situations and increase the possibility of future resolution.

7 Discussion

In this paper, we have focused on paraconsistent reasoning with structured text. There are many

proposals for logics for paraconsistent reasoning. Here we have reviewed some of the main ap-

proaches and compared them with respect to an application in technology for structured text.

From this comparison, we see that there are some useful logics for reasoning with inconsistency

in structured text. This o�ers a formal basis for addressing the conicts that normally arise in

information such as news reports.

� Argumentative logics give useful inferences that are intuitive plus there is a quali�cation of

these inferences.

� Four-valued logic is too weak for reasoning with domain knowledge | in particular the

notion of implication is much weaker than the classical notion | and inferences are only

quali�ed according to whether or not there is a conict.

� C

!

could be too weak for reasoning with domain knowledge | in particular key classical

proof rules such as modus tollens and disjunctive syllogism do not hold | and there is no

quali�cation of inferences.
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� Quasi-classical logic is in some respects more powerful than argumentative logics | in par-

ticular if the domain knowledge is inconsistent | and quali�cation can be incorporated as

discussed in [HN98].

Structured text is a general concept implicit in many approaches to handling textual information

in computing | including tagged text in XML, text in relational and object-oriented databases,

and output from information extraction systems. Structured text can be naturally viewed in logic.

Each item of structured text can be represented by a formula of classical logic. This means that

consistency checking and inferencing can be undertaken with structured text using domain knowl-

edge. Given the vast amount of information that is potentially available in the form of structured

text, in particular news reports, it is possible that analysis and alerting tools based on paracon-

sistent logics, together with tools based on defeasible reasoning [Hun00] and tools for merging

reports [Hun98], could become a valuable technology.
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