
Merging news reports that describe events

Anthony Hunter and Rupert Summerton
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

June 9, 2005

Abstract

Many kinds of news report provide information about events. For example, business news reports in
the area of mergers and acquisitions, provide information about events such as “company X making a bid
for company Y”, or “takeover of company Y by company X being rejected by the anti-trust authorities”.
Futhermore, news reports do not normally exist in isolation. There is an underlying narrative which
concerns a number of entities related in some way over a period of time. In many domains, stories
will follow a stereotypical sequence. For example, a particular takeover may involve a bid being made,
a rejection by the target board, a rise in the bid value by the potential buyer, a recommendation of
acceptance by the target board, acceptance by the shareholders, and finally successful completion of the
takeover. In order to merge heterogeneous news reports that describe events, we need to identify and
reason about the events being described prior to merging them. In this paper, we investigate this problem
with a focus on structured news reports. Each structured news report (SNR) is an XML document, where
the textentries are restricted to individual words or simple phrases, such as names and domain-specific
terminology, and numbers and units. We assume SNRs do not require natural language processing. As
each SNR is isomorphic to a term in logic, we use a logic-based approach to extract relevant information
about the events being described in the reports to be merged. We then provide a new version of the
event calculus to assimilate the information from the various reports, to obtain the most up-to-date and
complete picture of the events being described. Finally, from this assimilated information, we generate
an SNR as the output.

1 Introduction

Syntactically, a structured news report (SNR) is a data structure containing a number of grammatically
simple phrases together with a tag (giving semantic information) for each phrase. Each phrase that is tagged
is a textentry. The set of tags in an SNR is meant to parameterize a stereotypical situation, and so a particular
SNR is an instance of that stereotypical situation. For example, news reports on corporate acquisitions
can be represented as SNRs using tags includingbuyer, seller, acquisition, value, anddate. Each
phrase in an SNR is very simple, such as a proper noun, a date, or a number with unit of measure, or a
word or phrase from a prescribed lexicon. For an application, the prescribed lexicon delineates the types of
states, actions, and attributes, that could be conveyed by the SNRs.

We represent each SNR by an XML document. The definition for an SNR is very general. In practice, we
would expect a document type definition (DTD) for a given domain. A DTD is a standard way of defining
the legal building blocks of an XML document (for more information on DTDs, see www.w3.org). So for
example, we would expect that for an implemented system that merges weather reports, there would be a
corresponding DTD. One of the roles of a DTD, say for weather reports, would be to specify the minimum

1

constellation of tags that would be expected of a weather report. We may also expect integrity constraints
represented in classical logic to further restrict appropriate SNRs for a domain.

In order to merge SNRs, we need to take account of the contents of the SNRs. Different kinds of content
need to be merged in different ways. To facilitate this, we can reason about the information in SNRs in
logic. In our approach, each SNR can isomorphically be represented as a logical term: Each tagname
is a function symbol, and each textentry is a constant symbol. Furthermore, subtrees of an SNR can be
isomorphically represented as subterms in logic. In this way, the information in each SNR can be captured
in a logical language. We can then define a range of predicates, in a Prolog knowledgebase, that capture
useful relationships between SNRs, and so a set of SNRs can then be analysed or merged as Prolog queries
to a Prolog knowledgebase. In this way, a query to merge some SNRs can be handled by recursive calls
to Prolog to merge the subtrees in the SNRs. This gives a context-dependent logic-based approach to
merging that is sensitive to the information in the SNRs and to the background knowledge in the Prolog
knowledgebase.

In this paper, we focus on SNRs that provide information about events. Many kinds of news report provide
information about events. For example, business news reports in the area of mergers and acquisitions pro-
vide information about events such as “company X makes a bid for company Y”, or “takeover of company
Y by company X is rejected by the anti-trust authorities”. In order to merge heterogeneous news reports
that describe events, we need to identify and reason about the events being described prior to merging them.

Normally, news reports do not exist in isolation. They are usually part of narratives which relate them to
other articles that deal with the same story. For example, in the mergers and acquisitions domain, we may
find a news report announcing a takeover bid followed by a news report of the bid being accepted by the
board, followed by a report on the shareholders voting whether to accept the bid, and so on. All news
reports belong to at least one narrative and each narrative involves one or more reports.

Example 1.1 Consider the following two conflicting business reports. The left report states that the value
of the bid is$35Billion and the capital of the target is$25Billion, and the right report states that the
value of the bid is$47Billion and the capital of the target is$50Billion.

〈businessreport〉 〈businessreport〉
〈source〉 Reuters 〈/source〉 〈source〉 Reuters 〈/source〉
〈action〉 New Bid Made 〈/action〉 〈action〉 Board Accepts Offer 〈/action〉
〈bidvalue〉 $35Billion 〈/bidvalue〉 〈bidvalue〉 $47Billion 〈/bidvalue〉
〈buyer〉 Shell 〈/buyer〉 〈buyer〉 Shell 〈/buyer〉
〈target〉 〈target〉

〈company〉 Texaco 〈/company〉 〈company〉 Texaco 〈/company〉
〈capital〉 $25Billion 〈/capital〉 〈capital〉 $50Billion 〈/capital〉

〈/target〉 〈/target〉
〈/businessreport〉 〈/businessreport〉

We can merge them to resolve these apparent conflicts. For this, we are drawing on domain knowledge
concerning the relative ordering of actions. For example, the actionBoard Accepts Offer would occur
after New Bid Made. So in this case, the right report involves a more recent event involving the action of
Board Accepts Offer, and so provides facts about a more up-to-date state.

〈businessreport〉
〈source〉 Reuters 〈/source〉
〈action〉 Board Accepts Offer 〈/action〉
〈bidvalue〉 $47Billion 〈/bidvalue〉
〈buyer〉 Shell 〈/buyer〉
〈target〉

〈company〉 Texaco 〈/company〉
〈capital〉 $50Billion 〈/capital〉

〈/target〉
〈/businessreport〉

Example 1.2 Consider the following two conflicting business reports. The left report states that the action

2

is New Bid Made and the right report states that the action isBoard Accepts Offer.

〈businessreport〉 〈businessreport〉
〈source〉 Reuters 〈/source〉 〈source〉 DowJones 〈/source〉
〈bidvalue〉 $47Billion 〈/bidvalue〉 〈bidvalue〉 $47Billion 〈/bidvalue〉
〈action〉 New Bid Made 〈/action〉 〈action〉 Board Accepts Offer 〈/action〉
〈buyer〉 Shell 〈/buyer〉 〈target〉 Texaco 〈/target〉
〈target〉 〈buyer〉

〈company〉 Texaco 〈/company〉 〈company〉 Shell 〈/company〉
〈sector〉 oil 〈/sector〉 〈sector〉 oil 〈/sector〉

〈/target〉 〈/buyer〉
〈/businessreport〉 〈/businessreport〉

We can merge them so the more recent event is used. But we can also take the information from the previous
report that is not invalidated by the newer report.

〈businessreport〉
〈source〉 Reuters and DowJones 〈/source〉
〈action〉 Board Accepts Offer 〈/action〉
〈bidvalue〉 $47Billion 〈/bidvalue〉
〈buyer〉

〈company〉 Shell 〈/company〉
〈sector〉 oil 〈/sector〉

〈/buyer〉
〈target〉

〈company〉 Texaco 〈/company〉
〈sector〉 oil 〈/sector〉

〈/target〉
〈/businessreport〉

In order to represent and reason with narratives, we need to model states and changes of state. To address
this need, we use an event reasoning system based on a variant of the event calculus to represent and reason
with such information. Event calculus was originally proposed by Kowalski and Sergot [KS86]. Since then
a number of variants of event calculus have been proposed. For a review see [Sha99, MS99]. These variants
of event calculus have been presented in either classical logic or in Prolog. In the following sections, we
present a new version of event calculus based on meta-level classical logic that aims at reasoning about
events in news reports. We also discuss the Prolog implementation of our version of the event calculus that
we have used in a case study with simple business news reports.

We present our framework for taking a set of SNRs as input and produce a merged SNR as output in the
following steps: (Section 2) We present the basic assumptions for our approach to event-based merging;
(Section 3) We specify the format for the input; (Section 4) We cover the basic definitions for our object-
level and meta-level languages; (Section 5) We present a format for axioms for extracting information about
events from the set of input reports; (Section 6) We present transition models as a way of representing key
inter-dependencies between events; (Section 7) We present our new variant of event calculus for reasoning
about events in news reports; (Section 8) We present aggregation rules as the way of defining how to merge
information to generate the output SNR; and (Section 9) We discuss our implementation in Prolog.

The net contribution of this paper is a specification for representing and reasoning with events arising in
SNRs, together with some insights into how this can be implemented.

2 Assumptions about the domain for event-based merging

Now we clarify our main assumptions about the domain for event-based merging.

Action For any application domain, we assume a set of actions that can occur in the domain. We also
assume a partial ordering over a set of actions. For example, “New Bid Made” is ordered before

3

“Board Accepts Offer”, which in turn is ordered before “Shareholders Accept Offer”. The partial
ordering specifies the actions that may potentially follow an action. So for example, for the action
“Bid Made”, either the action “Board Accepts Offer” or the action “Board Rejects Offer” may follow
it. For a larger example, see Figure 1.

Event An event is an instantaneous (i.e. durationless) action together with some information (represented
by facts) about the action, such as the entities involved and attributes concerning the nature of the
action. We have no general requirements for the information that needs to be represented about an
event. The types of actions, entities, and attributes depend on the application domain. In the case of
mergers and acquisitions, the entities include companies, shareholders, and boards, and the attributes
include the share price and the bid value. In Example 1.1, the top left report is about the event that
Shell has made a new bid for Texaco. This event would involve the action “New Bid Made”, the
entities would be Shell and Texaco, and an attribuite would be the price of $35billion. For a given
domain, we use an ordering over actions to specify a partial ordering relation over a set of events.
If E is an event involving actionA, andE′ is an event involving actionA′, andE andE′ have the
same subject, andA occurs beforeA′ in the partial ordering over actions, thenE occurs beforeE′.
We will explain how we do this in the following sections.

State A state is a set of ground facts that hold for a time period. A state model is a set of states. For
example according to the top left report in Example 1.1, there is a state in which Shell has made a
$35billion bid for Texaco, and in which Texaco has a capitalization of $25Billion. This state can be
represented by the facts

bidvalue(Shell, Texaco, $35billion)
capitalization(Texaco, $25billion)

We determine a fact holds in a state if (1) it is a result of the event that starts the state or (2) it held
in the state before the event and it has not been terminated by the event. The second condition can
be motivated by the following examples. If the headquarters location of companyX is Z whenX
makes a bid for companyY , then when the board ofY accepts the offer, this new event does not
terminate the fact that the headquarters location of companyX is Z. However, if the bid value is
V before the event the of “New Bid Made”, then the bid value will no longer beV after this event.
Again, we will explain how we do this in the following sections.

So the aim of event-based merging is to find the most up-to-date information in the input SNRs and use
this to construct an output SNR that contains the most up-to-date information (facts). Our approach is to
use the input SNRs to construct a state model. The most up-to-date information is the information in the
last state (the most recent state) in the state model.

3 Input for event-based merging

We use XML to represent SNRs. Each structured news report is an XML document, but not vice versa, as
defined below.

Definition 3.1 If φ is a tagname (i.e. an element name), andψ is textentry (i.e. a phrase represented by a
string), then〈φ〉ψ〈/φ〉 is a SNR. Ifφ is an tagname andσ1, ..., σn are SNRs, then〈φ〉σ1...σn〈/φ〉 is a SNR.

We assume that the textentries in SNRs are heterogeneous in format. For example, the format of date values
is unconstrained (12/12/1974; 31st Dec 96; 12 Nov 2001 etc.) as is the format of numbers and currency
values (3 million; 3, 000, 000 GBP; $4,U500K etc.). Elsewhere, we have discussed how this heterogeneity
can be handled in logic by various kinds of equivalence axioms [Hun02a, Hun02b, HS04].

4

START

Takeover Bids Invited

Bid Made Board Rejects Offer Invitation Lapsed

Board Accepts Offer New Bid Made

Shareholders Accept Offer Shareholders Reject Offer

Referral To Antitrust Authorities Referral Deemed Unnecessary

Takeover Rejected Takeover Renegotiated

Takeover Finalized

END

?

?

?

?

?

?

?

?
- -

?
�

�

?

?

�

?

?

?
�

?

Figure 1: A graphical representation of a partial ordering of some actions for the mergers and acquisitions
domain. For an action at a node, the outgoing arcs go to the possible actions that can follow it next.

5

Now we consider four main assumptions used for the SNRs that are the input to event-based merging.

1. Each SNR describes exactly one event. So each SNR has sufficient information to determine the
subject of the event and the event type (i.e. action). The restriction of each SNR describing ex-
actly one event type is reasonable for applications such as handling newsfeeds, where each news
report would normally describe a single event. Furthermore, this assumption is useful if we generate
SNRs using an information extraction system. Such systems extract information from free text, using
natural language processing techniques, and use this extracted information to complete a template
[CL96]. These templates are commonly restricted to single issues, such as individual events. Each
completed template can be handled as an SNR.

2. Each SNR does not contain any explicit temporal informationsuch as a timestamp for when
the report was written or published or when the event occurred. The reason we have introduced this
constraint is to show that we can often reason about events without recourse to explicit temporal
information. Clearly if we also have explicit temporal information in our SNRs, then we can extend
the proposal in this paper to take advantage of this information. Note that even if we did have explicit
temporal information in our SNRs, it may be insufficiently discriminating on its own to resolve some
problems in merging. For example, it is possible to get two SNRs with the same publication time,
but one refers to a later event than other. If we are unable to identify and reason about the relative
ordering of the events, we would be unable to adequately handle these examples.

3. Each SNR is not necessarily a complete description of an event. In other words, we do not assume
that an SNR necessarily provides all the relevant information about an event. So if we have two SNRs
describing the same event, then there may be information in one SNR that is not in the other. For
example, consider two SNRs describing the event that companyX has made a bid for companyY :
One of the SNRs may include the name of the chief executive ofX, and the other may include the
location of the headquarters ofX. See also Example 1.2.

4. Each SNR is correct. In other words, the information an SNR provides is regarded as correct at the
time of the event occuring. So if we have two SNRs describing the same event, then there will be no
inconsistency between them. For example, consider two SNRs describing the event that companyX
has made a bid for companyY : If one of the SNRs has the value asV1 and the other SNR has the
value asV2, thenV1 andV2 are interchangeable though not necessarily identical: Perhaps one is in
US dollars and the other in Euros.

In future papers, we will investigate relaxing some of these assumptions. In particular, we will investi-
gate the interplay between temporal and event information obtained from SNRs, and we will investigate
techniques for handling incorrect and inconsistent event information in SNRs.

Clearly each SNR is isomorphic to a ground term where each tagname is represented by a function symbol
and each textentry is represented by a constant symbol. Hence, we can represent each SNR by a ground
logical atom in classical logic as follows.

Definition 3.2 Let 〈φ〉σ1, .., σn〈/φ〉 be an SNR. AnSNR term is a ground term of the formφ(σ′
1, .., σ

′
n)

whereσ′
1 is a ground term that representsσ1,, andσ′

n is a ground term that representsσn.

Example 3.1 Consider the SNR given at the top left of Example 1.1. This can be represented by the fol-
lowing SNR term.

businessreport(source(Reuters), action(NewBidMade),
bidvalue($35Billion), buyer(Shell), target(company(Texaco), capital($25Billion))

In the next section, we show how we reason with SNR terms by using them as input for logical reasoning.

6

4 Basic definitions for the object-level and meta-level

For this paper, we assume the basic notions of syntax and semantics of classical logic. We will present both
an object-level language and a meta-level language based on classical logic.

We assume a set of object-level atoms that are composed in the usual way (the usual classical logic defini-
tion of atoms) from a set of object-level predicate symbols, a set of object-level variables, a set of object-
level constant symbols, and a set of object-level function symbols. The only object-level formulae we will
consider are object-level atoms. We use object-level atoms, which we will refer to asfacts, to represent and
reason with information about the application domain. These may or may not be ground. We will not use
object-level atoms for any other task.

Example 4.1 For the mergers and acquisitions domain, facts may include the following ground atoms.

forSale(BP)
bought(BP, AnvilOilCorp)

lent(AlphaBank, NewSoftCorp, $100Million)

We also assume a set of meta-level terms that are composed in the usual way (using the usual classical
logic definition of terms) from a a set of meta-level variables, a set of meta-level constant symbols, and
a set of meta-level function symbols. We assume that the set of meta-level variables includes the object-
level variables and the set of meta-level constant symbols includes the set of object-level constant symbols.
We also assume that the meta-level functions symbols includes the set of object-level function symbols
and the set of object-level predicate symbols. This means that the set of meta-level terms includes object-
level atoms. In this way meta-level atoms can have object-level atoms as arguments. We assume a set of
meta-level atoms that are composed in the usual way from a set of meta-level predicate symbols and the
set of meta-level terms. In other words, ifp is a meta-level predicate symbol, andt1,.., tn are meta-level
terms, thenp(t1, .., tn) is a meta-level atom. The meta-level predicate symbols we consider in this paper
for reasoning with events in SNRs are summarized in Table 1.

In this paper, we will use strings beginning with a lower case letter to denote object-level predicate sym-
bols. For example,happy(Tony, on(holiday)) is an object-level atom. And we will use strings of upper
case letters to denote meta-level predicate symbols. For example,HOLDS(happy(Tony, on(holiday))) is
a meta-level atom.

From a set of meta-level atoms, we form meta-level formulae using the usual logical symbols of first-order
classical logic (i.e.{∨,∧,←,¬}) and the usual inductive definitions. As a notational convenience, we have
used← instead of the usual→ symbol and so we representα → β by β ← α. We restrict our first-
order formulae to those with all variables being quantified outermost by universal quantification. So all
meta-level formulae are classical first-order formulae, but not vice-versa. We will restrict all implicational
formulae by the form∀X1, .., Xn β ← α where all variables inβ andα are free and they are all bound by
the quantification outermost (i.e. by∀X1, .., Xn).

We will undertake reasoning with the meta-level formulae using the standard notion of generalized modus
ponens. For this we require the subsidiary notion of grounding.

Definition 4.1 A grounding is an equality predicate where the first argument is a variable and the second
argument is a ground term. Agrounding set is a set of groundings which can be substituted into an
unground term to give a grounded term. Letα be a formula and letΦ be a grounding set.Ground(α,Φ)
gives the results of substituting each variableX in α with termt where the groundingX = t is in Φ.

Example 4.2 Let a(b(X), c(Y), d(Z)) be a formula whereX, Y andZ are variables. Let the grounding set

7

Φ be{Y = john, Z = betty}.

Ground(a(b(X), c(Y), d(Z)),Φ) = a(b(X), c(john), d(betty))

If α is a formula and it contains at least one variable symbol, thenα is an unground formula, otherwiseα
is a ground formula.

Definition 4.2 The following rule of inference isgeneralized modus ponens. For literals αi, α′
i, andβ,

where there is a grounding setΦ such thatGround(α′
i,Φ) = Ground(αi,Φ) for all i:

α′
1, .., α

′
n, ∀X1, .., Xn β ← α1 ∧ .. ∧ αn

Ground(β,Φ)

There are a number of examples of using generalized modus ponens in the following sections.

Since the reasoning discussed in this paper is effectively limited to the meta-level, we have obviated a
number of the common problems of reasoning with meta-languages [BK82, Fis96].

5 Inferences about events from input

In this paper, we assume that each SNR refers to only one event. So for the information in each report
we use the same event number (an identifier for the event). In the examples in this paper, event numbers
come from the set{e1, e2, e3, e4, ...}. Each event number is treated as a meta-level constant symbol. Since
more than one SNR term may refer to the same event, we will see later how we can identify equivalences
between event numbers and thereby infer that two or more SNRs refer to the same event. An SNR input set
is the input to the event-based merging, and it is defined next.

Definition 5.1 An input atom is binary meta-level atom with predicate symbolINPUT. A ground input
atom is of the formINPUT(E, S) whereE is the event number for the SNR termS. An SNR input set,
denotedΛ, is a set of input atoms.

Example 5.1 The top left SNR given in Example 1.1 is represented by the following input atom.

INPUT(e8, businessreport(source(Reuters), action(NewBidMade),
bidvalue($35Billion), buyer(Shell),
target(company(Texaco), capital($25Billion))))

Example 5.2 We use the following input atoms for our running example.

INPUT(e1, report(buyer(Walmart), target(Asda), act(NewBidMade), value($9Billion)))

INPUT(e2, report(buyer(Walmart), target(Asda), act(BoardAcceptsOffer), body(board))))

From each input atom, we will extract information about the event being described by the SNR term. This
raises the need to characterize events in terms of atoms that can be derived from each input atom. These
derived atoms are calledevent atoms. There are two types, action atoms and info atoms, defined next.

For each application domain, we also assume a set of actions. For the mergers and acquisitions domain, we
can use the actions given in Figure 1. Each action is treated as an object-level constant and therefore it is
also a meta-level constant symbol.

8

Definition 5.2 An action atom is binary meta-level atom with predicate symbolACTION. A ground action
atom is of the formACTION(E, A) whereE is the event number for an event with the actionA.

Definition 5.3 An info atom is binary meta-level atom with the predicate symbolINFO. A ground info
atom is of the formINFO(E, F) whereE is the event number for an event with the associated factF whereF
is an object-level atom.

Example 5.3 The following event atoms capture the event numbere1 when Walmart has made a bid for
Asda as given in Example 5.2.

ACTION(e1, NewBidMade)
INFO(e1, bid(Walmart, Asda))
INFO(e1, bidvalue($9Billion))

Example 5.4 The following event atoms capture the event numbere2 when Asda’s board has accepted
Walmart’s bid as given in Example 5.2.

ACTION(e2, BoardAcceptsOffer)
INFO(e2, bid(Walmart, Asda))
INFO(e2, body(board))

Example 5.5 The following event atoms capture the event numbere5when Walmart completes the takeover
of Asda.

ACTION(e5, TakeoverFinalized)
INFO(e5, takeover(Walmart, Asda, $9Billion))

To extract information about events from the input atoms, we use first-order formulae called access rules.
Each access rule has a condition that is an unground input atom and a consequent that is an unground event
atom. So given a ground input atom and an access rule, we apply generalized modus ponens to generate
ground event atoms.

Definition 5.4 Anaccess ruleis a meta-level first-order formula of the form∀X1, ..., Xk;β ← α whereα
is an unground input atom andβ is an unground event atom.

Example 5.6 The following are access rules.

∀E, B, C, A; ACTION(E, A)←
INPUT(E, report(buyer(B), target(C), act(A)))

∀E, B, C, A; INFO(E, bid(B, C))←
INPUT(E, report(buyer(B), target(C), act(A)))

∀E, B, C, A, V; INFO(E, bidvalue(V))←
INPUT(E, report(buyer(B), target(C), act(A), value(V)))

∀E, B, C, A, D; INFO(E, body(D))←
INPUT(E, report(buyer(B), target(C), act(A), body(D)))

Definition 5.5 Let ∆ be a set of access rules and letΛ be an SNR input set. For this,Access(∆,Λ) is
the set of event atoms obtained by exhaustively applying the input atomsΛ to the access rules in∆ using
generalized modus ponens as defined below.

Access(∆,Λ) = {Ground(β,Φ) | ∀X1, .., Xk;β ← α ∈ ∆ andGround(α,Φ) ∈ Λ}

9

Example 5.7 Assuming the input atoms in Example 5.2 are inΛ, and the access rules given in Example
5.6 are in∆, then we have the event atoms presented in Examples 5.3 and 5.4 inAccess(∆,Λ).

Access rules can be viewed as unpacking the required information about events from the nested information
in the SNRs. If the SNRs are highly nested and/or structurally diverse, then a slightly more complex set-up
for access rules drawing on subsidiary axioms would be appropriate.

6 Transition axioms

Transition axioms provide an abstract definition of the possible events that can take place in a stereotypical
narrative, along with the ordering of these events. A set of transition axioms is domain specific knowledge.
It is defined in terms of three types of axiom: (1) Initiating axioms; (2) Terminating axioms; and (3) Event
ordering axioms. In this section, we define each of these types of axiom and give examples.

States are begun and ended by events. TheINITIATES predicate allows us to define which states are begun
by which events.

Definition 6.1 An initiating axiom is of the following form whereF is a fact,E is an event number,β is a
conjunction of event atoms and possibly other meta-level atoms (such as comparison relations).

∀E, X1, .., Xn; INITIATES(E, F)← β

We refer to a factF being in a state that has been initiated by eventE.

Example 6.1 The state during which a bid is made by a buyerB for a targetC, and in which the buyer is
awaiting a response, is initiated by the action of a new bid being made.

∀E, B, C; INITIATES(E, boardConsidersBid(B, C))← ACTION(E, NewBidMade) ∧ INFO(E, bid(B, C))

Example 6.2 The state during which a bid value exists for a bid by a buyerB for a targetT is initiated by
an event involving the action of a new bid being made for a valueV.

∀E, B, C, V; INITIATES(E, bidValue(B, C, V))←
ACTION(E, NewBidMade) ∧ INFO(E, bid(B, C)) ∧ INFO(E, bidvalue(V))

Example 6.3 The state during which a board for a targetC has accepted a bid and in which the share-
holders are considering the bid, is initiated by the action of the bid being accepted by the board.

∀E, B, C; INITIATES(E, shareholdersConsiderBid(B, C))←
ACTION(E, BoardAcceptsOffer) ∧ INFO(E, bid(B, C))

TheTERMINATES predicate allows us to define which states are ended by which events.

Definition 6.2 An terminating axiom is either of the following two forms whereF is a fact,E is an event
number,β is a conjunction of event atoms and possibly other meta-level atoms (such as comparison rela-
tions).

∀E, X1, .., Xn; TERMINATES(E, F)← β

∀E, X1, .., Xn;¬TERMINATES(E, F)← β

10

Example 6.4 The state during which a companyB is the position of being a bidder for a targetC ends
when the bid has been accepted.

∀E, B, C; TERMINATES(E, boardConsidersBid(B, C))←
ACTION(E, BoardAcceptsOffer) ∧ INFO(E, bid(B, C)) ∧ INFO(E, body(board))

We use the ordering over actions, for example in Figure 1, to specify an ordering over events. We represent
the ordering over events by the� pre-ordering relation. Intuitively,E1 � E2 means that eventE1 occurs
before, or at the same time as,E2. The pre-ordering relation is defined for a domain using a set of event
ordering axioms defined as follows.

Definition 6.3 An event ordering axiom is of the following form whereE1 andE2 are event numbers,A1
andA2 are actions, andF11,..,F

n
1,F

1
2,..,F

m
2 are facts, andX1, .., Xn are the free variables in them.

∀E1, E2X1, .., Xn; E1 � E2 ←
ACTION(E1, A1) ∧ INFO(E1, F11) ∧ .. ∧ INFO(E1, Fn1)
∧ACTION(E2, A2) ∧ INFO(E2, F12) ∧ .. ∧ INFO(E2, Fm2)

Also letE1 ' E2 iff E1 � E2 andE2 � E1.

In effect, theINFO atoms ensure that the eventsE1 andE2 are on the same subject, and that theACTION
atoms ensure the ordering is consistent with the ordering over actions. If for some event numbersE1 and
E2, we haveE1 ' E2, thenE1 andE2 refer to the same event.

Example 6.5 Event numberE1 is before event numberE2 if E1 andE2 involve the same buyer and target
andE1 involves a bid being made andE2 involves a bid being accepted.

∀E1, E2, B, C; E1 � E2 ←
ACTION(E1, NewBidMade) ∧ INFO(E1, bid(B, C))
∧ACTION(E2, BoardAcceptsOffer) ∧ INFO(E1, bid(B, C))

Example 6.6 Continuing Examples 5.3 and 5.4, and Example 6.5, we gete1 � e2

Example 6.7 Event numberE1 and event numberE2 are equal in the ordering ifE1 and E2 involve the
same action, buyer, target, and value, in a bid being made

∀E1, E2, A, B, C, V; E1 � E2 ←
ACTION(E1, A)) ∧ INFO(E1, bid(B, C)) ∧ INFO(E1, bidvalue(V))
∧ACTION(E2, A)) ∧ INFO(E2, bid(B, C)) ∧ INFO(E2, bidvalue(V))

Example 6.8 Given the following set of event atoms together with Examples 5.3 and 6.7, we gete1 � e9
ande9 � e1 and soe1 ' e9 holds. As a result, we can regard the event numberse1 ande9 as referring to
the same event.

ACTION(e9, NewBidMade))
INFO(e9, bid(Walmart, Asda))
INFO(e9, bidvalue($9Billion))
INFO(e9, payment(cash))

So for each pair of actions,A1 andA2 such thatA2 is an action that can occur immediately afterA1, we
require one or more event ordering axioms. In this way, we can start with a domain analysis where we

11

identify a set of actions and a partial ordering over those actions, and then specify event ordering axioms
consistent with this poset of actions.

We can now define a transition model in terms of the initiating axioms, terminating axioms, and event
ordering axioms.

Definition 6.4 A transition model is a set of formulae of the following types: (1) Initiating axioms (Defi-
nition 6.1); (2) Terminating axioms (Definition 6.2); and (3) Event ordering axioms (Definition 6.3).

Once a set of transition axioms is in place we can use it to reason with a set of event atoms using our
version of the event calculus defined in the next section.

7 Event calculus

In order to be able to derive the state model for an SNR input set, using a set of event atoms and a transition
model, we need some way to define the relations between events and states. For this, we adopt the event
calculus proposed by Kowalski and Sergot [KS86]. In this calculus, meta-level predicates are used to iden-
tify the states (or relationships) which hold during time periods by determining the events which initiate
and terminate those states. In other words, a time period is a duration delineated by an event occuring at the
start of the time period and an event occuring at the end of the time period. We do not need to use an explicit
clock or calandar for this. The events are sufficient for the calibration. To illustrate, in information about
the US government, events about presidents can be used to delineate useful time periods. For example, the
first term of Bill Clinton in office is a time period that has been started by the event of him being elected
for a first term and ended by him being elected for a second term.

In our version of the event calculus, theHOLDSAFTER predicate is used to identify facts holding after events
occuring. In the following definition, the first axiom provides the base case for initiating facts holding in
states. The second axiom propagates facts forward into the next state if they are not terminated by the event
starting that next state.

Definition 7.1 Theholdsafter axiomsare defined as follows.

(1) ∀E, F; HOLDSAFTER(E, F)← INITIATES(E, F)

(2) ∀E, E′, F; HOLDSAFTER(E′, F)← HOLDSAFTER(E, F) ∧ E � E′ ∧ ¬TERMINATES(E′, F)

Example 7.1 Consider the event atoms in Examples 5.3 and 5.4 and the initiating axioms in Examples 6.1
and 6.2 and the terminating axioms in Example 6.4. Using the event calculus, we can infer the following.

HOLDSAFTER(e1, boardConsidersBid(Walmart, Asda))
HOLDSAFTER(e2, shareholdersConsiderBid(Walmart, Asda))
HOLDSAFTER(e2, bidValue(Walmart, Asda, $9Billion))

We can now pull together the transition model and the event calculus to give the following definition of an
event reasoning system.

Definition 7.2 An event reasoning systemis the union of a transition model (Definition 6.4) and the
holdsafter axioms (Definition 7.1).

12

Predicate Informal definition

INPUT(E,S) EventE is described by the SNR termS.
ACTION(E,A) EventE involves actionA.
INFO(E,F) EventE involves factF.
INITIATES(E,F) EventE initiates factF holding.
TERMINATES(E,F) EventE terminates factF holding.
E1 � E2 EventE1 occurs before or at the same time as eventE2.
HOLDSAFTER(E,F) FactF holds after eventE.

Table 1: Summary of meta-predicates required for reasoning with events in structured news reports.

So an event reasoning system is defined for a particular application. It is domain-specific. The holdsafter
axioms are common to any event reasoning system, but the transition model is defined to handle the kinds
of events arising in the application. We summarize all the meta-level predicates introduced in this paper for
an event reasoning system in Table 1.

Example 7.2 Assume we have exactly the following event atoms.

ACTION(e1, NewBidMade) ACTION(e2, BoardAcceptsOffer)
INFO(e1, bid(Walmart, Asda)) INFO(e2, bid(Walmart, Asda))
INFO(e1, value($9Billion)) INFO(e2, body(board))

ACTION(e3, ShareholdersAcceptOffer) ACTION(e4, ReferralDeemedUnnecessary)
INFO(e3, bid(Walmart, Asda)) INFO(e4, bid(Walmart, Asda))
INFO(e3, location(Walmart, USA)) INFO(e4, body(EUAuthorities))

Now assuming an appropriate event reasoning system, extending the axioms given in Section 6, we can
obtain the following using generalized modus ponens. First, we give the result of applying axiom (1) of the
holdsafter definition.

HOLDSAFTER(e1, boardConsidersBid(Walmart, Asda)))
HOLDSAFTER(e1, bidValue(Asda, Walmart, $9Billion))

HOLDSAFTER(e2, shareholdersConsiderOffer(Walmart, Asda))

HOLDSAFTER(e3, authoritiesConsiderBid(Walmart, Asda))
HOLDSAFTER(e3, bidderLocation(Walmart, USA))

HOLDSAFTER(e4, bidCleared(Walmart, Asda))
HOLDSAFTER(e4, bidClearedBy(Walmart, Asda, EUAuthorities))

Now we give the result of applying axiom (2) of the holdsafter definition. These are the first two atoms
below.

HOLDSAFTER(e4, bidValue(Walmart, Asda, $9Billion)
HOLDSAFTER(e4, bidderLocation(Walmart, USA)
HOLDSAFTER(e4, bidCleared(Walmart, Asda)
HOLDSAFTER(e4, bidClearedBy(Walmart, Asda, EUAuthorities))

The above four atoms give the most up-to-date information, according to the event atoms used.

The version of event calculus we have presented in this section uses classical logic. This provides a clear
and straightforward solution for reasoning with information about events in news reports as explained in
the next section.

13

Since we have focussed on only one aspect of event-based merging (getting the most up-to-date infor-
mation that holds after the most reecent event according to the assumptions given in Section 2), we have
not harnessed a number of aspects of event calculus as originally proposed and subsequently developed.
In particular, we have not used timepoints to reason about the relationships between events and explicit
representation of time (as given by clocks and/or calendars), and so we have not included definitions for
the holdsat predicateHOLDSAT(F, T) whereF is a fact andT is an explicit timepoint. We leave the use of
explicit time to a future paper.

8 Output of event-based merging

The output of event-based merging is an SNR that aggregates information found in the SNR input set. The
aggregation is specified by an aggregation rule. Each aggregation rule states the preconditions for merging,
in terms of the information that is required, together with the composition and structure of the merged SNR
term.

Definition 8.1 An output atom, denotedOUTPUT(E, F), is a binary meta-level predicate whereF is a fact
andE is an event number.

Definition 8.2 An aggregation rule is a meta-level formula of the following form where if there is a
grounding setΦ s.t.Ground(β1,Φ),...,Ground(βm,Φ) are ground holdsafter atoms, thenGround(OUTPUT(E, F),Φ)
is a ground output atom.

∀X1, ..., Xk; OUTPUT(E, F)← β1 ∧ ... ∧ βm

Example 8.1 The following is an aggregation rule.

∀E, B, C, L, V;
OUTPUT(E, report(buyer(B), target(C), status(bidCleared), bidderLocation(L), value(V)))

← HOLDSAFTER(E, bidCleared(B, C))
∧HOLDSAFTER(E, bidderLocation(B, L))
∧HOLDSAFTER(E, bidValue(B, C, V))

We now define event-based merging that takes an aggregation rule and a set of input atoms together with
an event reasoning system and a set of access rules and returns an SNR term according to the specification
given by the aggregation rule.

Definition 8.3 From a set of input atomsΛ, event-based mergingreturns a merged report, represented by
an SNR termS, as follows, where∀X1, .., Xk Output(E, F) ← β1 ∧ .. ∧ βm is an aggregation rule,Π is
an event reasoning system, andΓ is a set of access rules:

If the following hold, for someΦ,
Access(Γ,Λ) ∪Π ` Ground(β1,Φ)
and

:
and
Access(Γ,Λ) ∪Π ` Ground(βm,Φ)
and
Ground(OUTPUT(E, F),Φ) = OUTPUT(E, S)

then returnS
otherwise returnNULL.

Here, we assume that̀is the classical consequence relation.

14

In the above definition, we see theF acts as a template for the merged report, andS is the merged report.

Example 8.2 Continuing Example 7.1, with the aggregation rule in Example 8.1, we get the following
event-based merging.

OUTPUT(e4, report(buyer(Walmart), target(Asda), status(bidCleared),
bidderLocation(USA), value($9Billion)))

This gives the following SNR, which provides an aggregation of the information presented in Example 7.2
which in turn was obtained from four input SNRs.

〈report〉
〈buyer〉 Walmart 〈/buyer〉
〈target〉 Asda 〈/target〉
〈status〉 bidCleared 〈/status〉
〈bidderLocation〉 USA 〈/bidderLocation〉
〈value〉 $9Billion 〈/value〉

〈/report〉

In the next section, we consider how event-based can be implemented in Prolog.

9 Implementing event-based merging

We have implemented event-based merging in Prolog. The logical form of the axioms in access rules,
transition models, and for the holdsafter definition, are all based on a subset of classical logic that can be
straightforwardly represented in Prolog: They are all universally quantified with quantifiers outermost, and
they are all of the form of rules where the antecendent is a conjunction of zero or more literals and the
consequent is a literal.

Since Prolog does not support classical negation, we have adapted the definitions given so far. The key
difference between the definitions given so far and the Prolog version are in the implementation for the
holdsafter axioms. For these, we have substituted classical negation with the Prolog negation (negation-as-
failure). In the Prolog version, we do not have negated terminates predicates. But by using Prolog negation,
we are applying the closed world assumption to the terminates clauses that have an unnegated terminates
predicate.

Definition 9.1 The Prolog version of the holdsafter axioms are defined as follows wherenot is the negation-
as-failure operator.

holdsafter(E, F) :− initiates(E, F)

holdsafter(E2, F) :− holdsafter(E1, F)), eventorder(E2, E1), not terminates(E2, F)

In addition to the holdsafter axioms, we require clauses in our Prolog version for the initiates, terminates,
and event ordering axioms. We list some of these clauses in the Appendix. In addition, we have incorporated
the following clauses into our Prolog version.

Definition 9.2 Thefindlatest(E, L) predicate, which is defined below, finds the latest eventE in the list
of event numbersL. This requires the following subsidiary predicateslast(E, L) and order(E1, E2) as
follows. Also,\== (T1, T2) is a built-in predicate for Prolog that holds when termsT1 andT2 are not

15

identical.
findlast(E, [E|R]) :− last(E, R).
findlast(E, [F|R]) :− not last(F, R), findlast(E, R).
findlast(E, [E]).

last(E1, [E1|R]) :− last(E1, R).
last(E1, [E2|R]) :− \== (E1, E2), order(E1, E2), last(E1, R).
last(E, []).

order(E1, E2) :− eventorder(E1, E2).
order(E1, E2) :− eventorder(E1, E3), order(E3, E2).

Example 9.1 Suppose we have four SNRs which are given as input, with event numberse1, e2, e3, ande4.
In the Prolog program in the Appendix, we have explicitly listed some event atoms obtain from these SNRs.
Now, suppose we consider the following query, whereE is a variable and[e1, e4, e2, e3] is an arbitrary
list containing these event numbers.

findlast(E, [e1, e4, e2, e3])

For this query, we obtain the groundinge4 for the variableE. Now we can ask the following query where
R is a variable.

output(e4, R)

For this query, we obtain the following two groundings for the variableR (assuming just the clauses in the
appendix). Either of these groundings can be taken as out merged SNR.

report(buyer(walmart), target(asda), value(us9billion))

report(buyer(walmart, location(usa), capitalization(us23billion)),
target(asda), value(us9billion))

Now consider, the following query.
findlast(E, [e3, e1, e2])

For this query, we obtain the groundinge3 for the variableE. Now we can ask the following query where
R is a variable.

output(e3, R)

For this query, one of the groundings that we obtain for the variableR is as follows.

report(buyer(walmart), target(asda), status(antiTrustAgenciesConsiderBid))

In this way, we can have a merged report that summarises the state after each event, and hence shows a
narrative.

Using our Prolog implementation, we undertook a case study with mergers and acquisitions reports. Start-
ing with a partial ordering over event types (i.e. actions), we can define a transition model. Then, we en-
coded initiating axioms and terminating axioms for each action. In the case study, we did not encode further
background knowledge. However, it is straightforward to add clauses to provide some simple equivalences
between information in the input reports. For example, synonyms for event types, different names for the
same entity, or equivalence between monetary values given in different currencies.

A key advantage of Prolog for implementing our formalization of event-based merging is that meta-level
programming is straightforward in Prolog. So, for example, an interpreter for Prolog can be encoded within
a Prolog program [SS94]. This means that event-based merging as given in Definition 9.1 can be encoded
as meta-level interpreter. Furthermore, we can enhance the reasoning to allow, for example, finding the
largest output merged, and so address the choice of groundings we see in Example 9.1.

16

10 Discussion

In our approach to merging SNRs, we draw on domain knowledge to help produce merged reports. Using
domain knowledge together with logical deduction, we can reason about the information to be merged.

The novel contribution of this paper is to show how SNRs, or parts of SNRs, that describe events can be
merged using an underlying event model based on the event calculus approach. We have chosen to use event
calculus as opposed to a temporal logic because we want to harness the explicit information describing
events that exists in many business reports rather then seek explicit timepoints or time interval information.
Whilst many news reports do have time point and time interval information clearly represented, it is not
always the case. So in the situation that the temporal information is absent, or in the case that two reports
have the same timepoint, but conflicting information, we may wish to use the event information to resolve
conflicts and identify the most recent information.

If we were to use explicit temporal information, there are numerous options for formalising temporal rea-
soning based on a temporal logic (see for example [GHR94]). But for formalising reasoning with events,
there are only limited options. The most significant of these options is based on event calculus. Event cal-
culus was originally proposed by Kowalski and Sergot [KS86]. Since then a number of variants of event
calculus have been proposed. For a review see [Sha99, MS99]. These variants of event calculus have been
presented in either classical logic and in Prolog.

In developments of the event calculus, there are a number of concepts formalised in richer ontologies
for representing and reasoning with events based on properties of actions and of fluents (facts that are
affected by particular actions). In particular, bringing explict time into the reasoning offers some in-
teresting developments for event-based merging. This may include using time points (see for example
[Sho88, KM97, Sha99, KMT00]) or time intervals (see for example [All84, AF94]).

Our logic-based approach significantly differs from other logic-based approaches for merging information
(e.g. [BKMS92, Rev97, KP98, LS98, LS00, KLM02, Kon02, KP02]). In these approaches, aggregation
is undertaken on a set of knowledgebases. Each knowledgebase is a set of logial formulae and each is
regarded as a source of information. These approaches adopt syntactic or semantic approaches to aggregate
information based on strategies such as maximising the number of sources that can be accommodated in
the merged information or taking information that is agreed on by the majority of sources. In none of
these approaches is any consideration of the underlying ontology of the information in the sources, and in
particular none consider identifying and reasoning about events arising in the information to be merged. As
a result this paper offers a more intelligent approach to merging in the sense that it takes account of how
the validity of facts changes with the occurrence of events. It provides a framework for representing and
reasoning with events that can occur in focused domains such as mergers and acquisitions in business, and
for merging facts based on those events.

There is further work that needs to be done on event-based merging including (1) introduce the option of
representing explicit timepoints and time intervals in an SNR for an event that has occurred; (2) introduce
the option of an explicit timepoint in an SNR for when it was filed or published; (3) relax the condition
that actions are partially-ordered, and to then consider iterative actions (for example, a bid value may
be revised a number of times to give a new bid value); and (4) allow a set of reports to be on mutliple
subjects, and to support identification of different narratives at different levels of granularity. To expand
on this last point, a narrative is a state model concerning a particular subject. The definition of a subject
depends on the application domain. In the case of mergers and acquisitions, a subject could be defined as
a combination of buyer and target companies, and so in each state in the narrative, the facts concern the
same buyer(s) and the same target(s). A narrative can contain a subnarrative which is a subset of the states
with a more focussed subject. For example, a narrative on the subject of a takeovers of companies on the
London Stock Exchange includes a subnarrative of takeovers of pharmaceutical companies on the London
Stock Exchange. A logic-based solution is a promising way forward on these issues.

17

Acknowledgements

The authors are grateful to the anonymous referees for a number of suggestions for improvements to this
paper.

References

[AF94] J Allen and G Ferguson. Actions and events in interval temporal logic.Journal of Logic and
Computation, 4:531–579, 1994.

[All84] J Allen. Towards a general theory of action and time.Artificial Intelligence, 23:123–154,
1984.

[BK82] K Bowen and R Kowalski. Amalgamating language and metalanguage in logic programming.
In K Clark and S Tarnlund, editors,Logic Programming, volume 16, pages 153–172. Academic
Press, 1982.

[BKMS92] C Baral, S Kraus, J Minker, and V Subrahmanian. Combining knowledgebases consisting of
first-order theories.Computational Intelligence, 8:45–71, 1992.

[CL96] J Cowie and W Lehnert. Information extraction.Communications of the ACM, 39:81–91,
1996.

[Fis96] M Fisher. Languages, meta-languages, and metatem: A discussion paper.Journal of the
Interest Group for Pure and Applied Logic, 4(2):255–272, 1996.

[GHR94] D Gabbay, I Hodkinson, and M Reynolds.Temporal Logic: Mathematical Foundations and
Computational Aspects. Oxford University Press, 1994.

[HS03] A Hunter and R Summerton. Propositional fusion rules. InSymbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty, volume 2711 ofLecture Notes in Computer Science,
pages 502–514. Springer, 2003.

[HS04] A Hunter and R Summerton. Fusion rules for context-dependent aggregation of structured
news reports.Journal of Applied Non-classical Logic, 14(3):329–366, 2004.

[Hun02a] A Hunter. Logical fusion rules for merging structured news reports.Data and Knowledge
Engineering, 42:23–56, 2002.

[Hun02b] A Hunter. Merging structured text using temporal knowledge.Data and Knowledge Engineer-
ing, 41:29–66, 2002.

[KM97] A Kakas and R Miller. A simple declarative language for describing narratives with actions.
Journal of Logic Programming, 31:157–200, 1997.

[KMT00] A Kakas, R Miller, and F Toni. E-res - a system for reasoning about actions, events and
observations. InProceedings of the 8th International Symposium on Nonmonotonic Reasoning
(NMR2000). Computing Research Repository (CoRR), 2000.

[KLM02] S Konieczny, J Lang, and P Marquis. Distance-based merging: a general framework and some
complexity results. InProceedings of the 8th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’02), pages 97–108, 2002.

[Kon02] S Konieczny. On the difference between merging knowledge bases and combining them. In
Proceedings of the 8th International Conference on Principles of Knowledge Representation
and Reasoning (KR’02), pages 135–144, 2002.

18

[KP98] S Konieczny and R Pino Perez. On the logic of merging. InProceedings of the Sixth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR’98), pages
488–498. Morgan Kaufmann, 1998.

[KP02] S Konieczny and R Pino Pérez. Merging information under constraints: a qualitative frame-
work. Journal of Logic and Computation, 12(5):773–808, 2002.

[KS86] R Kowalski and M Sergot. A logic-based calculus of events.New Generation Computing,
4:67–95, 1986.

[LS98] P Liberatore and M Schaerf. Arbitration (or how to merge knowledgebases).IEEE Transac-
tions on Knowledge and Data Engineering, 10:76–90, 1998.

[LS00] P Liberatore and M Schaerf. Brels: A system for the integration of knowledge bases. In
Proceedings of the 7th International Conference on Principles of Knowledge Representation
and Reasoning (KR’00), pages 145–152, 2000.

[MS99] R Miller and M Shanahan. The event calculus in classical logic: An alternative axiomatisa-
tions. Linkoping Electronic Articles in Computer and Information Science, 4(16), 1999.

[Rev97] P Revesz. On the semantics of arbitration.International Journal of Algebra and Computation,
7:133–160, 1997.

[Sha99] M Shanahan. The event calculus explained. In M.J.Wooldridge and M.Veloso, editors,Ar-
tificial Intelligence Today, volume 1600 ofSpringer Lecture Notes in Artificial Intelligence,
pages 409–430. Springer, 1999.

[Sho88] Y Shoham.Reasoning about Change. MIT Press, 1988.

[SS94] L Sterling and E Shapiro.The Art of Prolog: Advanced Programming Techniques. MIT Press,
1994.

Appendix

Here we give some of the clauses in the Prolog version of our case study. Below, we give the initiates,
terminates, and event ordering axioms, which are part of the event reasoning system, together with the
holdsafter axioms. See Section 9 for discussion of this case study.

initiates(E, boardConsidersBid(B, C)) :− action(E, bidMade), info(E, bid(B, C)).

initiates(E, boardConsidersBid(B, C)) :− action(E, newBidMade), info(E, bid(B, C)).

initiates(E, shareholdersConsiderBid(B, C)) :− action(E, boardAcceptsOffer), info(E, bid(B, C)).

initiates(E, buyerConsidersNewBid(B, C)) :− action(E, boardRejectstsOffer), info(E, bid(B, C)).

initiates(E, antiTrustAgenciesConsiderBid(B, C)) :− action(E, shareholdersAcceptOffer), info(E, bid(B, C)).

initiates(E, bidValue(B, C, V)) :− action(E, newBidMade), info(E, bid(B, C)), info(E, value(V)).

initiates(E, bidValue(B, C, V)) :− action(E, newBidMade), info(E, bid(B, C)), info(E, value(V)).

initiates(E, capitalisation(X, Y)) :− action(E,) , info(E, capitalisation(X, Y)).

initiates(E, location(X, Y)) :− action(E,) , info(E, location(X, Y)).

terminates(E, boardConsidersBid(B, C)) :− action(E, boardAcceptsOffer), info(E, bid(B, C)).

terminates(E, shareholdersConsiderBid(B, C)) :− action(E, shareholdersAcceptOffer), info(E, bid(B, C)).

terminates(E, antiTrustAgenciesConsiderBid(B, C)) :− action(E, referralDeemedUnnecessary), info(E, bid(B, C)).

19

eventorder(E2, E1) :− action(E2, boardAcceptsOffer), info(E2, bid(B, C)),
action(E1, newBidMade), info(E1, bid(B, C)).

eventorder(E2, E1) :− action(E2, shareholdersAcceptOffer), info(E2, bid(B, C)),
action(E1, boardAcceptsOffer), info(E1, bid(B, C)).

eventorder(E2, E1) :− action(E2, referralDeemedUnnecessary), info(E2, bid(B, C)),
action(E1, shareholdersAcceptOffer), info(E1, bid(B, C)).

Below, we have also included some output atoms that give the format for some merged SNRs.

output(E, report(buyer(B), target(C), value(V))) :−
holdsafter(E, bidValue(B, C, V)).

output(E, report(buyer(B, location(L), capitalization(J)), target(C), value(V))) :−
holdsafter(E, bidValue(B, C, V)), holdsafter(E, capitalisation(B, J)),
holdsafter(E, location(B, L)).

output(E, report(buyer(B), target(C), status(antiTrustAgenciesConsiderBid)) :−
holdsafter(E, antiTrustAgenciesConsiderBid(B, C)).

Below, we give some event atoms obtained from four SNRs.

action(e1, newBidMade).
info(e1, bid(walmart, asda)).
info(e1, value(us9billion)).

action(e2, boardAcceptsOffer).
info(e2, bid(walmart, asda)).
info(e2, location(walmart, usa)).
info(e2, capitalisation(walmart, us23billion)).

action(e3, shareholdersAcceptOffer).
info(e3, bid(walmart, asda)).
info(e3, location(asda, uk)).
info(e3, capitalisation(asda, us6billion)).

action(e4, referralDeemedUnnecessary).
info(e4, bid(walmart, asda)).
info(e4, body(euAntiTrustAgency)).

It is straighforward to extend this Prolog program with access rules, and to provide a meta-interpreter that
would apply the access rules to input atoms to generate event atoms such as those above.

20

