
Logical fusion rules

for merging structured news reports

Anthony Hunter

Department of Computer Science

University College London

Gower Street

London WC1E 6BT, UK

a.hunter@cs.ucl.ac.uk

January 10, 2002

Abstract

Structured text is a general concept that is implicit in a variety of approaches to handling

information. Syntactically, an item of structured text is a number of grammatically simple

phrases together with a semantic label for each phrase. Items of structured text may be nested

within larger items of structured text. Much information is potentially available as structured

text including tagged text in XML, text in relational and object-oriented databases, and

the output from information extraction systems in the form of instantiated templates. In

previous papers, we have presented a logic-based framework for merging items of potentially

inconsistent structured text [Hun00a, Hun02b]. In this paper, we present fusion rules as a way

of implementing logic-based fusion. Fusion rules are a form of scripting language that de�ne

how structured news reports should be merged. The antecedent of a fusion rule is a call to

investigate the information in the structured news reports and the background knowledge,

and the consequent of a fusion rule is a formula specifying an action to be undertaken to form

a merged report. It is expected that a set of fusion rules is de�ned for any given application.

We give the syntax and mode of execution for fusion rules, and explain how the resulting

actions give a merged report. We illustrate the presentation with examples of fusion rules for

an application for merging weather reports.

1 Introduction

Syntactically, an item of structured text is a data structure containing a number of grammatically

simple phrases together with a semantic label for each phrase. The set of semantic labels in a

structured text is meant to parameterize a stereotypical situation, and so a particular item of

structured text is an instance of that stereotypical situation. Using appropriate semantic labels,

we can regard an item of structured text as an abstraction of an item of free text.

For example, news reports on corporate acquisitions can be represented as items of structured text

using semantic labels including buyer, seller, acquisition, value, and date. Each semantic

label provides semantic information, and so an item of structured text is intended to have some

semantic coherence. Each phrase in structured text is very simple | such as a proper noun, a

date, or a number with unit of measure, or a word or phrase from a prescribed lexicon. For an

1

hbid report :

hbid date : 30 May 2000i

hbuyer :

hcompany :

hname : France Telecomi

hcapitalization : 150 Billion Eurosi

hheadquarters : Paris; Francei

: companyi

: buyeri

htarget :

hcompany :

hname : Orangei

hheadquarters : Bristol; UKi

: companyi

: targeti

hbid type : agreedi

hbid value : 40 Billion Eurosi

hreport info :

hsource : Orange websitei

hURL : www:orange:co:uki

hreport date : 31 May 2000i

: report infoi

: bid reporti

Figure 1: An example of a news report in the form of structured text.

application, the prescribed lexicon delineates the types of states, actions, and attributes, that could

be conveyed by the items of structured text. An example of structured text is given in Figure 1.

Much material is potentially available as structured text. This includes items of text structured

using XML tags, and the output from information extraction systems given in templates (see for

example [CL96, Gri97, ARP98]). The notion of structured text also overlaps with semi-structured

data (for reviews see [Abi97, Bun97]).

Whilst structured text is useful as a resource, there is a need to develop techniques to handle,

analyse, and reason with it. In particular, we are interested in merging potentially inconsistent

sets of news reports [Hun00a, Hun02b], and deriving inferences from potentially inconsistent sets

of news reports [Hun00b, Hun00c, BH01, Hun02a].

1.1 Our approach to fusion

In order to merge items of structured text, we need to take account of the contents of the struc-

tured text. Di�erent kinds of content need to be merged in di�erent ways. To illustrate, consider

Examples 1.1 - 1.3 below.

Example 1.1 Consider the following two conicting weather reports which are for the same day

2

and same city.

hweatherreport: hweatherreport:

hsource: TV1i hsource: TV3i

hdate: 19.5.1999i hdate: 19.5.1999i

hcity: Londoni hcity: Londoni

htoday: suni htoday: suni

htomorrow: suni htomorrow: raini

:weatherreporti :weatherreporti

We can merge them so that the source is TV1 and TV3, and the weather for today is sun, and

the weather for tomorrow is sun or rain.

hweatherreport:

hsource: TV1 and TV3i

hdate: 19.5.1999i

hcity: Londoni

htoday: suni

htomorrow: sun or raini

:weatherreporti

An alternative way of merging these reports may be possible if we have a preference for one source

over the other. Suppose we have a preference for TV3 in the case of conict, then the merged report

is:

hweatherreport:

hsource: TV1 and TV3i

hdate: 19.5.1999i

hcity: Londoni

htoday: suni

htomorrow: raini

:weatherreporti

Example 1.2 Consider the following two structured reports which are for the same day but dif-

ferent regions.

hweatherreport : hweatherreport :

hdate : 5 Nov 99i hdate : 5 Nov 99i

hregionalreport : hregionareport :

hregion : South Easti hregion : North Westi

hmaxtemp : 20Ci hmaxtemp : 18Ci

: regionalreporti : regionalreporti

: weatherreporti : weatherreporti

Here we may wish to take the union of the two regionalreport features in the merged report,

giving the following merged report,

hweatherreport :

hdate : 5 Nov 99i

hregionalreport :

hregion : South Easti

hmaxtemp : 20Ci

: regionalreporti

hregionalreport :

hregion : North Westi

hmaxtemp : 18Ci

: regionalreporti

: weatherreporti

3

Example 1.3 Consider the following two weather reports for the same day and same city.

hweatherreport: hweatherreport:

hsource: TV1i hsource: TV3i

hdate: 1.8.1999i hdate: 1.8.1999i

hcity: Parisi hcity: Parisi

hmiddayweather: hmiddayweather:

hprecipitation: inclementi hprecipitation: showersi

htemperature: 20Ci htemperature: 18Ci

middayweatheri middayweatheri

:weatherreporti :weatherreporti

Here we may wish to take the conjunction of inclement and showers, and range of 18-20C in the

merged report.

hweatherreport:

hsource: TV1 and TV3i

hdate: 1.8.1999i

hcity: Parisi

hmiddayweather:

hprecipitation: inclement and showersi

htemperature: 18C-20Ci

:middayweatheri

:weatherreporti

There are many further examples we could consider, each with particular features that indicate

how the merged report should be formed.

In our approach to merging items of structured text, in particular structured news reports, we

draw on domain knowledge to help produce merged reports. The approach is based on fusion rules

de�ned in a logical meta-language. These rules are of the form �) �, where if � holds, then � is

made to hold. So we consider � as a condition to check the information in the structured reports

and in the background information, and we consider � as an action to undertake to construct the

merged report.

To merge a pair of structured news reports, we start with the background knowledge and the

information in the news reports to be merged, and apply the fusion rules to this information.

For a pair of structured news reports and a set of fusion rules, we repeatedly apply the fusion

rules until no more rules apply. The application of the fusion rules is then a monotonic process

that builds up a set of actions that de�ne how the structured news report should be merged. The

information in this �xpoint is then used to construct a merged structured news report. In order

to merge more than two reports, we can repeat the merging process iteratively.

1.2 Other approaches to fusion

Our logic-based approach di�ers from other logic-based approaches for handling inconsistent infor-

mation such as belief revision theory (e.g. [Gar88, DP98, KM91, LS98]), knowledgebase merging

(e.g. [KP98, BKMS92]), and logical inference with inconsistent information (e.g. [MR70, Bre89,

CRS93, BCD

+

93, BDP95]). These proposals are too simplistic in certain respects for handling

news reports. Each of them has one or more of the following weaknesses: (1) One-dimensional

preference ordering over sources of information | for news reports we require �ner-grained pref-

erence orderings; (2) Primacy of updates in belief revision | for news reports, the newest reports

are not necessarily the best reports; and (3) Weak merging based on a meet operator | this

4

causes unnecessary loss of information. Furthermore, none of these proposals incorporate actions

on inconsistency or context-dependent rules specifying the information that is to be incorporated

in the merged information, nor do they o�er a route for specifying how merged reports should be

composed.

Other logic-based approaches to fusion of knowledge include the KRAFT system and the use

of Belnap's four-valued logic. The KRAFT system uses constraints to check whether information

from heterogeneous sources can be merged [PHG

+

99, HG00]. If knowledge satis�es the constraints,

then the knowledge can be used. Failure to satisfy a constraint can be viewed as an inconsistency,

but there are no actions on inconsistency. In contrast, Belnap's four-valued logic uses the values

\true", \false", \unknown" and \inconsistent" to label logical combinations of information (see

for example [LSS00]). However, this approach does not provide actions in case of inconsistency.

Merging information is also an important topic in database systems. A number of proposals have

been made for approaches based in schema integration (e.g. [PM98]), the use of global schema

(e.g. [GM99]), and conceptual modelling for information integration based on description logics

[CGL

+

98b, CGL

+

98a, FS99, PSB

+

99, BCVB01]. These di�er from our approach in that they

do not seek an automated approach that uses domain knowledge for identifying and acting on

inconsistencies. Heterogeneous and federated database systems also could be relevant in merging

multiple news reports, but they do not identify and act on inconsistency in a context-sensitive

way [SL90, Mot96, CM01], though there is increasing interest in bringing domain knowledge into

the process (e.g. [Cho98, SO99]).

Our approach also goes beyond other technologies for handling news reports. The approach of

wrappers o�ers a practical way of de�ning how heterogeneous information can be merged (see for

example [HGNY97, Coh98, SA99]). However, there is little consideration of problems of conicts

arising between sources. Our approach therefore goes beyond these in terms of formalizing reason-

ing with inconsistent information and using this to analyse the nature of the news report and for

formalizing how we can act on inconsistency.

1.3 The rest of the paper

In the rest of the paper, we develop the approach of logic-based fusion of news reports. In Section 2,

we review the de�nitions for formalizing structured text. This includes coverage of timestamps and

sourcestamps. It also includes coverage of some concepts for describing the structure of structured

text. In Section 3, we present the syntax for fusion including fusion rules and background knowl-

edge. Then, in Section 4, we de�ne how a set of fusion rules together with background knowledge

can be executed to generate a set of actions that can be used to build a merged structured news

report. We explain how to use these actions to build a merged structured news report in Section

5. Then, in Section 6, we consider some properties of fusion systems based on fusion rules.

2 Formalizing structured text

In this section, we formalize the composition and structure of structured news reports.

2.1 Structured text

Here we adopt some basic de�nitions that should be easy to view as an adaptation of ideas in

a variety of �elds in XML, relational and object-oriented databases, language engineering, and

5

knowledgebased systems.

De�nition 2.1 A word is a string of alphanumeric characters, and a phrase is a string of one

or more words. A text entry is either a phrase or a null value. A semantic label is a phrase.

In this paper, we assume the set of semantic labels and the set of text entries are disjoint.

Example 2.1 Examples of words include John, France, drive, happy, 23, and 3i, and examples

of phrases include University of London, John, 23 April 1999, and warm and sunny.

De�nition 2.2 If � is a semantic label, and is a text entry, then h� : i is an atomic feature.

The complex features are de�ned as follows: (1) if h� : i is an atomic feature, then h� : i

is a complex feature; and (2) if � is a semantic label and �

1

; :::; �

n

are complex features, then

h� : �

1

; :::; �

n

: �i is a complex feature. The type of a complex feature is the semantic label �. An

item of structured text is just a complex feature.

De�nition 2.3 Let h� : �

1

; ::; �

n

: �i be a complex feature. The sub function is de�ned as follows:

Sub(h� : �

1

; ::; �

n

: �i) = f�

1

; ::; �

n

g [Sub(�

1

) [::[Sub(�

n

)

Sub(h� : i) = fh� : ig

For complex features �; �, � is a complex feature in � i� � 2 Sub(�).

We can consider a complex feature as a tree where the semantic labels are non-leaf nodes and the

text entries are leaves.

De�nition 2.4 Let h� : �

1

; ::; �

n

: �i be a complex feature. The semantic label � is the parent

of the complex features �

1

; ::; �

n

. The elements of Sub(h� : �

1

; ::; �

n

: �i) are the o�spring of �.

The function Root is de�ned as: Root(h� : �

1

; ::; �

n

: �i) = �

De�nition 2.5 The complex features, h� : �

1

; ::; �

n

: �i and h� :

1

; ::;

n

: �i have the same

structure i� �

1

and

1

have the same structure, .., and �

n

and

n

have the same structure. The

atomic features h� : �i and h� : �i have the same structure.

We assume that for an application, some complex features will be classi�ed as structured re-

ports. These will be complex features with some minimum structure such as illustrated in Exam-

ples 1.1 - 1.3. We do not however assume any general conditions for classifying items of structured

text as structured reports.

2.2 Timestamps and sourcestamps

There are four types of timestamp that we will consider for structured reports, namely an atomic

pointbased timestamp, an atomic intervalbased timestamp, a complex pointbased timestamp, and

a complex intervalbased timestamp, and we de�ne these below.

De�nition 2.6 The set of temporal semantic labels is a subset of the set of semantic labels

used for structured news reports.

6

Example 2.2 The set of temporal semantic labels includes time, date, publicationdate, and

year.

De�nition 2.7 The set of temporal text entries is a subset of the set of text entries used for

structured news reports. A temporal text entry may refer to a point or interval in a clock and/or

calendar. A temporal text entry is called a pointbased text entry if it refers to a point in a

clock. And a temporal text entry is called an intervalbased text entry if it refers to an interval

in a clock and/or calendar.

Example 2.3 Temporal text entries include 14.00hrs, 19 April 2000, and 19/4/00. Temporal

text entries may or may not include the units of time used. For example, both 14.00 and 14.00hrs

are temporal text entries.

We will look more closely at the nature of points and intervals in the following de�nitions.

De�nition 2.8 An atomic pointbased timestamp is an atomic feature h� : �i where � is a

temporal semantic label referring to a particular clock and/or a particular calendar and � is a

pointbased text entry with a value denoting a point in that clock and/or calendar.

Example 2.4 Examples of atomic pointbased timestamps include:

htime : 14:00hrsi hdate : 19 April 2000i hpublicationdate : 19=4=00i hyear : 2004i

We assume the background knowledge includes axioms that make di�erent formats for temporal

text entries interchangeable, so that for example 19 April 2000 is equivalent to 19/4/2000.

De�nition 2.9 An atomic intervalbased timestamp is an atomic feature h� : �i where � is

a temporal semantic label referring to a particular clock and/or a particular calendar and � is a

intervalbased text entry with a value denoting an interval in that clock and/or calendar.

We view time intervals as being either implicitly given as an interval with the start and end points

being inferred, or explicitly given in terms of a start point and an end point.

De�nition 2.10 An explicit intervalbased text entry is of the form X-Y, where X and Y

denote points, and an implicit intervalbased text entry of the form X where X describes a

period of time without using explicit end points.

Example 2.5 Examples of atomic intervalbased timestamps with explicit intervalbased text entries

include:

hreportingperiod : 1/1/00-31/3/00i hopenhours : 09.00-12.00i

Example 2.6 Examples of atomic intervalbased timestamps with implicit intervalbased text en-

tries include:

hreportingperiod : 2004i hholidayperiod : Easteri

So for 2004, the inferred start point in days is 1/1/2004 and the inferred endpoint in days is

31/12/2004.

7

It can appear di�cult to distinguish some implicit intervalbased text entries from pointbased text

entries. We address the problem of handling implicit intervals by reducing each intervalbased text

entry to pointbased text entries. We assume that the background knowledge includes axioms for

this (as discussed in [Hun02b]).

De�nition 2.11 A complex pointbased timestamp is either an atomic pointbased timestamp

or a complex feature h : �

1

; ::; �

n

: i where is a temporal semantic label refering to a particular

clock and/or a particular calendar and �

1

; ::; �

n

are complex pointbased timestamps that describe

the point in that clock and/or calendar.

In this paper, we will assume atomic and complex pointbased timestamps should be interchange-

able by appropriate axioms in the background knowledge.

Example 2.7 An example of a complex pointbased timestamp is:

hdate:

hday: 23i;

hmonth: Aprili;

hyear: 2000i;

:datei

So we can assume this complex pointbased timestamp is equivalent to hdate: 23 April 2000i.

De�nition 2.12 A complex intervalbased timestamp is either an atomic intervalbased times-

tamp or a complex feature h : �

1

; ::; �

n

: i where is a temporal semantic label refering to a

particular clock and/or a particular calendar and �

1

; ::; �

n

are complex pointbased timestamps that

describe the interval in that clock and/or calendar.

Also, in this paper, we will assume atomic and complex intervalbased timestamps should be inter-

changeable by appropriate axioms in the background knowledge.

Example 2.8 An example of a complex intervalbased timestamp is:

huniversity term:

hfirst day of term: 10/1/2000i;

hlast day of term: 29/3/2000i;

:university termi

So we assume this complex intervalbased timestamp is equivalent to

huniversity term: 10/1/2000-29/3/2000i

In the rest of this paper, we assume each news report may have a timestamp which has type date,

and may be pointbased or intervalbased, and complex or atomic. It may also have a sourcestamp

which is an atomic feature of type source and text entry that describes what the source of the news

report is. For example, for a weather report, we may have the atomic feature hsource : BBC TVi.

Whilst we take a restricted position on timestamps and sourcestamps in this paper, we believe that

the approach presented here can be extended to further types and combinations of timestamps and

sourcestamps in structured text. For more information on using temporal knowledge in structured

news reports see [Hun02b].

8

2.3 Structural information about structured news reports

In order to compare items of structured text on the basis of their structure, we will use the following

notion of a skeleton.

De�nition 2.13 A skeleton is a tree (N;E; S) de�ned as follows: N is the set of nodes where

each node is a semantic label; E is a set of edges represented by pairs of nodes; and S is the set

of sibling neighbours represented by pairs of nodes such that (x; y) 2 S i� (i) x and y are siblings

(i.e. x and y have the same parent) and (ii) x is to the left of y.

According to De�nition 2.13, the relative positions of siblings is important in a skeleton. So if x

and y are siblings in a skeleton T , such that x is left of y, then we can form a di�erent skeleton

T

0

where y is left of x.

Since a skeleton is essentially a complex feature without the text entries, a skeleton can be formed

from an item by just removing the text entries. In other words, we use the semantic labels in a

item of structured text as the name of the nodes in the skeleton. We call each such name, the

simple name of the node. However, to obviate any problems arising from multiple occurrences of

a semantic label in a complex feature, and hence the same name being used for di�erent nodes, we

can adopt the following de�nition for pedantic names for nodes. This de�nition uses the sequence

of semantic labels used on the path from the root to the particular occurrence of a semantic label

in a feature.

De�nition 2.14 The pedantic name for any node in a structured news report is de�ned induc-

tively as follows: The pedantic name for the root of a structured news report is the semantic label

for the report. For a nested feature h� :

1

; :::;

n

: �i, let the pedantic name for � be �=�, then

the pedantic name for the root of each

i

is �=�=Root(

i

). (If there is more than one

i

with the

same semantic label at the root, then the occurrences can be di�erentiated by adding a superscript

to the semantic label in the pedantic name.)

Example 2.9 The pedantic name for source in Figure 1 is bidreport/reportinfo/source.

Essentially, a pedantic name is like a unix �le name that can be given by the path of directories

from the root. But where we do not have ambiguity, we will just use the simple name.

De�nition 2.15 The skeleton function, denoted Skeleton, is applied to a complex feature � and

returns the skeleton (N;E; S) for �, where the set of nodes N is the set of names (simple or

pedantic) formed from the semantic labels used in �, and E and S are de�ned as follows, where

�

�

, Root(

1

)

�

,..,Root(

n

)

�

are either the simple names or pedantic names (as required) for the

semantic labels �, and the roots of

1

,..,

n

, respectively:

E = f(�

�

; Root(

i

)

�

) j h� :

1

; :::;

n

: �i 2 Sub(�) and i 2 f1; :::; ngg

S = f(Root(

i

)

�

; Root(

j

)

�

) j h� :

1

; :::;

n

: �i 2 Sub(�) and i; j 2 f1; :::; ng and i < jg

So the skeleton function is de�ned to extract the tree structure of each item of structured text.

De�nition 2.16 Let T

i

= (N

i

; E

i

; S

i

) and T

j

= (N

j

; E

j

; S

j

) be skeletons and let � be a pre-

ordering over skeletons such that: T

i

� T

j

i� N

i

� N

j

and E

i

� E

j

and S

i

� S

j

.

9

T3

customer

�

�

�

�	

name

@

@

@

@R

address

T4

customer

�

�

�

�	

name

?

age

@

@

@

@R

address

�

�

�

�	 ?

@

@

@

@R

number street city

Figure 2: Assume T3 and T4 are both skeletons. Here, T3 � T4 holds.

So for skeletons T

i

and T

j

, if we have T

i

� T

j

, then the set of edges in T

i

is a subset of the edges

in T

j

, and for all sibling nodes x; y in T

i

, if x is left of y in T

i

, then x is left of y in T

j

.

An example of a pre-ordering is given in Figure 2.

De�nition 2.17 Let � be a complex feature and let S be a skeleton. An instantiation of S by �

is de�ned as follows:

If Skeleton(�) � S then � is a partial instantiation of S

If Skeleton(�) � S and S � Skeleton(�) then � is a full instantiation of S

If � is an instantiation of S, this is denoted by S(�).

With reference to De�nition 2.5, structured reports �

1

and �

2

have the same structure i� Skeleton(�

1

) �

Skeleton(�

2

) and Skeleton(�

2

) � Skeleton(�

1

).

De�nition 2.18 Let F and F' be features such that F 2 Sub(F') and let Skeleton(F') = (N;E; S).

A position of F in F' is a pedantic name for the root of F in Skeleton(N;E; S).

De�nition 2.19 Let h� :

1

; ::;

n

: �i be a complex feature. The anchor for each complex feature

i

is �. So each of

1

; ::;

n

is anchored at �.

The anchor is the position from which one or more complex features hang. In this way, the anchor

gives the connection to the rest of structured text.

Example 2.10 Consider Figure 1. Here we can see hbid date: 30 May 2000i is at position

bidreport/biddate and it is anchored at bidreport.

In this way, we are using the notions of nodes in skeletons and semantic labels in structured reports

interchangeably.

10

3 Syntax for fusion

In this section, we give the syntax for the fusion rules and associated background knowledge for

de�ning fusion systems. We assume fusion is undertaken on pairs of structured news reports, and

that these reports are represented as logical terms in the logical fusion rules.

De�nition 3.1 Each complex feature is equivalent to a ground term called a feature term.

If h� :

1

; ::;

n

: �i is a complex feature, and

0

1

is a feature term that represents

1

,,

and

0

n

is a feature term that represents

n

, then �(

0

1

; ::;

0

n

) is a feature term that represents

h� :

1

; ::;

n

: �i. If h� : i is a complex feature, then �() is a feature term that represents it.

De�nition 3.2 Each text entry is equivalent to a constant symbol called a text entry constant. So

if T is a text entry, then T is a text entry constant.

Example 3.1 Consider the following item of structured text.

hauctionreport :

hbuyer : hname : hfirstname : Johni; hsurname : Smithi : namei : buyeri;

hproperty : Lot37i

: auctionreporti

This can be represented by the feature term:

auctionreport(buyer(name(firstname(John); surname(Smith))); property(Lot37))

In de�ning fusion rules, we require three kinds of atom. These are structural atoms, background

atoms, and action atoms. The structural atoms capture information about the structure and

type of complex features, and the type and text entries for the atomic features, in individual

structured news reports, and between paris of structured news reports. The background atoms

relate information in individual structured news reports to the domain knowledge. Finally, action

atoms capture instructions for building merged structured news reports.

De�nition 3.3 The structural atoms are atoms that include the following de�nitions:

1. FeatureType(F,T) where T is the type of feature F.

2. Report(R) where R is a structured news report.

3. TextEntry(A,E) where E is the text entry for the atomic feature A.

4. IncludeFeature(F,F') where F' is a feature in F, and so F' 2 Sub(F).

5. AtomicFeature(F,A) where A is an atomic feature in F.

6. Position(F,P,R) where P is a position of the feature F in the report R.

7. Anchor(F,P,R) where P is a position of an anchor of the feature F in the report R.

8. SameSkeleton(F,F')where the features F and F' are such that Skeleton(F) = Skeleton(F').

9. SameTextEntry(A,A') where the atomic features A and A' have the same text entry.

10. NextSibling(P,P',R) where position P is an immediate sibling to the left of P' in report R.

11

We denote the set of structural atoms by S.

Example 3.2 To illustrate some of these atoms, consider the following:

TextEntry(city(London);London)

IncludesFeature(address(street(GowerSt); city(London));city(London))

SameTextEntry(city(London);area(London))

Example 3.3 Consider Figure 1. Let this report be denoted R, and let hbid date: 30 May 2000i

be denoted F. For this, we have

Position(F; bidreport=biddate; R)

Anchor(F; bidreport;R)

The structural atoms are evaluated by the underlying implementation for fusion. In other words,

for any pair of structured news reports, the set of ground structural atoms that hold is completely

determined. These atoms can be viewed as \built-in" predicates by analogy with Prolog.

We also require atoms that relate the contents of structured text to the background knowledge.

These are background atoms and a partial list is given below.

De�nition 3.4 The background atoms are atoms that include the following de�nitions:

1. SameDate(F,F') where F and F' are timestamps that refer to the same time point.

2. SameSource(F,F') where F and F' are sourcestamps that refer to the same source.

3. SameCity(F,F') where F and F' are features that refer to the same city.

4. Source(R,F) where F is the sourcestamp in the report R.

5. Date(R,F) where F is the datestamp in the report R.

6. Coherent(F,F') where the features F and F' are coherent.

7. Prefer(F,F') where the feature F is preferred to the feature F'.

We denote the set of background atoms by B.

Example 3.4 To illustrate background atoms consider the following literals that may be included

in the background knowledge:

SameDate(date(14Nov01); date(14:11:01))

SameCity(city(Mumbai); city(Bombay))

SameLog(log(date(day(14); month(11);year(01))); log(date(14:11:01)))

Background atoms like SameDate(F,F'), SameSource(F,F'), and SameLog(F,F') are useful to

determine when two features are equivalent and thereby indicate whether the features they come

from are on the same topic. For example, if we have two reports, we can use these atoms to

determine that the two reports have SameCity and SameDate holding, as a precondition before

merging. We will use them as conditions in fusion rules below for this purpose.

12

The coherent relation captures when two features are mutually consistent. The simplest form of

inconsistency is between a pair of atomic features. Consider two structured reports, �

1

and �

2

,

where the atomic feature h� : �i is in item �

1

and the atomic feature h� : i is in item �

2

and

� 6= . For some semantic labels, this inequality would suggest an inconsistency with the domain

knowledge, as illustrated by Example 3.5. Obviously di�erent text entries for the same semantic

label do not always suggest an inconsistency, as illustrated by Example 3.6.

Example 3.5 Let �

1

and �

2

be two structured reports. Suppose hweather : suni is an atomic

feature in �

1

and hweather : raini is an atomic feature in �

2

, and �

1

and �

2

are on the topic

\weather reports for London on 1 August 1999".

Example 3.6 Let �

1

and �

2

be two structured reports. Consider hcity : Londoni is an atomic

feature in �

1

and hcity : Parisi is an atomic feature in �

2

, and �

1

and �

2

are on the topic \weather

reports for 1 August 1999".

An example of a de�nition for the coherent relation is given below.

Example 3.7 Let us assume we have the following background knowledge for identifying pairwise

inconsistency in atomic features of type weather in weather reports:

8X Coherent(X,X)

:Coherent(weather(sun),weather(rain))

:Coherent(weather(cold),weather(hot))

:Coherent(weather(cool),weather(hot))

:Coherent(weather(cold),weather(warm))

:Coherent(weather(cool),weather(warm))

:Coherent(weather(sun),weather(snow))

Coherent(weather(snow); weather(sleet))

Coherent(weather(sun); weather(sunny))

Coherent(weather(rain); weather(rainy))

Coherent(weather(heavyrain);weather(storms))

Coherent(weather(rain); weather(showers))

Coherent(weather(showers); weather(unsettled))

This is likely to be only a partial list of literals required for this purpose. In addition, we will need

various further formulae to de�ne Coherent for other types of atomic feature.

The background atoms are evaluated by querying background knowledge. In the simplest case,

the background knowledge may be just a set of ground background atoms that hold. However,

we would expect the background knowledge would include classical quanti�ed formulae that can

be handled using automated reasoning. In any case, the background knowledge is de�ned by a

knowledge engineer building a fusion system for an application.

De�nition 3.5 The set of check atoms, denoted C, is the union of the structural atoms and the

background atoms.

We now consider the syntax for action atoms, and this requires the de�nition for action functions.

13

De�nition 3.6 The set of action functions include the following functions that can be used as

terms in the action atoms.

1. Interval(X,Y) where X and Y are text entries

and the function returns an interval X-Y.

2. Conjunction(X,Y) where X and Y are text entries

and the function returns a text entry X and Y.

3. Disjunction(X,Y) where X and Y are text entries

and the function returns a text entry X or Y.

We assume action functions are de�ned in the underlying implementation that uses the actions as

instructions to build a merged report.

Example 3.8 The following are examples of de�nitions for action functions:

Interval(18C,25C) = 18-25C

Conjunction(TV1,TV3) = TV1 and TV3

Disjunction(sun,rain) = sun or rain

We now consider a basic set of action atoms. In Section 6, we consider extending the set of action

atoms.

De�nition 3.7 The action atoms are atoms that include the following de�nitions:

1. CreateSkeleton(R) where R is a report. The resulting action is to create the skeleton for

the merged report. The postcondition of this action is Skeleton(R) holding.

2. AddText(E,P) where E is a text entry, and P is a tree position. The resulting action is to

add the text entry to the tree in position P. The precondition of this action is that there is no

o�spring, or text entry, for the semantic label at P. The postcondition of this action is that

E is the text entry for the semantic label at P.

3. ExtendFeature(F,P) where F is a feature and P is a position. The resulting action is to

extend the tree with F at position P. The preconditions for this are that the semantic label

for Root(F) should equal the semantic label at P and there is no o�spring, or text entry, for

the semantic label at P. The postcondition of this action is that Root(F) is at P.

4. AddFeature(F,P) where F is a feature and P is a position. The resulting action is to add F

to the tree in position P. The precondition of this action is that there is no text entry for the

semantic label at P. The postcondition of this action is that the semantic label at position P

is the anchor for F.

5. Populate(F,P) where F is a feature and P is a position. If there is a Skeleton(F) attached

to position P in the tree, then the resulting action is to add the text entries in F to the

vacant slots in Skeleton(F) in the tree. The preconditions of this action are that there are

no text entries in the o�spring of the semantic label at P and the skeleton rooted at P equals

Skeleton(F). The postcondition of this action is that Root(F) is at P.

We denote the set of action atoms by A.

14

Example 3.9 Let R be the report on the left below. Then Skeleton(R) gives the item on the right

below:

hweatherreport: hweatherreport:

hsource: TV1 and TV3i hsource: i

hdate: 19.5.1999i hdate: i

hcity: Londoni hcity: i

htoday: suni htoday: i

htomorrow: sun or raini htomorrow: i

:weatherreporti :weatherreporti

Example 3.10 Consider AddText(BBC TV,weatherreport/source). This instruction applied to

the item below on the left gives the item below on the right.

hweatherreport: hweatherreport:

hsource: i hsource: BBC TVi

hdate: i hdate: i

hcity: Londoni hcity: Londoni

htoday: i htoday: i

htomorrow: i htomorrow: i

:weatherreporti :weatherreporti

Example 3.11 Consider the item on the left, and the feature F on the right:

hweatherreport: hweathertoday:

hsource: i hprecipitation: snowi

hdate: i htemp: 0Ci

hcity: Londoni :weathertodayi

hweathertoday: i

:weatherreporti

The instruction ExtendFeature(F,weatherreport/weathertoday) when applied to the item on

the left above gives the following item:

hweatherreport:

hsource: i

hdate: i

hcity: Londoni

hweathertoday: i

hprecipitation: snowi

htemp: 0Ci

:weathertodayi

:weatherreporti

Implicit with the de�nition for ExtendFeature is the requirement to turn an atomic feature into

a complex feature. This is also possible with AddFeature though not necessarily.

Example 3.12 Consider the item on the left, and the feature F on the right:

hweatherreport: hprecipitation:

hsource: i htype: snowi

hdate: i hamount: 2cmi

hcity: Londoni :precipitationi

:weatherreporti

15

Then the instruction AddFeature(F,weatherreport) gives the following item:

hweatherreport:

hsource: i

hdate: i

hcity: Londoni

hprecipitation: i

htype: snowi

hamount: 2cmi

:precipitationi

:weatherreporti

Example 3.13 Consider the item on the left, and the feature F on the right.

hweatherreport: hweathertoday:

hsource: i hprecipitation: snowi

hdate: i htemp: 0Ci

hcity: Londoni :weathertodayi

hweathertoday: i

hprecipitation: i

htemp: i

:weathertodayi

:weatherreporti

Then the instruction Populate(F,weatherreport/weathertoday) gives the following

hweatherreport:

hsource: i

hdate: i

hcity: Londoni

hweathertoday: i

hprecipitation: snowi

htemp: 0Ci

:weathertodayi

:weatherreporti

The action atoms cause a structured news report to be constructed. They de�ne the structure of

the report, and the text entries in the report. We will explain how this can be done in Section 5.

In the remainder of this section, we explain how we use these atoms in fusion rules.

De�nition 3.8 The set of atoms is C [A. An atom is ground if each term in the atom is ground.

If an atom is not ground, then it is unground. The set of ground atoms is denoted G.

De�nition 3.9 Let f:;_;^g be the set of classical logical connectives. The set of ground

formulae, denoted F , is the set of all classical formulae that can be formed from G and the set of

logical connectives using the usual inductive de�nition for classical logic.

We leave consideration of quanti�cation to De�nitions 3.11 and 3.12. So in the above de�nition,

if a formula contains an unground atom, then the formula will not be a well-formed formula of

classical logic, because the free variable(s) will be unbound.

16

De�nition 3.10 A check formula is a formula composed from one or more check atoms and

zero or more classical logical connectives using the usual inductive de�nition for classical logic

formulae. An action formula is a formula composed from one or more action atoms and zero or

more classical logical connectives using the usual inductive de�nition for classical logic formulae.

In the following de�nition, we introduce a non-classical form of implication that is denoted by the

) symbol.

De�nition 3.11 A fusion rule is a rule of the following form where � is a check formula and �

is an action formula.

�) �

We assume that each variable in each rule is implicitly universally quanti�ed, with the universal

quanti�ers outermost (i.e. if X

1

; ::; X

n

are the free variables in �) �, then the explicitly quanti�ed

version is 8X

1

; ::; X

n

(�) �)).

Normally, � will be an atom or a conjunction of atoms. However, if it incorporates disjunction,

then it captures non-determinism in the intended actions, and if it incorporates negation, then the

negation captures a form of preclusion in the intended action.

Example 3.14 The following are four examples of fusion rules.

Report(R1)^ Report(R2)^ SameSkeleton(R1; R2)^ SameDate(R1; R2)

) CreateSkeleton(R1)

Report(R1)^ Report(R2)^ AtomicFeature(R1; A1)^ AtomicFeature(R2;A2)

^Position(A1; P;R1)^ FeatureType(A1; rainfall) ^ FeatureType(A2; rainfall)

^Coherent(A1; A2)^ TextEntry(A1; X1)^ TextEntry(A2; X2)

) AddText(Conjunction(X1;X2);P)

Report(R1)^ Report(R2)^ AtomicFeature(R1; A1)^ AtomicFeature(R2;A2)

^FeatureType(A1; rainfall) ^ FeatureType(A2; rainfall) ^ :Coherent(A1; A2)

^Source(R1; S1)^ Source(R2; S2)^ Prefer(S1; S2)

^Position(A1; P;R1)^ TextEntry(A1; E)

) AddText(E; P)

Report(R1)^ Report(R2)^ IncludeFeature(R1;F1)^ IncludeFeature(R2;F2)

^FeatureType(F1; regionalreport) ^ FeatureType(F2; regionalreport)

^AtomicFeature(F1; A1)^ AtomicFeature(F2; A2)

^FeatureType(A1; region) ^ FeatureType(A2; region)

^:SameTextEntry(A1;A2)^ Position(F1; P; R1)

) AddFeature(F1; P)^ AddFeature(F2; P)

The action formulae give a logical speci�cation that we can reason with. So for example, if we

have an action :� given by one fusion rule, and we have an action � _ � given by another fusion

rule, then taking these together we are obliged to undertake the action �.

De�nition 3.12 The set of background formulae is formed from the check formulae and the

classical universal quanti�er, denoted 8, so that any unbound variable is bound by universal quan-

ti�cation. Any subset of the background formulae is called background knowledge.

De�nition 3.13 A fusion system is a pair (�;�) where � is a set of fusion rules and � is

background knowledge.

We explain how to use a fusion system in the next section.

17

4 Executing fusion rules

In order to use a set of fusion rules, we need to be able to execute them. We need a fusion system

and a pair of structured news report to do this.

De�nition 4.1 A fusion call is a triple (�;�; fR1; R2g) where (�;�) is a fusion system, and R1

and R2 are structured news reports.

Suppose we want to merge the reports R1 and R2. To do this, we use the background knowledge

and the atoms Report(R1) and Report(R2), and then attempt to apply each of the fusion rules

by a form of modus ponens, adding the consequent of each applied rule to the current execution

state, until no more fusion rules apply.

De�nition 4.2 An execution state is a subset of F .

An execution state lists the action formulae that hold at each point in an execution of a fusion

call.

De�nition 4.3 The starting execution state for a fusion call (�;�; fR1; R2g) is fg.

So at the start of an execution, all we know is the background knowledge, and the two reports.

An execution step for a fusion call takes an execution state and a fusion rule and creates a new

execution state. The new execution state is the old execution state plus a grounded version of the

consequent of one of the fusion rules. For this we need a form of substitution.

De�nition 4.4 A substitution � for a fusion rule �) � is an assignment � of ground terms

to variables in � and � such that �(�) and �(�) are ground formulae.

Example 4.1 Consider the �rst fusion rule in Example 3.14, where R1 and R2 are grounded by

feature terms. A substitution � is

R1 = weatherreport(date(12:12:01); city(London); weather(rain))

R2 = weatherreport(date(12:12:01); city(London); weather(sleet))

De�nition 4.5 An execution step for a fusion call (�;�; fR1; R2g) is a triple (X;�) �; Y)

where X is an execution state, �) � is a fusion rule, Y is an execution state, and the following

two conditions hold where � is a substitution for �) �:

1. � [X [fReport(R1); Report(R2)g ` �(�)

2. Y = X [f�(�)g

Each execution step can be regarded as an application of a form of modus ponens.

De�nition 4.6 An execution sequence for a fusion call (�;�; fR1; R2g) is a sequence of exe-

cution states hX

0

; ::; X

n

i where the following conditions hold:

18

1. X

0

= fg

2. for all 0 � i < n, X

i

� X

i+1

3. for all 0 � i < n, there is an execution step (X

i

; �) �;X

i+1

) for the fusion call (�;�; fR1; R2g)

4. there is no execution step (X

n

; �) �;X

n+1

) for the fusion call (�;�; fR1; R2g) such that

conditions 1 to 3 hold.

An execution sequence for a fusion call therefore ensures that: (1) the execution sequence has the

starting execution state in the �rst execution step; (2) each execution step results in an expanded

execution state; (3) each execution step follows from the previous step and uses a fusion rule

from the fusion system; and (4) the execution sequence is maximal in the sense that it cannot be

extended without violating the other conditions.

By de�nition, an execution sequence is a monotonically increasing sequence of sets. Each X

i

in

the sequence has one more action formula than the previous set X

i�1

in the sequence.

De�nition 4.7 An action sequence for an execution sequence hX

0

; ::; X

n

i is a sequence of

action formulae hA

1

; ::; A

n

i where for 0 < i � n, X

i

= X

i�1

[fA

i

g.

An action sequence in just the sequence of action formulae that are added to the execution state

by each execution step. The action sequence summarizes the actions to be taken to construct the

merged news report.

Example 4.2 Consider the following pair of reports.

hweatherreport: hweatherreport:

hsource: TV1i hsource: TV3i

hdate: 19.5.1999i hdate: 19.5.1999i

hcity: Londoni hcity: Londoni

hweather: suni hweather: showersi

:weatherreporti :weatherreporti

And a set of fusion rules that includes the following rules:

Report(R1)^ Report(R2)^ SameSkeleton(R1; R2)^ SameDate(R1; R2)^ SameCity(R1; R2)

) CreateSkeleton(R1)

Report(R1)^ Report(R2)^ AtomicFeature(R1;A1)^ AtomicFeature(R2; A2)

^Position(A1; P; R1)^ FeatureType(A1; source) ^ FeatureType(A2; source)

^:SameSource(R1; R2)^ TextEntry(A1; E1)^ TextEntry(A2; E2)

) AddText(Conjunction(E1;E2);P)

Report(R1)^ Report(R2)^ AtomicFeature(R1;A1)^ AtomicFeature(R2; A2)

^Position(A1; P; R1)^ FeatureType(A1; date) ^ FeatureType(A2; date)

^TextEntry(A1; E1)^ SameTextEntry(A1; A2)

) AddText(E1; P)

19

Report(R1)^ Report(R2)^ AtomicFeature(R1; A1)^ AtomicFeature(R2;A2)

^Position(A1; P;R1)^ FeatureType(A1; city) ^ FeatureType(A2; city)

^TextEntry(A1; E1)^ SameTextEntry(A1;A2)

) AddText(E1; P)

Report(R1)^ Report(R2)^ AtomicFeature(R1; A1)^ AtomicFeature(R2;A2)

^FeatureType(A1;weather) ^ FeatureType(A2; weather) ^ :Coherent(A1; A2)

^Source(S1; R1)^ Source(S2; R2)^ Prefer(S1; S2)

^Position(A1; P;R1)^ TextEntry(A1; E1)

) AddText(E1; P)

A fusion call with these fusion rules and news reports together with appropriate background knowl-

edge can give the following actions:

A

1

= CreateSkeleton(R1)

A

2

= AddText(Conjunction(TV1; TV3);weatherreport=source)

A

3

= AddText(19:5:1999; weatherreport=date)

A

4

= AddText(London; weatherreport=city)

A

5

= AddText(sun; weatherreport=weather)

The complete action sequence is then given by:

hA

1

; A

2

; A

3

; A

4

; A

5

i

In the next section, we consider how we can use an action sequence for constructing a merged

structured news report.

5 Acting on fusion rules

Since we are building a merged structured news report in a number of steps, we need to �rst clarify

the nature of the intermediate stages in the construction process. To help, we adopt the following

de�nition of a fusion tree.

De�nition 5.1 A fusion tree is a tree of the form (N;E; S; T;B) where (N;E; S) is a skeleton,

T is a set of text entries, and B is a subset of N � T . The set of nodes of the tree is N [T and

the set of edges of the tree is E [B.

So B contains the edges that attach the text entries in T to the skeleton. If a fusion tree

(N;E; S; T;B) is a skeleton, then T = fg and B = fg. If a fusion tree is an item of struc-

tured text, then T is the set of text entries used in the structured text, and B speci�es which

atomic features they instantiate. In any case, a fusion tree is a partial instantiation of a skeleton.

De�nition 5.2 A construction sequence hT

1

; ::; T

n

i for an action sequence hA

1

; ::; A

n

i is a se-

quence of fusion trees such that

1. If T

i

= (N

i

; E

i

; S

i

; T

i

; B

i

), and T

i+1

= (N

i+1

; E

i+1

; S

i+1

; T

i+1

; B

i+1

),

then N

i

� N

i+1

and E

i

� E

i+1

and S

i

� S

i+1

and T

i

� T

i+1

and B

i

� B

i+1

.

2. T

1

is the result of carrying out A

1

on the fusion tree (fg; fg; fg; fg;fg).

3. T

i+1

is the result of carrying out A

i+1

on T

i

.

20

So an action sequence is a sequence of instructions to build a merged structured news report by

acting incrementally on a fusion tree. To illustrate, consider the following example.

Example 5.1 Continuing example 4.2, we have the action sequence where the �rst instruction is

CreateSkeleton(R) which results in the following fusion tree.

hweatherreport:

hsource: i

hdate: i

hcity: i

hweather: i

:weatherreporti

The second instruction is AddText(Conjunction(TV1,TV3),weatherreport/source) which up-

dates the above fusion tree to give the following fusion tree.

hweatherreport:

hsource: TV1 and TV3i

hdate: i

hcity: i

hweather: i

:weatherreporti

The third instruction is AddText(19.5.99,weatherreport/date) which updates the above fusion

tree to give the following fusion tree.

hweatherreport:

hsource: TV1 and TV3i

hdate: 19.5.1999i

hcity: i

hweather: i

:weatherreporti

The fourth instruction is AddText(London,weatherreport/city) which updates the above fusion

tree to give the following fusion tree.

hweatherreport:

hsource: TV1 and TV3i

hdate: 19.5.1999i

hcity: Londoni

hweather: i

:weatherreporti

The �fth instruction is AddText(sun,weatherreport/weather) which updates the above fusion

tree to give the following fusion tree.

hweatherreport:

hsource: TV1 and TV3i

hdate: 19.5.1999i

hcity: Londoni

hweather: suni

:weatherreporti

The net result is a merged structured news report.

21

In Example 5.1, we start by constructing a skeleton, and then adding text entries. So for the fusion

tree (N;E; S; T;B), we start by de�ning (N;E; S), and then incrementally add to T and B until

we have a fusion tree that de�nes an item of structured text. In the next example, we form a

merged structured news report from some complex features.

Example 5.2 Consider R1 being the �rst report given in Example 1.2. Now consider the action

sequence hA

1

; :::; A

4

i where

A

1

= CreateSkeleton(R1)

A

2

= AddText(5 Nov 99; weatherreport=date)

A

3

= Populate(F1; weatherreport=regionalreport)

A

4

= AddFeature(F2; weatherreport)

where

F1 = regionalreport(region(South East); maxtemp(20C))

F2 = regionalreport(region(North West); maxtemp(18C))

For the �rst instruction, CreateSkeleton(R1), we get the following fusion tree:

hweatherreport :

hdate :i

hregionalreport :

hregion : i

hmaxtemp : i

: regionalreporti

: weatherreporti

For the second instruction, AddText(5 Nov 99; weatherreport=date), we update the above fusion

tree to get the following:

hweatherreport :

hdate : 5 Nov 99i

hregionalreport :

hregion :i

hmaxtemp :i

: regionalreporti

: weatherreporti

For the third instruction, Populate(F1,weatherreport/regionalreport) we update the above

fusion tree to get the following:

hweatherreport :

hdate : 5 Nov 99i

hregionalreport :

hregion : South Easti

hmaxtemp : 20Ci

: regionalreporti

: weatherreporti

For the fourth instruction, AddFeature(F2,weatherreport) we update the above fusion tree to

22

get the following:

hweatherreport :

hdate : 5 Nov 99i

hregionalreport :

hregion : South Easti

hmaxtemp : 20Ci

: regionalreporti

hregionalreport :

hregion : North Westi

hmaxtemp : 18Ci

: regionalreporti

: weatherreporti

If an action sequence is non-conicting and complete, then the set of instructions can be used

to build a fusion tree and they leave no gaps in the text entries in the fusion tree. If the action

sequence is incomplete, then the fusion tree will have text entries missing, and if the action sequence

is conicting then there will be instructions for putting more than one text entry into the same

position or instructions for putting both a text entry and a complex feature into the same position.

Before de�ning when an action sequence is complete and non-conicting, we consider when an

action sequence is consistent.

De�nition 5.3 An action sequence hA

1

; ::; A

n

i is consistent i� fA

1

; ::; A

n

g 6` ?.

This de�nition takes a direct interpretation of consistent. It just means an action sequence is

consistent if there is not an instruction to do both an action � and an action :�. An action

sequence can be checked for consistency before an attempt to construct a merged report is made.

Since, an action sequence is a speci�cation for a merged structured news report, we can determine

whether a particular structured news report meets the speci�cation. We de�ne this as follows:

De�nition 5.4 The meets relation is a binary relation between items of structured text and

action sequences, and is de�ned as follows:

R meets hA

1

; :::; A

n

i i� R meets A

1

and and R meets A

n

So by recursion, we need to consider the meets relation for action formulae. For action formulae

A

i

that are atoms, we require the following rules:

R meets CreateSkeleton(R

0

) if Skeleton(R

0

) � Skeleton(R) holds

R meets AddText(E; P) if 9A s.t. TextEntry(A,E)^ Position(A,P,R) holds

R meets AddFeature(F; P) if Anchor(F,P,R) holds

R meets ExtendFeature(F;P) if Position(F,P,R) holds

R meets Populate(F; P) if Position(F,P,R) holds

For action formulae A

i

that are not atoms, we require the following rules:

R meets �_ � i� R meets � or R meets �

R meets � ^ � i� R meets � and R meets �

R meets :� i� it is not the case that R meets �

23

De�nition 5.5 An action sequence hA

1

; :::; A

n

i is non-conicting i� there is a construction

sequence hT

1

; :::; T

n

i for hA

1

; ::; A

n

i and T

n

meets hA

1

; ::; A

n

i.

However, the meets relation is a little too relaxed in the sense that a report may meet an action

sequence but may also include extra information that has not been speci�ed.

De�nition 5.6 The matches relation is de�ned as follows where R is a structured news report

and hA

1

; :::; A

n

i is an action sequence.

R matches hA

1

; :::; A

n

i

i�

R meets hA

1

; :::; A

n

i and 6 9R' s.t. R' meets hA

1

; :::; A

n

i and Skeleton(R

0

) � Skeleton(R)

The matches relation identi�es the minimal structured news report(s) that meet(s) the action

sequence. In other words, it identi�es the news reports that do not include any superuous infor-

mation.

De�nition 5.7 An action sequence hA

1

; :::; A

n

i is unambiguous i� there is only one construc-

tion sequence hT

1

; ::; T

n

i for hA

1

; ::; A

n

i

If an action sequence hA

1

; ::; A

n

i is unambiguous, there is exactly one structured news report R

such that R matches hA

1

; ::; A

n

i.

De�nition 5.8 An action sequence hA

1

; ::; A

n

i is complete i� the construction sequence hT

1

; ::; T

n

i

for hA

1

; ::; A

n

i is such that T

n

is a structured news report.

In other words, an action sequence is a complete if it is not the case that the fusion tree that

results has missing text entries.

6 Properties of fusion rules

We now consider a few properties of fusion rules to clarify the nature of the syntax and execution.

Proposition 6.1 Assuming the actions are only composed from the action atoms de�ned in Def-

inition 3.7. An action sequence hA

1

; ::; A

n

i is non-conicting implies the following conditions:

1. :9 P s.t. fA

1

; :::; A

n

g ` AddText(E,P) ^ AddText(E',P) ^ E 6= E'

2. :9 P s.t. fA

1

; :::; A

n

g ` AddText(E,P) ^ ExtendFeature(F,P)

3. :9 P s.t. fA

1

; :::; A

n

g ` AddText(E,P) ^ AddFeature(F,P)

Proof: Consider condition 1. The result of AddText(E,P) is a fusion tree with E being the text

entry for the atomic feature at P. By the de�nition of atomic features, there can only be one text

entry at P. So it is not possible to have both E and E' at P when E 6= E

0

. So there is no construction

sequence hT

1

; ::; T

n

i for hA

1

; ::; A

n

i where T

n

meets hA

1

; ::; A

n

i. The cases for Conditions 2 and 3

are essentially the same.

A fusion call does not necessarily produce a unique action sequence. In other words, normally

there is some non-determinism in which fusion rules are applied.

24

Proposition 6.2 Let (�;�; fR1; R2g) be a fusion call. It is not necessarily the case that there is

a unique action sequence hA

1

; ::; A

n

i that is generated.

Proof: Consider Example 4.2, in which the action sequence hA

1

; ::; A

5

i is generated. This fusion

call could equally generate the following action sequence hA

0

1

; ::; A

0

5

i, where:

A

0

1

= CreateSkeleton(R1)

A

0

2

= AddText(sun; weatherreport=weather)

A

0

3

= AddText(London; weatherreport=city)

A

0

4

= AddText(19:5:1999;weatherreport=date)

A

0

5

= AddText(Conjunction(TV1; TV3);weatherreport=source)

There can also be some non-determinism in an action sequence.

Proposition 6.3 Let hA

1

; ::; A

n

i be an action sequence, and let A

i

be an action formula in that

sequence. If A

i

can be rewritten into disjunctive normal form, so A

i

is equivalent to a formula

�

1

_ :: _ �

k

, then there may be more than one structured news report R such that R matches

hA

1

; ::; A

n

i.

Proof: Consider a report R1 where R1 matches hA

1

; ::; A

n

i and a report R2 where R2 matches

hA

1

; ::; A

n

i. So for each A

i

, R1 meets A

i

. Now consider an A

i

of the form of � _ �. Clearly R1

meets �_ � and R2 meets �_ �. But suppose, R1 meets � and R1 does not meet �. Also suppose,

R2 does not meet � and R2 meets �. So, R1 6= R2.

The length of an execution sequence, i.e. the number of execution steps undertaken for a fusion

call is constrained by the number of fusion rules, and the nature of the inferences from the domain

knowledge, and the size of the structured news reports. In order to get a useful boundary on the

length of an execution sequence, we adopt the following de�nition.

De�nition 6.1 A fusion rule �) � is capped i� the only possible substitutions � are such that

� assigns feature terms to the free variables in �.

All the fusion rules in this paper are capped.

Proposition 6.4 For any fusion call (�;�; fR1; R2g), if j�j is �nite, and each fusion rule is

capped, then the execution sequence hX

1

; ::; X

n

i is �nite.

Proof: The constraints in De�nition 4.6 ensure that there are no cycles in an execution sequence.

So there is no execution sequence hX

1

; ::; X

n

i such that there is an X

i

and X

j

where X

i

= X

j

unless i = j. Hence, there is no sequence of execution steps where the same instantiated form of

a fusion rule is used twice. The only way that we can get an in�nite sequence hX

1

; ::; X

n

i is if

there are in�nitely many �(�) generated for some rule �) � 2 �. However, if each fusion rule

in � is capped, then there are only �nitely many �(�) that can be generated for each fusion rule,

since the only substitutions for the variables in � come from the feature terms generated from the

structured news reports in the fusion call, and there are only �nitely many feature terms that can

be generated from each fusion call. So it is not possible to generate an in�nite execution sequence

hA

1

; ::; A

n

i.

The assumption that the fusion rules are capped seems quite reasonable if the aim of fusion is to

only include information from the original reports being merged. Indeed if we assume the rules

25

are capped, we can identify a tighter bound based directly on the size of the structured reports

being merged.

However, the computational viability of a fusion system depends on more than the number of

execution steps taken. Indeed there are a number of factors that need to be considered:

� executing fusion rules

� reasoning with background knowledge

� acting on fusion rules

We can regard each of these activities being a form of classical logic inferencing, and hence the

computational viability is bounded by the computational viability of classical logic. Whilst in

general, reasoning with classical logic is di�cult to automate, implementation based on Prolog is

feasible.

Another practical question is whether the syntax can express everything that we want or need to

express. This includes:

� Location completeness of structural atoms. This is the ability to describe any structural

relationship in a report in terms of the nesting and sequence of semantic labels and text

entries.

� Comparison completeness of background atoms. This is the ability to compare any combina-

tion of text entries with respect to the background knowledge. Clearly the background atoms

presented are only indicative of the possible atoms that may be de�ned for an application.

� Fusion completeness of action atoms. This is the ability to describe how any structured

news report can be constructed. In one sense, the current set of action atoms is su�cient

for this. However, further actions atoms would allow reports to be constructed with fewer

instructions. For example, currently the action atoms cannot directly specify the sequence

in which siblings occur.

The notion of structured news reports that we reviewed in Section 2 provides a rich structural

representation. The check and action atoms that we de�ne in Section 3, do not draw on the full

expressivity of structured new report. However, it is straightforward to add further check and

action atoms to extend the basic fusion framework that we have presented here. To illustrate, we

could introduce the following actions.

De�nition 6.2 Further action atoms include:

1. LeftAdd(F,P) where F is a feature and P is a position. The resulting action is to add F to

the fusion tree to the left of the existing feature at P.

2. RightAdd(F,P) where F is a feature and P is a position. The resulting action is to add F to

the fusion tree to the right of the existing feature at P.

To use these actions, we also introduce the following structural atoms.

De�nition 6.3 Further structural atoms include:

26

1. LeftNeighbour(F',F,P,R) where F' and F are features with the anchor at position P in R

and F' is immediately to the left of F.

2. RightNeighbour(F,F',P,R) where F' and F are features with the anchor at position P in R

and F' is immediately to the right of F.

We illustrate the �rst of these structural atoms below.

Example 6.1 Let R be the news report given in Figure 1. Also consider the following:

F' = source(Orange website)

F = URL(www:orange:co:uk)

P = bidreport=reportinfo

For this report, LeftNeighbour(F',F,P,R) holds.

Now we illustrate the action atoms given in De�nition 6.2.

Example 6.2 Consider the following fusion tree T.

hweatherreport :

hdate : 5 Nov 99i

hregionalreport :

hregion : South Easti

hmaxtemp : 20Ci

: regionalreporti

: weatherreporti

Now consider the following instructions:

A = LeftAdd(F; weatherreport=regionalreport)

A

0

= RightAdd(F; weatherreport=regionalreport)

where

F = regionalreport(region(North West); maxtemp(18C))

For the instruction, LeftAdd(F,weatherreport/regionalreport), applied to the fusion tree T,

we get the following:

hweatherreport :

hdate : 5 Nov 99i

hregionalreport :

hregion : North Westi

hmaxtemp : 18Ci

: regionalreporti

hregionalreport :

hregion : South Easti

hmaxtemp : 20Ci

: regionalreporti

: weatherreporti

But suppose we ignore the previous instruction, and return to the original state T of the fusion tree.

For the instruction RightAdd(F,weatherreport/regionalreport), applied to the fusion tree T,

27

we get the following:

hweatherreport :

hdate : 5 Nov 99i

hregionalreport :

hregion : South Easti

hmaxtemp : 20Ci

: regionalreporti

hregionalreport :

hregion : North Westi

hmaxtemp : 18Ci

: regionalreporti

: weatherreporti

It is straightforward to extend the framework that we have presented in this paper to accommodate

these atoms.

Clearly, we can greatly extend the set of background atoms depending on the application. Some

further discussion of formulae for the background knowledge including discussion of inconsistency,

temporal knowledge, and domain knowledge is given in [Hun00a, Hun02b], and for further dis-

cussion of lexical and world knowledge see also [Hun01, HM99, Hun96]. Also of relevance are the

options of using ontologies for structured text (see for example [ES01]) and using comprehensive

semantic networks such as WordNet [Mil95]. More generally, it may be appropriate to harness

typed-feature structures [Car92] and machine readable dictionaries [WSG96] for representing and

reasoning with lexical knowledge.

7 Discussion

Structured text is a general concept implicit in many approaches to handling textual information

in computing, including tagged text in XML, text in relational and object-oriented databases,

and output from information extraction systems. Structured text can be naturally viewed in logic.

Each item of structured text can be represented by a formula of classical logic. This means that

consistency checking and inferencing can be undertaken with structured text using domain knowl-

edge.

We have proposed fusion rules as a scripting language for de�ning how to merge news reports.

It may be appropriate to develop syntactic sugar and other notational conveniences to enhance

this proposal. This may include using symbols such as AND, OR, and NOT. It may also include

priority ordering over fusion rules to dictate the preferred ordering in which they should apply so

as to allow for simpler antecedents. Further assumptions could also be used about the process to

simplify the notation. For example, each rule has Report(R1)^ Report(R2) in the antecedent, and

yet we may assume two reports which are always referred to as R1 and R2, and thereby not need

Report(R1)^ Report(R2) in the antecedent.

The de�nition for a fusion call suggests an implementation based on existing automated reasoning

technology and on XML programming technology. The most obvious route for representing each

structured news report is to represent it as an XML document. Once information is in the form of

XML documents, a number of technologies for managing and manipulating information in XML are

available [Bra00]. Possibilities for representing and reasoning with background knowledge include

relational databases, Datalog, and Prolog. Possibilities for implementing an inference engine for

executing fusion rules include a meta-level program in Prolog, or an implementation in a imperative

programming language such as Java. Another possibility is to present fusion rules in RuleML and

28

harness one of the Java rule engines that are currently being proposed

1

. Finally, an action engine

for acting on the instructions given by the fusion rules, could be implemented in an imperative

programming language such as Java that can manipulate XML. An action engine would need to

take each instruction in an action sequence and construct a construction sequence.

We have not formalized the relationship between the structural atoms and XML technology. How-

ever, there is clearly an overlap in functionality with technologies including the XPath language

and proposals for the XML Query Algebra

2

. However, the main points we want to stress in any

comparison is that: (1) fusion rules o�er a logical bridge between logical reasoning with background

knowledge, structural information about news reports to be merged, and logical speci�cations of

the instructions for producing the merged report; and (2) fusion rules o�er a higher-level scripting

language for handling structured text than available with XPath or XML Query Algebra, and so

fusion rules can be used on top of XML technology. In this sense, fusion rules and XML technology

are complementary.

Given that information extraction may be the technology for providing structured news reports

for merging, integration of a fusion system with information extraction technology may be ap-

propriate. The GATE System provides an implemented architecture for managing textual data

storage and exchange, visualization of textual data structures, and plug-in modularity of text pro-

cessing components [GCW

+

96]. The text processing components includes LaSIE which performs

information extraction tasks including named entity recognition, coreference resolution, template

element �lling, and scenario template �lling.

References

[Abi97] S Abiteboul. Querying semi-structured data. In International Conference on Database

Theory, pages 1{18, 1997.

[ARP98] ARPA. Message Understanding Conference: Proceedings of the Seventh Conference.

Morgan Kaufmann, 1998.

[BCD

+

93] S Benferhat, C Cayrol, D Dubois, J Lang, and H Prade. Inconsistency management

and prioritized syntax-based entailment. In Proceedings of the 13th International Joint

Conference on AI (IJCAI'93), 1993.

[BCVB01] S Bergamaschi, S Castano, M Vincini, and D Beneventano. Semantic integration of

heterogeneous information sources. Data and Knowledge Engineering, 36:215{249,

2001.

[BDP95] S Benferhat, D Dubois, and H Prade. How to infer from inconsistent beliefs without

revising. In Proceedings of the 14th International Joint Conference on AI (IJCAI'95),

1995.

[BH01] Ph Besnard and A Hunter. A logic-based theory of deductive arguments. Arti�cial

Intelligence, 128:203{235, 2001.

[BKMS92] C Baral, S Kraus, J Minker, and V Subrahmanian. Combining knowledgebases of

consisting of �rst-order theories. Computational Intelligence, 8:45{71, 1992.

[Bra00] N Bradley. The XML Companion. AddisonWesley, 2000.

[Bre89] G Brewka. Preferred subtheories: An extended logical framework for default reasoning.

In Proceedings of the Eleventh International Joint Conference on Arti�cial Intelligence

(IJCAI'89), pages 1043{1048, 1989.

1

www.dfki.uni-kl.de/ruleml

2

www.w3.org

29

[Bun97] P Buneman. Semistructured data. In Proceedings of the ACM Symposium on Prin-

ciples of Database Systems, 1997.

[Car92] B Carpenter. The Logic of Typed Feature Structures. Cambridge University Press,

1992.

[CGL

+

98a] D Calvanese, G De Giacomo, M Lenzerini, D Nardi, and R Rosati. Description logic

framework for information integration. In Proceedings of the 6th Conference on the

Principles of Knowledge Representation and Reasoning (KR'98), pages 2{13. Morgan

Kaufmann, 1998.

[CGL

+

98b] D Calvanese, G De Giacomo, M Lenzerini, D Nardi, and R Rosati. Source integration

in data warehousing. In Proceedings of the 9th International Workshop on Database

and Expert Systems (DEXA'98), pages 192{197. IEEE Computer Society Press, 1998.

[Cho98] L Cholvy. Reasoning with data provided by federated databases. Journal of Intelligent

Information Systems, 10:49{80, 1998.

[CL96] J Cowie and W Lehnert. Information extraction. Communications of the ACM,

39:81{91, 1996.

[CM01] L Cholvy and S Moral. Merging databases: Problems and examples. International

Journal of Intelligent Systems, 10:1193{1221, 2001.

[Coh98] W Cohen. A web-based information system that reasons with structured collections

of text. In Proceedings of Autonomous Agents'98, 1998.

[CRS93] C Cayrol, V Royer, and C Saurel. Management of preferences in assumption based

reasoning. In Information Processing and the Management of Uncertainty in Knowl-

edge based Systems (IPMU'92), volume 682 of Lecture Notes in Computer Science.

Springer, 1993.

[DP98] D Dubois and H Prade, editors. Handbook of Defeasible Resoning and Uncertainty

Management Systems, volume 3. Kluwer, 1998.

[ES01] M Erdmann and R Studer. How to structure and access XML documents with on-

tologies. Data and Knowledge Engineering, 36:317{335, 2001.

[FS99] E Franconi and U Sattler. A data warehouse conceptual data model for multidi-

mensional aggregation. In S Gatziu, M Jeusfeld, M Staudt, and Y Vassiliou, editors,

Proceedings of the Workshop in Design and Management of Data Warehouses, 1999.

[Gar88] P Gardenfors. Knowledge in Flux. MIT Press, 1988.

[GCW

+

96] R Gaizaukas, H Cunningham, Y Wilks, P Rodgers, and K Humphreys. GATE:an

environment to support research and development in natural language engineering.

In Proceedings of the 8th IEEE International Conference on Tools with Arti�cial In-

telligence. IEEE Computer Society Press, 1996.

[GM99] G Grahne and A Mendelzon. Tableau techniques for querying information sources

through global schemas. In Proceedings of the 7th International Conference on

Database Theory (ICDT'99), Lecture Notes in Computer Science. Springer, 1999.

[Gri97] R Grishman. Information extraction techniques and challenges. In M Pazienza, editor,

Information Extraction. Springer, 1997.

[HG00] K Hui and P Gray. Developing �nite domain constraints { a data model approach. In

Proceedings of Computation Logic 2000 Conference, pages 448{462. Springer, 2000.

30

[HGNY97] J Hammer, H Garcia-Molina, S Nestorov, and R Yerneni. Template-based wrappers

in the TSIMMIS system. In Proceedings of ACM SIGMOD'97. ACM, 1997.

[HM99] A Hunter and L Marten. Context-sensitive reasoning with lexical and world knowl-

edge. In SOAS Working Papers in Linguisitcs, volume 9, pages 80{95, 1999.

[Hun96] A Hunter. Intelligent text handling using default logic. In Proceedings of the IEEE

Conference on Tools with Arti�cial Intelligence (TAI'96), pages 34{40. IEEE Com-

puter Society Press, 1996.

[Hun00a] A Hunter. Merging potentially inconsistent items of structured text. Data and Knowl-

edge Engineering, 34:305{332, 2000.

[Hun00b] A Hunter. Rami�cation analysis using causal mapping. Data and Knowledge Engi-

neering, 32:1{27, 2000.

[Hun00c] A Hunter. Reasoning with inconsistency in structured text. Knowledge Engineering

Review, 15:317{337, 2000.

[Hun01] A Hunter. A default logic-based framework for context-dependent reasoning with

lexical knowledge. Journal of Intelligent Information Systems, 16:65{87, 2001.

[Hun02a] A Hunter. Hybrid argumentation systems for structured news reports. Knowledge

Engineering Review, 2002. (in press).

[Hun02b] A Hunter. Merging structured text using temporal knowledge. Data and Knowledge

Engineering, 2002. (in press).

[KM91] H Katsuno and A Mendelzon. On the di�erence between updating a knowledgebase

and revising it. In Principles of Knowledge Representation and Reasoning: Proceedings

of the Second International Conference (KR'91), pages 387{394. Morgan Kaufmann,

1991.

[KP98] S Konieczny and R Pino Perez. On the logic of merging. In Proceedings of the Sixth

International Conference on Principles of Knowledge Representation and Reasoning

(KR'98), pages 488{498. Morgan Kaufmann, 1998.

[LS98] P Liberatore and M Schaerf. Arbitration (or how to merge knowledgebases). IEEE

Transactions on Knowledge and Data Engineering, 10:76{90, 1998.

[LSS00] Y Loyer, N Spyratos, and D Stamate. Integration of information in four-valued logics

under non-uniform assumptions. In Proceedings of 30th IEEE International Sympo-

sium on Multiple-Valued Logic (ISMVL2000). IEEE Press, 2000.

[Mil95] G Miller. WordNet: A lexical database for English. Communications of the ACM,

38(11):39{41, 1995.

[Mot96] A Motro. Cooperative database systems. International Journal of Intelligent Systems,

11:717{732, 1996.

[MR70] R Manor and N Rescher. On inferences from inconsistent information. Theory and

Decision, 1:179{219, 1970.

[PHG

+

99] A Preece, K Hui, A Gray, P Marti, T Bench-Capon, D Jeans, and Z Cui. The KRAFT

architecture for knowledge fusion and transformation. In Expert Systems. Springer,

1999.

[PM98] A Poulovassilis and P McBrien. A general formal framework for schema transforma-

tion. Data and Knowledge Engineering, 28:47{71, 1998.

31

[PSB

+

99] N Paton, R Stevens, P Baker, C Goble, S Bechhofer, and A Brass. Query processing

in the TAMBIS bioinformatics source integration system. In Proceedings of the 11th

International Conference on Scienti�c and Statistical Databases, 1999.

[SA99] A Sahuguet and F Azavant. Building light-weight wrappers for legacy web data-

sources using W4F. In Proceedings of the International Conference on Very Large

Databases (VLDB'99), 1999.

[SL90] A Sheth and J Larson. Federated database systems for managing distributed, hetero-

geneous, and autonomous databases. ACM Computing Surveys, 22:183{236, 1990.

[SO99] K Smith and L Obrst. Unpacking the semantics of source and usage to perform seman-

tic reconciliation in large-scale information systems. In ACM SIGMOD RECORD,

volume 28, pages 26{31, 1999.

[WSG96] Y Wilks, B Slator, and L Guthrie. Electric Words: Dictionaries, Computers, and

Meanings. MIT Press, 1996.

32

