
A Knowledgebased Approach
to Merging Information

Anthony Hunter and Rupert Summerton
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

December 13, 2005

Abstract

There is an increasing need for technology for merging semi-structured information (such as struc-
tured reports) from heterogeneous sources. For this, we advocate a knowledgebased approach when the
information to be merged incorporates diverse, and potentially complex, conflicts (inconsistencies). In
this paper, we contrast the goals of knowledgebased merging with other technologies such as seman-
tic web technologies, information mediators, and database integration systems. We then explain how
a system for knowledgebased merging can be constructed for a given application. To support the use
of a knowledgebase, we use fusion rules to manage the semi-structured information that is input for
merging. Fusion rules are a form of scripting language that defines how structured reports should be
merged. The antecedent of a fusion rule is a call to investigate the information in the structured reports
and the background knowledge, and the consequent of a fusion rule is a formula specifying an action to
be undertaken to form a merged report. Fusion rules are not necessarily a definitive specification of how
the input can be merged. They can be used by the user to explore different ways that the input can be
merged. However, if the user has sufficient confidence in the output from a set of fusion rules, they can
be regarded as a definitive specification for merging, and furthermore, they can then be treated as a form
of meta-knowledge that gives the provenance of the merged reports. The integrated usage of fusion rules
with a knowledgebase offers a practical and valuable technology for merging conflicting information.

1 Introduction

There is an increasing need to develop semi-automated and automated techniques for merging information
obtained from heterogeneous sources. A number of approaches have been proposed, but none address all
application problems. Amongst the wide range of proposals, it is surprising that knowledgebased tech-
niques have not been harnessed to their full potential. In this paper, we respond to this situation by ad-
vocating the use of knowledgebased merging. We start by introducing the types of problem that we are
interested in addressing, and then follow this with a comparative review of other approaches to merging
information, in particular semantic web technologies, information mediators, and database integration sys-
tems. We follow this with an exposition of our approach to knowledgebased merging. For this, we will
argue that fusion rules are an ideal way of controlling knowledgebased merging.

For our discussions, we are particularly interested in merging semi-structured information such as struc-
tured reports. These reports are in the form of XML documents, where the textentries are restricted to
individual words or simple phrases (such as names and domain-specific terminology), dates, numbers and
units. Types of report that can be put into structured reports include news reports, weather reports, clinical

1

records, and records on methods/results for scientific experiments. Structured reports do not require nat-
ural language processing, though they may be obtained as output from information extraction technology.
Many structured reports can also be obtained from relational and semi-structured data.

In order to merge heterogeneous structured reports intelligently, we need to take account of the contents of
each report. Different kinds of content, and different types of conflict (whether qualitative or quantitative)
need to be merged in different ways. In many cases, the kind of merging required to exploit the content
available in structured reports goes far beyond the mere combination of information envisaged by some
approaches to information integration. This is because a source may provide information thatconflicts
with, rather thancomplementsthat provided by another source; that is, instead of providing additional
information about different events or phenomena (as when one source describes what is showing at one
cinema in the neighbourhood, whilst another says what is showing at a different cinema), a source may
provide different information about the same events or phenomena (as when one weather report says it will
rain tomorrow, whilst another predicts sunshine). Conflicting information, especially when it is qualitative,
requires the use of logical reasoning, with axioms and rules contained in a knowledgebase, in order to
resolve the conflict and merge the information. In general, the sources of conflicts fall into one or another
of the following categories.

Dispositional conflicts These are conflicts that arise because there is a difference in values or interests
involved on the part of those compiling the reports, as for example when there is a discrepancy in
the casualty figures as reported by different sides in a war or conflict, or when one source describes
a group of people as terrorists whilst another describes them as resistance fighters, etc. Political
reporting, especially during election campaigns, provides another obvious example of conflicting
descriptions of the same events. Some dispositional conflicts arise through less conscious systematic
bias in reporting information. For example, some sources of weather tend to be optimistic and
describe the weather prediction as sunny even if there is a substantial amount of cloud that will
obscure the sun for protracted periods. In contrast, other sources would tend to be pessimistic, and
highlight rain in a forecast even if the probability of rain is actually quite low. Meta-level knowledge
can be harnessed to ameliorate these kinds of conflicts.

Epistemic conflicts These are conflicts that arise for epistemic reasons: Different sources have different
beliefs. This can arise because the event or phenomenon being described has not yet happened and
so the conflicting reports areforecasts. Obvious examples here include weather reports, horse racing
tips, and predictions of the stock market or of individual stocks. Consider two sources of weather
information that have different instruments for sensing the weather conditions. These two sources
are unlikely to always have identical beliefs about the weather. Equally important is where the nature
or existence of the events in question is in dispute because they occurred in the past and the sources
of information have an incomplete and not totally correct understanding of the past events being
described. An obvious example is reports written by detectives during the course of a major inquiry.
Meta-level and/or uncertainty knowledge can be harnessed to ameliorate these kinds of conflicts.

Ontological conflicts These are conflicts that arise because of differences in terminology and in uses of
terminology: Different terms can be used by different sources for the same concept and/or the same
term can be used by different sources for different concepts. Knowledge about ontological relation-
ships [Cru86], including synonymy, polysemy, homonymy, antonymy, meronymy, and hyponymy,
can be harnessed to ameliorate these kinds of conflicts.

Often specific applications will involve conflicts which fall into multiple categories further reinforcing the
argument that we need to reason with the information provided by sources to determine the kind of conflicts
arising, and then to find an appropriate and intelligent resolution.

In all of these cases something more than mere conjunction is required if information from different sources
is to be integrated. In this respect, the project of integration is different from what is required in cases such
as: find out what films are on in Birmingham city centre; what Chinese restaurants are there in West

2

London?; what are the economy flights from London to Athens in July?, etc. In these cases what we want
is a list, with duplicates removed, obtained by conjoining all the information sources.

By contrast, in cases where the sources conflict much more is involved if the information is to be inte-
grated. Even a simple approach to the case of horse racing would require, for example, a knowledgebase
containing preferences over sources, or various voting functions (majority, first past the post, threshold,
etc.). But obviously much more sophisticated knowledgebases could be constructed, taking into account
the going (i.e. the condition of the track), the horses’ previous results, handicapping information, and so
on. Preferences over sources could also be used to settle differences between opinion polls concerning
future election results (prefer Gallup to Mori, etc.); or an average amongst the polls would be another way
in which they could be merged (see Example 1.1); or simply some form of voting function.

Example 1.1 Consider the following two conflicting (and imaginary) reports concerning opinion polls for
the political parties in the UK. The clients are national newspapers.

〈opinionpoll〉 〈opinionpoll〉
〈source〉 Mori 〈/source〉 〈source〉 Gallup 〈/source〉
〈client〉 Guardian 〈/client〉 〈client〉 Daily Telegraph 〈/client〉
〈date〉 19/3/04 〈/date〉 〈date〉 20 March 2004 〈/date〉
〈parties〉 〈parties〉

〈party〉 Labour 〈/party〉 〈party〉 Lab 〈/party〉
〈poll〉 41% 〈/poll〉 〈poll〉 38% 〈/poll〉
〈party〉 Conservative 〈/party〉 〈party〉 Con 〈/party〉
〈poll〉 39% 〈/poll〉 〈poll〉 42% 〈/poll〉
〈party〉 Liberal Democrat 〈/party〉 〈party〉 Lib Dem 〈/party〉
〈poll〉 21% 〈/poll〉 〈poll〉 19% 〈/poll〉

〈/parties〉 〈/parties〉
〈/opinionpoll〉 〈/opinionpoll〉

Using a suitable knowledgebase, dealing with alternative party names and date formats, we can produce
the following merged report. In this case the entry for eachpoll result is determined by finding the mean
of thepoll results in the two reports.

〈pollofpolls〉
〈sources〉 Mori and Gallup 〈/sources〉
〈clients〉 Guardian and Daily Telegraph 〈/clients〉
〈date〉 19/3/04 〈/date〉
〈parties〉

〈party〉 Labour 〈/party〉
〈poll〉 39.5% 〈/poll〉
〈party〉 Conservative 〈/party〉
〈poll〉 40.5% 〈/poll〉
〈party〉 Liberal Democrat 〈/party〉
〈poll〉 20% 〈/poll〉

〈/parties〉
〈summary〉 Conservative lead of 1% 〈/summary〉

〈/pollofpolls〉

Voting and preferences over sources could also be used in the case of stock tips, though a further refine-
ment that could be used in this case would be to index the preferences by industry sector since certain
forecasters might be thought to have a better track record in, say, the energy sector, whilst others are to be
preferred in financial services, etc. (see Example 1.2). And of course all sorts of other information could
be incorporated into a knowledgebase about the track records of the stocks, discounting of tips from banks
or investment houses that hold large quantities of the stocks, etc.

Example 1.2 Consider the following four conflicting (and imaginary) reports concerning stock in the
Royal Bank of Scotland.

3

〈stockreport〉 〈stockreport〉
〈stock〉 RBS 〈/stock〉 〈stock〉 Royal Bank of Scotland 〈/stock〉
〈sector〉 financial services 〈/sector〉 〈sector〉 finance 〈/sector〉
〈date〉 19/3/04 〈/date〉 〈date〉 21 March 2004 〈/date〉
〈source〉 Financial Times 〈/source〉 〈source〉 HSBC 〈/source〉
〈price〉 209.5 〈/price〉 〈price〉 209 〈/price〉
〈recommendation〉 buy 〈/recommendation〉 〈recommendation〉 sell 〈/recommendation〉

〈/stockreport〉 〈/stockreport〉

〈stockreport〉 〈stockreport〉
〈stock〉 RBS 〈/stock〉 〈stock〉 RBS 〈/stock〉
〈sector〉 financial services 〈/sector〉 〈sector〉 banking 〈/sector〉
〈date〉 20− 03− 04 〈/date〉 〈date〉 18th March 2004 〈/date〉
〈source〉 Waterhouse 〈/source〉 〈source〉 Morgan Stanley 〈/source〉
〈price〉 209.5 〈/price〉 〈price〉 209.25 〈/price〉
〈recommendation〉 buy 〈/recommendation〉 〈recommendation〉 buy 〈/recommendation〉

〈/stockreport〉 〈/stockreport〉

Using a suitable knowledgebase we can produce the following merged report, allowing for alternative com-
pany names, date formats, and sector descriptions. In this case the entry foroverallrecommendation is
determined by a preference for HSBC over the others as a source, and so issell.

〈stockreport〉
〈stock〉Royal Bank of Scotland 〈/stock〉
〈sector〉 financialservices 〈/sector〉
〈date〉 18/3/04− 21/3/04 〈/date〉
〈price〉 209− 209.5 〈/price〉
〈sources〉

〈source〉 Financial Times 〈/source〉
〈recommendation〉 buy 〈/recommendation〉
〈source〉 HSBC〈/source〉
〈recommendation〉 sell 〈/recommendation〉
〈source〉 Waterhouse 〈/source〉
〈recommendation〉 buy 〈/recommendation〉
〈source〉 Morgan Stanley 〈/source〉
〈recommendation〉 buy 〈/recommendation〉

〈/sources〉
〈overallrecommendation〉 sell 〈/overallrecommendation〉

〈/stockreport〉

An alternative way of merging these reports, with the entry foroverallrecommendation being buy
instead, would be a simple first past the post, or a majority, voting function.

Consideration of examples such as these shows, then, that in cases where there is conflict, the satisfactory
integration or merging of information requires not just the gathering or bringing together of information
from different sources (admittedly, something that is in itself a significant challenge), but the production of
a distinct and novel source of information that resolves the conflict. We will argue that to produce such a
report requires additional background knowledge and reasoning abilities, both things that can be provided
by a knowledgebase. This is the basis of our case for knowledgebased merging.

We now turn to our approach to knowledgebase merging as an illustration of how knowledgebase merging
can be undertaken. Essentially, in our approach, a range of predicates in a logical knowledgebase capture
useful relationships between pieces of information in structured reports, and so a set of structured reports
can then be analysed or merged as queries to a knowledgebase. In this way, merging some structured report
can be handled by calls to the knowledgebase to merge the subtrees or textentries in the structured reports.
This gives a context-dependent logic-based approach to merging that is sensitive to the information in the
structured reports and to the background knowledge in the knowledgebase.

4

To support the use of a knowledgebase, we use fusion rules to manage the semi-structured information that
is input for merging. Fusion rules are a form of logic-based scripting language that defines how structured
reports should be merged. The antecedent of a fusion rule is a conjunction of conditions, where each
condition is ground with information from the input structured reports and then handled as a query to the
knowledgebase, and the consequent of a fusion rule is a formula specifying an action to be undertaken to
form a merged report. So if all the conditions in the antecedent of a fusion rule succeed as queries to the
knowledgebase, then the action in the consequent is executed.

The key aim of this paper is to show how formalisms for knowledgebased systems (logic-based knowledge
representation and reasoning formalisms) can provide the core of viable and valuable merging of hetero-
geneous and conflicting information. The subsidiary aim of this paper is to explain how our approach
to knowledgebased merging, with associated fusion rules, is a good and useful example of the general
approach to knowledgebased merging1.

In other papers, we have (1) presented an outline of using for fusion rules for knowledgebased merging of
structured reports [Hun02a]; (2) presented a range of aggregation functions for use in fusion rules [HS04a];
(3) presented a framework for using temporal logic in knowledgebased merging [Hun02c, HS05]; (4)
explored properties of a restricted form of fusion rules [HS03b]; (5) developed a framework for measuring
degree and significance of inconsistencies in information in order to choose how to act on inconsistency
with actions including ignore, resolve and reject [Hun03, Hun05]; and (6) developed aggregation predicates
for merging uncertain information [HL05a, HL05b, HL05c, HL05d].

This paper extends the previous papers by providing a more general framework for knowledgebase merging
and by providing comprehensive experiential insights into practical aspects of developing knowledgebased
merging using fusion rules. In Section 2, we review the background to merging information, and argue
how knowledgebased merging goes beyond other approaches to merging. Then in Section 3, we present
our approach to knowledgebased merging describing the nature of a knowledgebase for merging together
with associated fusion rules.

2 Background to merging information

There are of course many technologies that attempt to deal with merging or integrating information. But
terms such as “merging”, “fusion”, and “integration” can be used in a variety of ways. It is useful, therefore,
briefly to survey some of these existing approaches to merging or integrating information in order to see
how they compare with our approach. It will be our contention that they are all in fact aiming to do
something rather different from what we wish to accomplish.

2.1 The semantic web and associated technologies

Chief amongst technologies whose aim could be described as integrating information are those associated
with the semantic web (see [BL99, BLHL01]), such as the Resource Description Framework (RDF) and
RDF schema (RDFS), the Ontology Inference Layer (OIL, also used as an acronym for “Ontology In-
terchange Language”), and the DARPA Agent Mark-up Language (DAML) (see [FHvH+00, FvHH+02,
Fen00]). The combination of these technologies is intended to make the information on the web not just
machinereadable, as at present, but machineunderstandable, thus increasing the “semantic interoperabil-
ity” of the web. If this is to be done, what we need is semantic metadata — data that tells machines what the

1Further information on our approach to knowledgebased merging, including details on software prototypes, case studies, exam-
ples of knowledgebases, examples of sets of fusion rules, examples of structured reports used as input for merging, and examples of
structured news reports obtained as output from merging, are given at www.cs.ucl.ac.uk/staff/a.hunter/frt.

5

content on the web means — rather than metadata that simply tells machines how to display web content
(HTML), or what syntactic structure it has (XML).

The consensus is that such semantic metadata is best provided via ontologies, which offer a source of
shared and defined terms standing in clear relationships to one another. These ontologies potentially pro-
vide the vocabulary to mark up or annotate the semantics of information on the web. DAML+OIL is an
ontology representation language allowing for the specification and exchange of ontologies that is designed
to provide this intelligent access for machines to the heterogeneous and distributed information found on
the web. In particular, three features suit it to this purpose: (1) The use of a frame or class based mod-
elling framework makes it easier for humans to construct ontologies; (2) The choice of XML and RDF web
languages as a syntax makes DAML+OIL interoperable with existing web software; (3) The decision to
design the language so that its semantics can be mapped to a description logic allows for reasoning in the
construction and maintenance of ontologies, something that is very useful when checking the consistency
of large ontologies.

Given this account of the purpose of these technologies, they can indeed be said to integrate information
in the sense that they enable machines to determine the content or meaning of that information, and thus
determine, for example, whether two sources contain information about the same thing. But it is important
to note that they do this by acting on or exploiting this new semantic metadata; they do not concern them-
selves with the data — the actual web content — itself. The significance of this is that although they can be
said to integrate diverse, heterogeneous data, perhaps it would be more accurate to say that they put us in a
position of being able to integrate such data. For, knowing what information on a web site is about is one
thing, knowing what to do with it is another. And as the developers of DAML+OIL have acknowledged,
“Defining languages for the semantic web is just the first step. Developing new tools, architectures, and
applications is the real challenge that will follow.” (see [Fen00], p67.)

With respect to our interest in merging information, the relevance of these technologies is that they enable
us to establish that the information to be merged is (or is not) about the same subject matter. But having
done that, in themselves they say nothing about what to do with that data itself — what we should do if it
does not conflict, what we should do if it does. Thanks to the semantic web, software agents will be able to
tell us that one website on Claret contains information about the same thing as another website containing
information on the wines of Bordeaux. But suppose these sites also contain differing opinions on the merits
of the 2003 vintage. How should we deal with this conflict? In themselves, the languages developed to
enable the semantic web say nothing about what to do here, but this is exactly the kind of task that we
have in mind when we speak of merging information. Merging or integrating information, as we are using
those terms, is one of those further applications that needs to be developed on top of the semantic web,
along with applications such as intelligent search engines and other envisaged applications in e-commerce
and knowledge management. Our view of the semantic web, then, is that it is an enabling technology for
information integration. The type of fusion system that we advocate could be considered an information
integration agent that could make use of semantic web technology.

The different roles of semantic web technology, on the one hand, and information merging (or knowledge
fusion) systems as we are envisaging them, on the other hand, are nicely illustrated in the case of bioinfor-
matics. Ontologies are playing an important role in organizing the vast amount of information generated
by research in molecular biology. For example, DAML+OIL has been used to annotate the Gene Ontology
(GO) data source2 which in turn is used by a wider project called TAMBIS — Transparent Access to Mul-
tiple Bioinformatics Information Sources (see [BBB+98, SGHB01b, SGHB01a]). The metadata provided
by this project allows a single, uniform query interface to diverse bioinformatics sources. So, as its devel-
opers claim, here we have “an exemplar of using an ontology to facilitate the interoperation and fusion of
bioinformatics sources” ([SGHB01b], p2).

Once again, we may note that what this technology facilitates is better for user access to existing infor-
mation. But in bioinformatics there is also a need for merging or fusing information in the way that we

2The Gene Ontology is available from www.geneontology.org

6

mean. One example is the need to merge information about the functional annotations of individual protein
domains. In some cases different databases assign different GO annotations to the same domain, and one
way to resolve such conflicts is by using preferences over sources. Here, this is not simply a matter of
extracting information from existing sources; rather, new information needs to be created by, for example,
reasoning using a knowledgebase.

2.2 Information mediators and information integration on the web

The aim of merging, as we choose to understand it, is to take potentially conflicting information from
different sources and, by reasoning about those conflicts, to create a distinct, novel output report that
summarizes, or in other ways combines, that information. The upshot of merging in this sense is that a new
source of information is created, something that did not previously exist.

This aim seems to be substantially different from most extant approaches to merging or integrating infor-
mation, where the emphasis often seems to be more on extracting information from different sources and
presenting it in such a way as to make it easier for the user to find the information she wants. The upshot
of merging or integration in this sense is the user finds a pre-existing source of information; no new infor-
mation is created (although, of course, the information will be new to the user — that is why she’s looking
for it), rather, existing information is made more useable.

The difference between these two projects can perhaps best be brought out in terms of the familiar entity-
attribute model. Our primary interest in merging is to take information from different sources about the
same entity, where that information concerns thesameattributes, and then combine it. If the values of those
attributes are the same (or similar), not much reasoning will be involved. But where the values of those
attributes conflict, a variety of kinds of reasoning using a knowledgebase can be used to resolve the conflict.
By contrast, most other projects of integrating information on the web seem concerned with a different task:
they start from the same place, with different sources of information about the same entity, but those sources
typically contain information aboutdifferentattributes. Thus these different data sources are conceived of
as containingcomplementaryinformation, notconflicting information. As a result, merging is conceived
of, not as the process of resolving a conflict, but as the process of combining the information about the
different attributes of a given entity, thus making it easier for the user to find the information she wants3.

A couple of examples should make this clearer. One example is the TheatreLoc application ([BKY+99]):
here the user chooses to search for restaurants and/or cinemas in a specified city, and is presented with a list
of them, together with their locations displayed on an interactive map. The user can then navigate via the
list or the map to detailed information on individual theatres or restaurants, including watching previews of
the films. In this application, information about a theatre’s films is brought together with video previews,
and information about the street address of the theatre is used to find the theatre’s grid reference, allowing
it to be placed on a street map. The end product is a user interface making it easier for the user to find what
she wants; a single website now allows the user both to find what is showing, and how to get there. In that
sense we can speak of information integration.

A second example is an application that seeks to integrate the information contained in restaurant review
websites such as Fodor’s and Zagat’s, with information on the health or sanitation status of those restaurants
contained on a local government website [KM98]. Combining this information would allow users to answer
such queries as “Find all the Japanese restaurants in Santa Monica with a grade A health rating.” Once
again, the purpose of integration here is not to reason about conflicting data, but to make it easier for the
user to find information which already exists. The end result is that the user is looking at the same web
pages that she could have found manually, but she got their a lot more easily.

Both applications work by using the Ariadne information mediator (see [KMA+98, KMA+99]) (which is

3Whilst our primary interest in knowledgebase merging is in addressing conflicts, knowledgebase merging can be used to merge
complementary information

7

itself based largely on the SIMS mediator architecture — see [AKS96, Kno95]) forming an intermediate
layer between the user and the various heterogeneous information sources. The purpose of the mediator
is to provide a uniform query interface, abstracting away from the heterogeneous formats of the different
sources. The mediator also plans how the sources should be queried and how the data that is retrieved
is to be integrated. The extraction itself is done by wrappers. It should be acknowledged that this sort
of information integration does involve some reasoning concerning conflicts (see [TKM98]). But this is
confined to determining if information from two sources is in fact about the same entity, say the same film
or restaurant. For example, we need to be able to tell that information from a cinema Website about a
film called “A bug’s Life” is information about the same film that is listed as “Bug’s Life, A” on a trailer
Website, so that links to the two can be combined. Or, we need to know whether a restaurant listed as
“Art’s Delicatessen” on one site is the same as one listed as “Art’s Deli” on another. The role of reasoning
about conflicts thus seems to be restricted to providing robustness to the semantic heterogeneity of different
information sources in their description of the entities they are about. These applications do not seem to
provide a role for reasoning about conflicts between the values of the attributes of those entities.

There is no question that the sort of issues in integration addressed by these applications are pressing, but
the end result of this approach is that it is easier for the user to find one or more of the pre-existing input
sources that she is interested in. Some limited resolution of conflicts between sources may be required
in order to do this, but it remains a subsidiary goal. By contrast, the objective of our approach is that
the user gets to see a wholly different, merged or summarized, output report. The focus of our approach
is in developing ways of merging or integration that can deal with a whole array of problems that arise
with conflicting information of which the examples just mentioned in the case of these web integration
applications are only one.

2.3 Database integration

The goal of database integration is to provide uniform access to multiple, heterogeneous databases that
each has its own associated local schema (see [Lev00]). Logic-based techniques in data integration, such
as global-as-view and local-as-view, offer some ability to relate sources using restricted forms of first-
order logic, and so can be considered as special cases of knowledgebased merging. However, the formats
of the clauses used are largely limited to defining virtual tables directly in terms of existing tables. We
could describe this process of integration as providing a mapping of one schema onto another, so that, for
example, data in a column headedlocationin one table is mapped onto a column headedaddressin another
table. So, “fusion” or “integration” in this context refers to the “combining” of several database tables into
one. These “mappings” can be regarded as a form of ontological knowledge.

If this is how the goal of database integration should be understood, then we can see, once again, that this
goal is substantially different from the primary goal of knowledgebase merging that we are advocating.
Data integration in the former sense is the combining of information previously available in different ap-
plications, and making that same information available to a single application so as to enable easier access
and querying. But having brought the information together, this approach in itself has nothing to say about
what should be done with it. By contrast, “integration” as we mean to use the term stands for the use of
logical inference to create a new piece of information that was not necessarily previously available. As was
the case with the semantic web, far from being a competitor, we can view database integration as a useful
enabling technology that provides the kind of input that could subsequently be merged in the ways that we
envisage.

Dealing with conflicts is emerging as an important aspect of data integration, and there is increasing interest
in querying multiple relational databases that are in conflict [ABC99, BC03]. For example, answers that are
consistent with global integrity constraints may be required in a local-as-view paradigm from an incomplete
(open) database [BB03]. Techniques being developed for these problems do directly address conflicts as
they arise in the input databases, but in so doing they suppress information. These techniques do not allow

8

the representation of inconsistency in the “merged” information. Furthermore, these approaches are not
context-dependent: Each technique offers a single mechanism for aggregation irrespective of the nature of
the data, and they cannot take advantage of background knowledge in the process. Furthermore, they do not
provide support for analysing the significance of inconsistencies, they do not merge uncertain information,
and they do not resolve inconsistencies by finding the most-up-to date pieces of information based on
temporal or event-based reasoning. Finally, these approach do not “create” knowledge, they only take a
subset of the existing information.

2.4 Summary of background to merging information

In one way or another the various technologies we have briefly examined in this section are concerned with
giving the user access to anexistingpiece of information — a piece of information that is already there on
the web, or in a database, but that is difficult to access, perhaps because of the vast amount of information
available, or because it is spread across more than one database. By contrast, what is different about our
view of knowledgebase merging is that it is designed to create anewpiece of information — the merged
output report — from existing sources, by reasoning about conflicts using a knowledgebase.

The second main difference between our approach, and the other approaches to merging information that
we have considered here, is that in our approach we have much more comprehensive and complex back-
ground knowledge for reasoning with the information to be merged, and thereby we support more context-
sensitive merging. However, we should stress that our approach is only intended for focussed domains, and
this is in contrast to some of the other techniques which are being developed for much wider and dynamic
domains.

3 Knowledgebased merging

For our approach to merging, we have assumed that information to be merged is in the form of a set of
structured reports. In particular, each structured report is represented by an XML document. This implicit
tree structure for each structured report means each one is isomorphic with a ground term (of classical logic)
where each tagname is a function symbol and each textentry is a constant symbol. This in turn means, we
can reason with a set of structured reports directly in a knowledgebase by representing them as a list of
terms. Furthermore, we can reason with information from structured reports in the form of subterms, and
if we want to reason with just textentries from a set of structured reports, then we can represent these
textentries by a list of constant symbols in the logic. Fusion rules, which we will explain fully in Section
3.5, are defined to extract the required information from the structured reports prior to reasoning in the
knowledgebase.

In this section, we discuss the following issues: (1) The role of the knowledgebase in merging; (2) What
kind of knowledge is used in a knowledgebase? (3) A role for description logics? (4) How easy is it to
construct a knowledgebase? and (5) Controlling knowledgebased merging using fusion rules.

3.1 The role of the knowledgebase in merging

In order to merge information in the kinds of ways we have indicated (as in, say, Examples 1.1 and 1.2)
we use both domain specific and more general knowledge in a knowledgebase. The knowledge in the
knowledgebase can be viewed as evaluating one of the following two types of query.

Instrument queries These are queries which test aspects of the input information such as testing whether

9

or not particular parts of the information from the various input reports are similar in some particular
way. So, for example, in merging weather reports, the conditions in a knowledgebase would typically
test such things as whether the temperature, humidity, and pressure, etc., as specified by the various
input reports were or were not similar, where what counts as being similar is determined by the
domain specialist. To illustrate, consider the two input structured reports given in Example 1.1.
The textentries fordate are19/3/04 and20 March 2004 respectively, and so an instrument query
involving these textentries might beSameDate([19/3/04, 20 March 2004]) whereSameDate(X)
would be defined to hold if the listX contains one or more dates that are the same. In this case, the
first of the following does not hold, whereas the second does hold.

SameDate([19/3/04, 20 March 2004])
SameDate([19/3/04, 19 March 2004, 19/03/2004])

Further instrument queries may involve a variable that needs to be grounded. Consider the following
instrument queryPreferredTerms(List, X), where for the list of terms inList, the variableX is
ground by the knowledgebase with a list that contains the preferred synonym for each term inList.
For example,PreferredTerms([mostlysunny, sunny, sunshine, cloudy], X), if according to the
knowledgebasesun is the preferred term for sunny weather, andcloud is the preferred term for
cloudy weather, thenX is ground by the knowledgebase with the list[sun, sun, sun, cloud].

Aggregation queries These queries are used to aggregate a tuple of values. Their general form is a pred-
icate,P (X1, .., Xn, Y), whereP is the name of some aggregation predicate,X1, .., Xn are the
arguments containing the terms to be merged from the input reports, plus terms providing contextual
information, andY is the output of aggregating those textentries (see Example 3.1). So for example,
if the majority of the input reports agree on today’s weather, then majority aggregation selects the
term used by the majority of the input reports, and uses that in the output report. Or, in the case where
the input information is a numerical value, such as temperature, pressure or humidity, if the input
values are all within an allowable range, then the interval from the minimum to the maximum of
the input values might be selected for inclusion in the output report. Here the aggregation predicate,
might look like this:TempInterval([15C, 13C, 58F, 13C, 12C], X), whereX is ground to12 − 15,
assuming that the knowledge engineer has determined that a 3C variation is within the acceptable
range. Matters are more interesting, however, if the input reports are not deemed to be similar by
the knowledge engineer, and so some similarity condition in the knowledgebase fails. In such cases
a much richer variety of aggregation functions is available. Conflicts can be dealt with by aggrega-
tion functions that implement various sorts of voting functions, preferences over sources, or if the
conflicting terms fall into a class hierarchy, the most specific term that is general enough to include
them all could be chosen. Whichever method of aggregation is selected, the choice is encoded in the
knowledgebase by the knowledge engineer or user according to the needs of the domain in question.

To answer instrument queries and aggregation queries, the knowledgebase requires the definition of clauses
that with an inference mechanism can be reasoned with to determine whether the query holds or not, and
if there is a variable in the query, finds groundings for the variable in the query. For our approach, we can
use Prolog for the language of the knowledgebase and for the inference mechanism. The choice of Prolog
was made because of the availability of high performance implementations, associated software, the gen-
erality of the language, and the well-developed theoretical foundations. See [Bra01] for a comprehensive
introduction to Prolog. However, it would be straightforward to adapt our approach for a variety of other
approaches to representing and reasoning with knowledge.

Example 3.1 The following two examples show how instrument and aggregation predicates work together
to merge information from the input reports. In the first example the instrument and aggregation predicates
could be used in merging the reports from Example 1.1:

SameParty(Parties)

Mean(Values, Mean)

10

WhereParties is a list of parties, one from each report;Values is a list of poll results, again one
from each report; andMean is the mean of all the results in listValues. These two predicates would be
applied to each of the three parties occurring in the input reports.SameParty is a query that is called
first to check that the parties named in the listParties are all in fact the same party, to ensure that
Mean would be the mean of the polls for a single party. Note that as political parties sometimes have
different names (“Conservative” and “Tory”, “Republican” and “GOP”, etc.), or because their names
are sometimes abbreviated (“Labour” and “Lab”, “Conservative” and “Cons”, etc.), this condition has
to do more than simply check that each element in the listParties is the same: It would also require
several domain-specific facts to be checked in turn. Like many instrument queries, it simply succeeds or
fails. If it succeeds,Mean is a utility aggregation predicate that provides the mean. TheMean predicate is
an example of a predicate that could of course be reused in other applications.

With their arguments grounded with textentries from the two input reports, the two predicates would look
like the following, andX would be ground to39.5%.

SameParty([Labour, Lab])

Mean([41%, 38%], X)

Example 3.2 The second example consists of an instrument and an aggregation predicate that could be
used in merging the reports from Example 1.2:

ConflictingRecommendations(Recommendations)

UsePreferredSource(Sources, Recommendations, PreferredRecommendation)

WhereRecommendations is a list of recommendations, one from each report;Sources is a list of the
sources of the recommendations, again one from each report; andPreferredRecommendation is the
overall recommendation selected on the basis of a preference over the sources. The first predicate is the
condition predicate that checks that the recommendations do in fact conflict. If they do, the second predicate
then selects the recommendation from the most preferred source.

With their arguments grounded with textentries from the four input reports, the two predicates would look
like the following, andX would be ground tosell.

ConflictingRecommendations([buy, sell, buy, buy])

UsePreferredSource([FinancialTimes, HSBC, Waterhouse, MorganStanley],
[buy, sell, buy, buy], X)

If, instead, the overall recommendation was made on the basis of some form of voting, the sources could be
used as a basis of weighting the votes (see below), or if weighting was not to play a part, the first argument
could be omitted.

WeightedMajority(Sources, Candidates, Winner)

WeightedMajority is an aggregation predicate that selects the element from listCandidates that has
the most votes according to some weighting scheme defined over the sources inSources, provided that the
winning element has more than 50% of the votes cast. If no candidate meets this requirement, the output of
the aggregation predicate,Winner, is the stringNoMajority, which occurs in the merged report as the text
entry for the tagoverallrecommendation. Note that, once again, in both cases the aggregation functions
are generic and so could be reused in other applications, though each does require domain-specific facts
in order to select the preferred source, or compute the weighted vote totals.

11

Queries to the knowledgebase reflect both the tagnames in the structured input reports and, of course, the
interests we have in merging those reports. Thus in the case of merging weather reports, the queries will
likely involve predicates for similar temperatures, similar pressures, and so forth. Other queries will reflect
the kinds of aggregation functions used.

But the knowledgebase will contain much else besides these top-level predicates. In addition, there will
need to be facts about, for example, which sources are acceptable, and perhaps a preference ordering over
them as well, if that is to be used as a method of aggregation in the case of conflicts. Other facts might
include equivalence classes of expressions, say for today’s weather (for example,{rain, wet, inclement,
downpours, heavy rain, prolonged rain}), preferred terms from amongst these equivalence classes, and
class hierarchies where they are appropriate. Besides facts such as these, a number of rules will also
be required in order to carry out the subsidiary tasks involved in implementing the top-level predicates.
Many of these rules will implement utility functions such as constructing conjunctions or disjunctions of
input textentries. Others will remove duplicates from the lists of such textentries, sum the values in a list,
calculate their mean (see Example 3.1), or determine the maximum and minimum values in such lists.

In many cases, before any similarity comparisons can be made, or before any aggregation functions can
be calculated, numerical textentries will need to have their unit suffixes removed (“C”, “F”, “mph”, “mb”,
“%”, etc.), and unit conversions made, if required (kph to mph, Fahrenheit to Centigrade, etc.); so, much
of the subsidiary computation in the knowledgebase is concerned with the string manipulation required to
do this.

3.2 What kind of knowledge is used in a knowledgebase?

The knowledge in the knowledgebase can be seen as falling into one of two categories: domain (or specific
or domain-specific) knowledge and generic (or general) knowledge.4

Domain knowledge includes: (1) Ontological knowledge. For example, knowledge specifying which terms
are synonyms or can be seen as belonging to the same equivalence class (“drizzle” and “light rain”, “Bor-
deaux” and “Claret”, etc.); and hierarchical information about more general and less general terms (“rain”
is less general, or is a subclass of “precipitation”, etc.). (2) Relational knowledge. For example, extra data
about the input information that can be used to help resolve conflicts or extra information that can be added
to fill gaps in the information to be output (such as “Paris is the capital of France”, and “Shell is listed on
the London Stock Exchange”). This data can often be sub-contracted out to relational databases. (3) Met-
alevel knowledge. For example, preferences over sources, or information about the reliability of sources.
(4) Coherence knowledge. For example, terms which are consistent (“rain” and “wind”) and terms which
are not (“overcast” and “sunny”). (5) Knowledge about allowable ranges of various values. For example,
what variations in temperature, windspeed and humidity are compatible with a set of input reports being
seen as not conflicting (such as the midday temperature in London being 5-10C is an acceptable range,
whereas it being 5-25C is not acceptable since it is too vague).

Generic knowledge, on the other hand, is knowledge that can be used in multiple applications. We can
draw on extensive research in knowledge representation and reasoning to define generic knowledge with
well-understood behaviours.

Drawing on the literature in aggregation functions, we have implemented a whole range of aggregation
predicates (see [HS04a]). These include simple functions such as disjunction and conjunction, but also
more complex ones such as semantic generalization, that is, finding the most specific term that is general

4This distinction should not be confused with the distinction, familiar from work in description logics, between intensional and
extensional knowledge. The former is often described as general knowledge, but this is because it is aboutconceptsin the knowl-
edgebase rather than individuals, which are the subject of extensional knowledge. However, intensional knowledge is still knowledge
that applies to a particular domain, and so could not be reused across different applications about different subjects. Hence, it does
not qualify as general knowledge as we understand it.

12

enough to subsume the input terms. There are also many voting functions for resolving conflicts that can
be included in the knowledgebase, and these can all take unweighted and weighted forms [CG04]. Various
kinds of preference functions defined over the sources of the input reports can also be used to resolve
conflicts when merging. In the case of many of these functions the rules are generic, but they will also
rely upon facts that are themselves domain-specific. So for example, both the facts embodying the concept
hierarchies used in finding the semantic generalization of different input textentries, and the facts specifying
the order of preferences for the sources of reports will be domain-specific. But the rules themselves are
generic, and so using functions such as these it is straightforward to compile a library that can be used for
resolving conflicts in a variety of applications.

We have also investigated the following types of generic knowledge: (1) Reasoning about time and events
(Section 3.2.1) and using this for defining an event-based form of aggregation; (2) Reasoning about un-
certainty (Section 3.2.2) and using this for defining a class of aggregation predicates that take uncertainty
into account; and (3) Reasoning about inconsistency (Section 3.2.3) and using this for context-sensitive
selection of an aggregation function.

3.2.1 Reasoning about time and events

Many kinds of information involve information about time and events. So when merging such information,
there is often a need to obtain a merged view of the temporal and event information. Furthermore, time and
events can be used to resolve some kinds of conflict. For example, a general heuristic is that more recent
information is more reliable and so should be chosen in case of conflict.

Many kinds of news report provide information about events. For example, business news reports in the
area of mergers and acquisitions, provide information about events such as “company X makes a bid for
company Y”, or “takeover of company Y by company X is rejected by the anti-trust authorities”. In order
to merge heterogeneous news reports that describe events, we need to identify and reason about the events
being described prior to merging them.

Clearly, news reports do not normally exist in isolation. They are usually part of “narratives” which relate
them to other articles that deal with the same story. For example, in the mergers and acquisitions domain,
we may find a news report announcing a takeover bid followed by a news report of the bid being accepted
by the board, followed by a report on the shareholders voting whether to accept the bid, and so on. All
news reports belong to at least one narrative and each narrative involves one or more reports.

Example 3.3 Consider the following two conflicting (fictitious) business reports. The left report states that
the value of the bid is$35Billion and the capital of the target is$25Billion, and the right report states
that the value of the bid is$47Billion and the capital of the target is$50Billion.

〈businessreport〉 〈businessreport〉
〈source〉 Reuters 〈/source〉 〈source〉 Reuters 〈/source〉
〈reportdate〉 11/01/02 〈/reportdate〉 〈reportdate〉 13 March 2002 〈/reportdate〉
〈action〉 unexpected takeover offer 〈/action〉 〈action〉 revised takeover offer 〈/action〉
〈bidvalue〉 $35Billion 〈/bidvalue〉 〈bidvalue〉 $47Billion 〈/bidvalue〉
〈buyer〉 Shell 〈/buyer〉 〈buyer〉 Shell 〈/buyer〉
〈target〉 〈target〉

〈company〉 Texaco 〈/company〉 〈company〉 Texaco 〈/company〉
〈capital〉 $28Billion 〈/capital〉 〈capital〉 $34Billion 〈/capital〉

〈/target〉 〈/target〉
〈/businessreport〉 〈/businessreport〉

We can merge them to resolve these apparent conflicts. A simple approach is to take the most recent report.
A better approach that is easier to justify is to consider the narrative of the news reports. In this case,
the right report involves a more recent eventrevised takeover offer, and so describes a more up to

13

date state. In this example, both approaches lead to the same conclusion. But this is not always the case,
particularly in situations where there is a time delay in reporting the news.

〈businessreport〉
〈source〉 Reuters 〈/source〉
〈reportdate〉 13/3/02 〈/reportdate〉
〈action〉 revised takeover offer 〈/action〉
〈bidvalue〉 $47Billion 〈/bidvalue〉
〈buyer〉 Shell 〈/buyer〉
〈target〉

〈company〉 Texaco 〈/company〉
〈capital〉 $34Billion 〈/capital〉

〈/target〉
〈/businessreport〉

Example 3.4 Consider the following two conflicting (fictitious) business reports. The left report states that
the action istakeover offer and the right report states that the action isbid accepted.

〈businessreport〉 〈businessreport〉
〈source〉 Reuters 〈/source〉 〈source〉 DowJones 〈/source〉
〈reportdate〉 13/03/02 〈/reportdate〉 〈reportdate〉 13 March 2002 〈/reportdate〉
〈bidvalue〉 $47Billion 〈/bidvalue〉 〈bidvalue〉 $47Billion 〈/bidvalue〉
〈action〉 takeover offer 〈/action〉 〈action〉 bid accepted 〈/action〉
〈buyer〉 Shell 〈/buyer〉 〈target〉 Texaco 〈/target〉
〈target〉 〈buyer〉

〈company〉 Texaco 〈/company〉 〈company〉 Shell 〈/company〉
〈sector〉 oil 〈/sector〉 〈sector〉 oil 〈/sector〉

〈/target〉 〈/buyer〉
〈/businessreport〉 〈/businessreport〉

We can merge them so the more recent event is used. But we can also take the information from the previous
report that is not invalidated by the newer report.

〈businessreport〉
〈source〉 Reuters and DowJones 〈/source〉
〈reportdate〉 19/3/02 〈/reportdate〉
〈action〉 bid accepted 〈/action〉
〈bidvalue〉 $47Billion 〈/bidvalue〉
〈buyer〉

〈company〉 Shell 〈/company〉
〈sector〉 oil 〈/sector〉

〈/buyer〉
〈target〉

〈company〉 Texaco 〈/company〉
〈sector〉 oil 〈/sector〉

〈/target〉
〈/businessreport〉

In order to represent and reason with narratives, we need to model states and changes of state. To address
this need, we can use an event reasoning system based on a variant of the event calculus to represent and
reason with such information. Event calculus was originally proposed by Kowalski and Sergot [KS86].
Since then a number of variants of event calculus have been proposed. For a review see [Sha99, MS99].
These variants of event calculus have been presented in either classical logic or in Prolog.

A framework for taking a list of structured reports as input and producing a merged structured report as
output has been presented based on knowledgebased merging [HS05]. The framework includes a format for
axioms for extracting information about events from the set of input reports, a form of transition model as

14

a way of representing key inter-dependencies between events, a new variant of event calculus for reasoning
about events in news reports, and a definition for an aggregation predicate for merging a set of structured
reports based on the underlying model.

3.2.2 Reasoning about uncertainty

A number of mechanisms for reasoning under uncertainty have been proposed and studied over the past
20 years. Probability theory, Dempster-Shafer theory of evidence (DS theory) [Dem67, Sha76], and possi-
bility theory [DP88] are the three popular ones that have been widely applied in many different domains.
Probability theory, the most traditional method, is one of the first to be used to represent uncertain informa-
tion in databases (e.g., [CP87, BGP92, NS94]). The restriction of assigning probabilities only to singleton
subsets of the sample space led to the investigation of deploying DS theory (e.g., [Lee92]) where uncer-
tainty can be associated with a set of possible events. A mass functionm assigns each unit of an agent’s
belief to a distinct subset of a set of all possible outcomes, with the total sum of all assignments being 1.
When all the distinct subsets are singletons, a mass function is reduced to a probability distribution. It is
in this sense that DS theory can be regarded as a generalization of probability theory. Possibility theory is
another option to easily express uncertainty in information. A possibility measureΠ on a subsetA of a set
of possible events gives a value in[0, 1] which estimates to what extentA contains the true event. The dual
function, necessity measureN with N(A) = 1 − Π(Ā) whereĀ stands for the complementary set ofA,
evaluates the degree of necessity thatA is true.

Using these approaches to representing and reasoning with uncertainty, structured reports can be annotated
with information about the uncertainty associated with particular textentries or subtrees. Furthermore,
these mechanisms can be used in knowledgebases to support the derivation of inferences with associated
information about the uncertainty. In [HL05a] a framework for merging structured reports with uncertainty
has been proposed. This has involved the modelling and merging of uncertain information associated with
textentries in XML documents. Multiple pieces of uncertain information concerning the same issue are
assumed to be specified on the same set of possible values. For example, in weather reports, an uncer-
tainty distribution (such as probability distribution) can be given foroutlook so thatP(sunny) = 0.3,
P(overcast) = 0.6, andP(rainy) = 0.1

However, [HL05a] does not consider situations where one piece of information uses more specific values
than another nor the situation where one piece of information is described on one set of values and another
is on a different set of values where these two sets of values are inter-connected. To elaborate this issue
further, let us consider a very simple example about clinical records. Assume that for each patient, we
only conclude whether the patient has cancer or not, regardless of what type of cancer it could be. So
we use a set of values{cancer, noCancer} to bare any information we have about the patient. However,
we could make this information more specific by giving different types of cancer, such as,skin cancer,
breast cancer, bone cancer, etc. Therefore some uncertain information can be described on the set of
values{noCancer, skinCancer, breastCancer, boneCancer, etc}. This latter set of values has a
finer granularity than the former one. Furthermore, since cancer diagnosis is often done through some tests
other than being observed directly, test results will directly influence the conclusion{cancer, noCancer}.
For instance, it is commonly known that a high level of prostate specific antigen (PSA) can indicate that
a patient has prostate cancer5. Assume the level of prostate specific antigen lies in[0, 15], and a patient’s
PSA level is measured as11, then we may conclude that this patient has prostate cancer with probability
0.65. In this situation, the information is given on one set of values (as a PSA level between[0, 15]) and the
conclusion is on another set{cancer, noCancer}. The information from the given set of values should be
propagated to the destination set of values as a new distribution of beliefs.

To deal with these situations, in [HL05b, HL05c, HL05d], we have further extended the approach to merg-
ing multiple pieces of uncertain information to situations where

5For details on PSA, see medic.med.uth.tmc.edu/ptnt/00000390.htm.

15

• evidence is specified at different levels of granularity on the same concept as textentries. We refer to
two pieces of this type of evidence assemantically homogeneous. In this case, a value in a coarse set
can be replaced by a set of values in a finer set.

• evidence is specified on inter-related concepts as textentries. We refer to two pieces of this type of
evidence assemantically heterogeneous. The PSA example above belongs to this category.

• evidence is assigned to heterogeneous subtrees involving multiple concepts. We refer to two pieces
of this type of evidence assemantically heterogeneous. For instance, if we have a set of values
measuring PSAs and another set measuring blood pressures, then the joint set from these two sets
says what PSA level and what blood pressure a patient has.

Using Dempster-Shafer theory, we can harness Dempster’s rule of combination that allows for the combi-
nation of two or more uncertainty distributions [HL05a, HL05b, HL05c, HL05d]. This forms the basis of
a useful class of aggregation predicates with intuitive properties.

3.2.3 Reasoning about inconsistency

Comparing heterogeneous sources often involves comparing conflicts. Suppose we are dealing with a
group of clinicians advising on some patient, a group of witnesses of some incident, or a set of newspaper
reports covering some event. These are all situations where we expect some degree of inconsistency in
the information. Suppose that the information by each sourcei is represented by the setΦi. Each source
may provide information that conflicts with the domain knowledgeΨ. Let us representΦi ∪ Ψ by ∆i for
each sourcei. Now, we may want to know whether one source is more inconsistent than another — so
whether∆i is more inconsistent that∆j — and in particular determine which is the least inconsistent of
the sources and so identify a minimal∆i in this inconsistency ordering. We may then view this minimal
knowledgebase as the least problematical or most reliable source of information.

When an intelligent agent works with a set of information, beliefs, knowledge, preferences, ... expressed
in a logical form, the notion of informational content of a piece of information and the notion of amount of
contradiction are of crucial interest. Effectively, in many high-level reasoning tasks one needs to know what
is the amount of information conveyed by a piece of information and/or what is the amount of contradiction
involved with this piece of information. This is particularly important in complex information about the
real world where inconsistencies are hard to avoid.

While information measures enable us to say how “valuable” a piece of information is by showing how
precise it is, contradiction measures enable us to say how “unvaluable” a piece of information is by showing
how conflicting it is. As joint/conditional information measures are useful to define a notion of pertinence
of a new piece of information with respect to an old one (or more generally for a set of information),
joint/conditional contradiction measures can be useful to define a notion of conflict between pieces of
information, that can be useful for many applications. These two measures are to a large extent independent
of one another, but needed in numerous applications.

Five key approaches to measuring inconsistent information are: Consistency-based analysis that focuses
on the consistent and inconsistent subsets of a knowledgebase [Hun04]; Information theoretic analysis that
is an adaptation of Shannon’s information measure [Loz94]; Probabilistic semantic analysis that assumes a
probability distribution over a set of formulae [Kni01, Kni03]; Epistemic actions analysis that measures the
degree of information in a knowledgebase in terms of the number of actions required to identify the truth
value of each atomic proposition and the degree of contradiction in a knowledgebase in terms of the number
of actions needed to render the knowledgebase consistent [KLM03]; and model-theoretic analyses that are
based on evaluating a knowledgebase in terms of three or four valued models that permit an “inconsistent”
truth value [Hun02b, Hun03]. Whilst inter-relationships between these approaches are yet to be fully

16

established, it is clear they offer a range of formalisms that can be harnessed via a knowledgebase for
evaluating sources of information prior to merging.

Having some understanding of the “degree of inconsistency” of a structured report can help in deciding how
to act on it. Moreover, inconsistencies between information in a structured report and domain knowledge
can tell us important things about the structured report. For this we use a significance function to give
a value for each possible inconsistency that can arise in a structured report in a given domain [Hun05].
We may also use significance in the following ways: (1) to reject reports that are too inconsistent; (2) to
highlight unexpected information; (3) to focus on repairing significant inconsistencies; and (4) to monitor
sources of information to identify sources that are unreliable.

3.3 A role for description logics?

As we have already seen, description logics have been used both to provide a formal semantics for the kind
of knowledge captured in hierarchies of classes and individuals, and to enable reasoning over those hier-
archies. Because these hierarchies are themselves knowledgebases it is natural to ask whether description
logics have a role to play in the kind of knowledgebased approach to merging that we are discussing. The
answer is: yes, but at least for most applications, it only provides a fraction of the knowledge needed. This
becomes apparent when we consider the kinds of reasoning that description logics facilitate. The main
kinds of reasoning fall under the following headings.

Classification This is the positioning of a new concept in the correct place in the hierarchy, that is, below
the most specific concept that subsumes the new concept, and above the most general concept that
the new concept subsumes.

Instance checking This is the verification that a given individual is an instance of a specified concept.

Knowledgebase consistencyThe verification that every concept in the knowledgebase has at least one
individual.

Realization The determining of the most specific concept that a given individual is an instance of.

Least Common SubsumerThe least common subsumer of a set of concepts is the most specific or least
general concept in the class hierarchy that subsumes all of them.

It may be, then, that since the hierarchies associated with description logicsare knowledgebases, and
description logics can be used to reason about those hierarchies, description logics could play some role in
the kind of merging we envisage. But given the kind of reasoning that we anticipate will be exploited in
merging information (preferences over sources, voting, allowable ranges, etc.), that role will inevitably be
limited. In order to implement these kinds of reasoning, a knowledgebase for merging will have to contain
far more than the class hierarchies used with description logics.

The most obvious example of reasoning involved in merging where a description logic would be applicable
is that involved in finding what we have termed theleast upper boundof a number of concepts, and what
is often referred to as finding the least common subsumer; that is, the most specific concept that is general
enough to subsume the diverging concepts in the input reports. This kind of reasoning would seem to offer
a reasonable approach to merging conflicting concepts that fell under a class hierarchy. However, even in
this case there are many other ways of resolving such conflicts and a knowledge engineer may well deem
another approach more appropriate for a particular application. And moreover, there are many other kinds
of conflicts that cannot be resolved in this way (e.g. conflicts concerning numerical values). In conclusion,
an ontology is only one kind of knowledgebase. By itself it is unlikely to be sufficient to resolve all of the
conflicts encountered in merging information.

17

3.4 How easy is it to construct a knowledgebase?

As a general remark, the application-specific, or domain-specific, nature of the approach to merging that
we advocate avoids the well-known obstacles to constructing broader knowledgebased systems for tasks
such as decision-support or planning. More specifically, there are two further reasons that help to mitigate
the problems involved in constructing a knowledgebase.

First, for many applications much of the domain knowledge required is already readily available in a
usable, or near usable, form. For example, in an application in bioinformatics (see Examples 3.9 and 3.10)
groups of protein domains were to be grouped together by finding the most specific functional annotation
that was general enough to include all their individual molecular functions. The hierarchical information
required to do this already existed in the Gene Ontology (GO) database. A very simple Prolog program
transformed the relations into Prolog facts,6 creating around twenty thousand facts, including both parent-
child relationships using the GO accession numbers, and further facts for the actual functional annotation
associated with each number. In addition, it required a few simple rules to extract from those facts the
ancestor terms (their “lineages”) for each term in the hierarchy, and to use those lineages to find the first
common ancestor for a group of protein domains (that is, the common ancestor with the greatest depth, or
least height, in the hierarchy).

Second, as we have seen, much of the information in the knowledgebase can be seen as generic, and obvi-
ously the generic knowledge is simply reusable across applications. For these reasons, then, constructing a
knowledgebase for use with an application does not necessarily involve a large scale exercise in knowledge
engineering. As we have indicated in Section 3.2, we can also draw on a large literature in knowledge
representation and reasoning for defining generic knowledge. We have harnessed this for reasoning with
time and events and for reasoning with uncertainty. There are many further types of knowledge we can
consider, such as for spatial reasoning and for legal reasoning.

If merging information is to be achieved by using background information in a knowledgebase, the question
arises how the information to be merged is going to be used to query the knowledgebase. We propose the
use of fusion rules, and it is to a discussion of this technology that we now turn.

3.5 Controlling knowledgebased merging using fusion rules

So far with our presentation of knowledgebased merging, we have described how a knowledgebase can
be used to answer queries that are relevant to merging structured reports. However, we need to consider
an overarching mechanism for controlling knowledgebased merging. This mechanism needs to take in-
formation from the input information (in the form of a set of structured reports), and produce the output
information (in the form of a structured report).

In our approach to merging structured reports, we draw on domain knowledge to help produce merged
reports. The approach is based on fusion rules7 (using FusionRuleML [HS03a]). These rules are of the
form α ⇒ β, where ifα holds in the knowledgebase (i.e. it is a conjunction of queries that succeed in the
knowledgebase), thenβ is an instruction that needs to be undertaken in the process of building a merged
news report.

Example 3.5 Consider the following fusion rule which we will use with the top two structured reports
given in Example 1.1.

Conjunction(//opinionpoll/source, X) ⇒ AddText(X, pollofpolls/sources)

6Alternatively, the Prolog knowledgebase could simply query the SQL database as required. On this architecture, the “low level”
facts would remain in the database, while the Prolog knowledgebase would be restricted to the “higher level” reasoning.

7Examples of fusion rules together with XML representation are available at www.cs.ucl.ac.uk/staff/a.hunter/frt

18

The notation//opinionpoll/source is a schema variable that is ground by a list of textentries. Each of
these textentries is obtained from theopinionpoll/source branch of each of the structured reports to be
merged. In this example, the list is[Mori, Gallup]. So the ground version of the fusion rule is as follows.

Conjunction([Mori, Gallup], X) ⇒ AddText(X, pollofpolls/sources)

Assuming that the knowledgebase incorporates appropriate clauses, theConjunction([Mori, Gallup], X)
query succeeds withX being ground toMori and Gallup. Since all the conditions of the fusion rule hold,
the following actionAddText(Mori and Gallup, pollofpolls/sources) needs to be undertaken as
part of the process of building the merged report. This action is of the formAddText(Textentry, Branch)
and it requires thatTextentry is the textentry added as the leaf onBranch. We callBranch the target
constant.

Fusion rules are thus comprised of condition literals (the antecedent of the rule) and action literals (the
consequent). A single rule may have zero or more conditions, and one or more actions. Both conditions and
actions are themselves comprised of schema variables, logical variables, and constants. Schema variables
specify both what information is to be extracted from an input report, and from which report it is to be
extracted. This information is then used to instantiate the fusion rules prior to querying the knowledgebase.
Because either individual reports or the whole set of input reports may be specified as the source, schema
variables are of two types: set variables and singleton variables. Constants take constant values which
either denote targets in the merged report to which text entries and subtrees are to be added, or numerical
values specifying, for example, voting thresholds or the number of nodes to be added to the output report,
etc. Finally, logical variables indicate where the knowledgebase is expected to provide a binding that may
be used either as input to a subsequent condition, or as output for the merged report.

To merge a set of structured reports, we start with the knowledgebase and the information in the news
reports to be merged, and apply the fusion rules to this information. For a set of structured reports and a
set of fusion rules, we attempt to ground each fusion rule with textentries or subtrees from the structured
reports, and then check whether all the conditions of each ground fusion rule are implied by the background
knowledge, and if they are, then the ground actions of the rule are added to the actionlist (a list of actions
that specify how the merged report should be constructed).

The FusionEngine is the software that is responsible for taking each fusion rule in turn, grounding the
schema variables with the required information from the input reports, and posting the resulting queries to
the knowledgebase, and if all the conditions succeed, then posting the resulting actions to the ActionEngine.
The ActionEngine is the software responsible for taking the actions and building the merged reports. The
ActionEngine is implemented to handle a range of actions including the following.

1. Initialize(φ(ψ1, .., ψn)) whereφ(ψ1, .., ψn) is called a skeleton constant. The intended action is
to start the construction of the merged structured news report withφ(ψ1, .., ψn) defining the basic
structure. So the root of the merged report isφ, and by recursionψ1 and .. andψn define the subtrees
of the merged structured report.

2. AddText(T, φ1/../φn) whereT is a textentry, andφ1/../φn is a branch constant. The intended action
is to add the textentryT as the child to the tagnameφn in the merged report on the branchφ1/../φn.

3. AddNode(N, φ1/../φn) whereN is a tagname for a node, andφ1/../φn is a branch constant. The in-
tended action is to addN as the child to the tagnameφn in the merged report on the branchφ1/../φn.

A fusion system for merging structured reports for a particular domain incorporates software modules
including a FusionEngine and an ActionEngine. It also incorporates a set of fusion rules that has been
defined for the application domain together with an appropriate knowledgebase. The basic architecture for
a fusion system is given in Figure 1.

19

Heterogeneous Input Reports (XML)

?

Background Knowledgebase

?

FusionEngine

?

ActionEngine

?

Fusion Rules (XML)�

Merged Output Report (XML)

Figure 1: The basic architecture for a fusion system that merges information in the heterogeneous input
reports using a knowledgebase and fusion rules. The FusionEngine and ActionEngine modules are imple-
mented in Java. The fusion engine executes a set of fusion rules (an XML file containing the fusion rules
marked up in FusionRuleML [HS03a]), by grounding the fusion rules with textentries from the structured
reports, and then checks whether all the conditions of each ground fusion rule are implied by the knowl-
edgebase and, if they are, then the ground actions of the rule are added to the actionlist (a list of actions that
specify how the merged report should be constructed). The ActionEngine executes the actionlist to build a
merged report.

20

A comprehensive introduction to fusion rules together with a number of worked examples of their exe-
cution in a fusion system is given in [HS04a]. In the following, we consider some of the features of a
well-engineered set of fusion rules. In particular, we address the question: how difficult is it to engineer
a correct set of fusion rules for an application? The aim of the following is to address some practical is-
sues regarding the use of fusion rules. We focus on these questions in order to consolidate our argument
that knowledgebase merging using fusion rules is a viable and useful approach to merging heterogeneous
structured reports.

3.5.1 Foundational rules

We turn now to a discussion of what constitutes a well-engineered set of rules and how easy is it to produce
such a set. First, we discuss why some rules ought to have a privileged status. We classify rules with
this status asfoundational. Their privileged status consists in the fact that if any foundational rule fails
to fire, then no merged report is to be constructed. We may say, then, that foundational rules have a
veto over the production of a merged report. There is, however, one exception to this. If a fusion rule is
deemed foundational because it contains an Initialize action (see below), the first such rule to fire causes
any subsequent foundational rule with Initialize actions to be disabled.

There are two reasons why a rule is designated as foundational: (1) It contains an action whose role is
to initialize the construction of the merged report. At the very least this will specify the root node of the
report. We will call such actions Initialize actions. (2) It contains some condition whose success is essential
to the integrity of the merged report. In the first case, if a rule containing an Initialize action were to fail,
then we would not want any other rules to execute because without this initial skeleton there would be no
merged report to which other rules could add text, nodes, etc.

In the second case, the reason why rules involving certain conditions may be given foundational status is
that the failure of those conditions is deemed (by the rule engineer) to fatally threaten the integrity of the
merged report. In the case of a set of rules for merging weather reports, for example, if the input reports
were not for the same geographical location (city, region, country), or were not for the same time period,
or were not from accepted sources, then (in most cases at any rate) there is simply no point in trying
to construct a merged report (what point is there in merging today’s weather in New York and today’s
weather in Tokyo, or yesterday’s weather in London and tomorrow’s weather in Rome?). By contrast, if
the windspeeds, temperatures, humidities, etc., fail to be similar enough to be included as is in a merged
report, then typically the conflict will be resolved by applying some aggregation function (e.g. voting,
preference over sources, etc.) and the result will be added to the merged report. And even if it was not
thought useful to do this, that should not prevent a merged report from being constructed that included other
information on, for example, air pollution or visibility. Hence rules involving these input report elements
would usually be considered to be optional, not foundational.

A well engineered set of rules must then contains at least one foundational rule. Because the success of
these rules is in one way or another essential to the construction of a merged report, all foundational rules
mustprecedeall non-foundational rules.

The requirement for some rules to have foundational status results, in part, from the nature of the informa-
tion being merged. An input report can be viewed as being concerned with an entity in some loose sense
(a weather report, a protein domain, an opinion poll, etc.) and a number of attributes of that entity. Some
elements in the report serve to identify the entity in question, whilst other elements serve to express the
attributes of that entity. A weather report, for example, might have elements for source, date, and loca-
tion, serving to individuate that report, whilst it might also have elements with textentries for temperature,
humidity, and so on, specifying the attributes of that weather report.

The significance of this distinction is that rules that are concerned with these two types of report elements
can be viewed as having different functions. Rules that deal with elements that individuate reports serve

21

to determine if merging should take place; if we do not have the right kind of entities, a pre-condition for
merging does not obtain. Hence, conditions dealing with such elements tend to be placed in foundational
rules. By contrast, rules that deal with the attributes of the entities being merged serve to determine the
substantive content of the merged report. If these attributes are in conflict (conflicting reports for today’s
weather, etc.) then some rules will fail. But that is not a reason for not merging; rather, that is an important
fact that must be dealt with and included in the merged report. Hence, rules dealing with this second type
of report element tend to be given optional status.

It should be noted that sometimes it is not necessary to formulate rules for the individuating or identifying
elements of input reports. This is because some form of preprocessing or preselecting of the input data
has taken place. In the case of merging protein domains so as to find functionally similar subgroups, for
example, the set of input data all come from the same superfamily, so the rules can simply go ahead and
attempt to merge the domains. Similarly, if we wished to rely on the user to make sure that all the input
weather reports were for the same time and place, and were all from accepted sources, then no rule would
be required to check this. This is not to say, however, that the idea of a foundational rule goes by the board;
this special status for a rule is still required because of the need of every rule set to contain a rule with an
Initialize action.

3.5.2 Rules with Initialize actions

There is no reason why a set of rules should not contain more than one rule with an Initialize action, but for
obvious reasons — we cannot build a merged report with more than one root node — only one such action
should be executed for any set of input reports.

This imposes the following five constraints on the use and occurrence of Initialize actions: (1) Every set of
rules must contain at least one rule with an Initialize action. (2) A single rule may contain at most only one
Initialize action. (3) Such actions must be thefirst action in a rule. Quite often, for example, a single rule
contains an Initialize action followed by several actions adding text or nodes to the skeleton thus created.
Clearly, if the order of these actions was reversed, then some actions would be seeking to add text and
nodes to a skeleton that does not yet exist. (4) For a similar reason, rules with Initialize actions should
precede all other rules. (5) For any given set of input reports, at most only one rule with an Initialize action
should fire. The conditions of these rules should thus be engineered accordingly.

3.5.3 Grouping rules into subsets

We turn now to a discussion of how a set of rules should be constructed if they are to have the correct
logical behaviour with respect to a set of input reports. The fact that for a given set of rules and for any set
of input reports, at most one rule with an Initialize action should fire brings it out that, although rules are
individually numbered, the rules in a well-engineered rule set should not act in isolation from each other.
Certain rules bear close relations to some rules that they do not bear to others. In particular, we formulate
the following condition:

Condition 1: Rules whose actions are concerned with the same merged report element should be such that,
for any given set of input reports,at most one such rule should be fired.

The reason for this is obvious enough; we cannot have two rules acting on the same merged report element
since the second would simply overwrite the result of the first.

However, whether or not this condition is violated by a group of rules whose actions all deal with the same
output report element cannot be determined simply by inspecting the logical form of their conditions. For
example, two rules (whose actions deal with the same merged report element) with conditions of the form
(1) p andq , and (2)p andr , may seem to violate this condition in that both sets of conditions could be

22

true, given a suitable set of input reports. However, it may be that, given the background knowledge in the
knowledgebase, wheneverq is truer is false, and vice versa, so that in fact there is no possibility of both
rules firing.

It should be noted, however, that it is not the case that in such a grouping of rules (whose actions all concern
the same output report element), that for any set of input reports,at least one rule should be fired. Rather,
the conditions of a group of rules that belong together are formulated so that they can allfail. Intuitively,
this is desirable behaviour. If none of the input reports has a textentry for the report element with which
the conditions of the rules in the group are concerned (in this case the schema variable, if there is one,
would be ground by a list ofnull s), we want no action to be taken, and so all the rules in the group should
fail. For this reason negation-as-failure is in general not employed in formulating conditions for groups of
rules (though of course it is frequently used with predicates in the Prolog knowledgebase), purpose-built
predicates being defined instead. As an instance of this consider Example 3.6: if the set variable that is the
argument toEquivalentTerms in rule 12 is ground with a list of textentries that are allnull, then the
predicate will fail. This means, of course, that wereNOT EquivalentTerms to be used with the same set
variable as an argument in rule 13, it would succeed, leading to the risk that if other conditions in the rule
were also to succeed, anull textentry would be added to the merged report. As this is deemed undesirable,
a new predicate,NotEquivalentTerms is defined that also fails if the set variable is ground with a list
of textentries that are allnull. Hence, if no input report contains a tag fortoday neither will the output
report.

Example 3.6 A pair of rules for merging weather reports dealing with the entry for today’s weather. The
rule code indicates that these have been registered as the twelfth and thirteenth rules in the rulebase. The
status of both is optional (i.e. not foundational). Rule 12 says that if all the textentries for today’s weather
are from the same equivalence class, the preferred term from that class is selected and that text is added
to thetoday tag in the merged report. If the first condition of rule 12 fails, then, provided that the values
of the textentry variables for the report elementtoday are not allnull, the first condition of rule 13 will
succeed. The second condition simply constructs the disjunction of each textentry for today’s weather from
the set of input reports (duplicates and nulls being removed), and the action adds the disjunction as the
textentry for the branchweatherreport/today.

Rulecode is 12 (Status = optional)

EquivalentTerms(//weatherreport/today)
AND PreferredTerm(//weatherreport/today, X)
IMPLIES AddText(X, weatherreport/today)

Rulecode is 13 (Status = optional)

NotEquivalentTerms(//weatherreport/today)
AND Disjunction(//weatherreport/today, X)
IMPLIES AddText(X, weatherreport/today)

Of course it is possible to group rules into subgroups in other ways. In particular, it may seem natural to
consider some rules as belonging to a single subgroup if they share some of their conditions, or if they have
conditions which stand in the relation of negation. One might want to group rules in this way because there
is, as far as we can see, no reason why the actions of rules in such subgroups should have to be concerned
with the same output report element.

In the simplest case, for example, there is no reason why we might not have two rules of the form: (1) Ifp
succeeds then execute actionA1 ; (2) If not p succeeds then execute actionA2 , whereA1 andA2 concern
different output report elements. Of course, in these sort of rule groupings, if more than one rule fires for
any given set of input reports, there is no danger of later rules in the grouping overwriting the same output

23

report element. However, it is presumably still the intention of the rule engineer that at most one rule in
such groupings should succeed, and that if both actions were to be executed for a given input, the logical
integrity of the merged report would be violated.

A problem in determining which rules belong to this kind of subgroup is deciding how many conditions
the rules should share. Clearly they need not share all of them. The following seems a reasonable sub-
grouping: (1) Ifp succeeds andq succeeds, then execute actionA1 ; (2) If p succeeds andq fails, then
execute actionA2 ; (3) If p fails andr succeeds, then execute actionA3 ; and (4) If p fails andr fails,
then execute actionA4 . However it is also clear that merely sharing one condition is not a sufficient con-
dition for us to group some fusion rules together, for it is clear that in some cases such a condition is too
weak. This is because of the use of logical variables in the formulation of rules. The same symbol, for
exampleX, might occur in many different rules but with different denotations, with the result that, at least
syntactically, the same condition can appear in rules that clearly do not belong together. For example, in
a set of rules that merge conflicting textentries in weather reports by using weighted voting, the condi-
tion weightedpopularsharing(//weatherreport/source, X, Y) occurs in rules dealing with today’s
weather, pressure (direction of change), air visibility, and sunindex. It may be that such groupings can be
delimited, instead, by taking into account the presence of schema variables indicating with which input
report element the rules are concerned, though the widespread occurrence of variables denoting the source
of a report (as in the condition just mentioned) makes this difficult.

3.5.4 Completeness of rules

Whichever way we choose to group rules into subgroups there is a further problem that needs to be avoided.
Suppose we have two rules in a subgroup with conditions of the form (1)p andq , and (2)not p. In this
case the first condition succeeds and at most one of the pair can fire, since if the first rule’s conditions
succeed the second rule’s must fail, and vice versa. But ifp succeeds andq fails neither rule will fire and
the merged report may well be lacking information it ought to contain. For example, there may be a node in
the merged report with no textentry. However, whether another rule should be added (with conditionsp and
not q) depends, once again, on the knowledgebase. If the knowledgebase is such that ifp succeedsq must
also succeed then the rules are satisfactory as they stand. It seems then, that there is a further condition on
an adequately engineered set of rules:

Condition 2: For any input set of reports (excepting the possibility that all the schema variables are ground
to null by the input reports), and for each subgroup of rules,at least one rule should fire.

However, whether or not this condition is violated by a group of rules cannot be determined simply by
inspecting the logical form of their conditions because, as already mentioned, the knowledgebase also
plays a crucial role.

3.5.5 How many conditions should a rule have?

In this subsection, and the two following, we consider some further factors that determine whether a set of
rules is well-engineered, namely, the number of conditions in a rule and the number of rules in a rule set,
and the order of actions within a rule and the order of rules in a rule set.

It is instructive to return to the case of the subgroup with two rules whose conditions were of the form: (1)
p andq , and (2)not p andr . This case might give rise to the question: if the knowledgebase makes it
clear that wheneverp succeedsq must also succeed, then why bother to addq as a further condition to the
first rule? There is of course a considerable amount of leeway as to what gets put into the rules and what
gets put into the knowledgebase. In Example 3.7 the predicatePreferredTerm selects the preferred term
from amongst a list of input terms that have already been determined by the first condition to belong to the

24

same equivalence class. Provided that the equivalence class is properly represented in the knowledgebase,
and provided that the textentries are not all null, it cannot fail. But it is clear that the computational work
involved in selecting the preferred term could have been incorporated into the work done in determining
whether or not the input textentries belong to the same equivalence class. If so, then the rules would have
had the simpler form as in Example 3.8.

Example 3.7 A pair of rules for merging weather reports dealing with the entry for today’s weather. Rule
12 says that if all the textentries for today’s weather are from the same equivalence class, the preferred
term from that class is selected and that textentry is added to thetoday tag in the merged report. If the first
condition of rule 12 fails, then, provided that the values of the textentry variables for the report element
today are not all null, the condition of rule 13 will succeed. The action of rule 13 uses a function to
add the disjunction of the input textentries as the textentry for the branchweatherreport/today in the
merged report.

Rulecode is 12 (Status = optional)

EquivalentTerms(//weatherreport/today)
AND PreferredTerm(//weatherreport/today, X)
IMPLIES AddText(X, weatherreport/today)

Rulecode is 13 (Status = optional)

NotEquivalentTerms(//weatherreport/today)
AND Disjunction(//weatherreport/today, X)
IMPLIES AddText(X, weatherreport/today)

As far as a rule’s conditions are concerned, then, the rule engineer faces a choice between, on the one hand,
making them as simple as possible and, on the other hand, making them more perspicuous or revealing
of their function. In the case of Examples 3.7 and 3.8, although the latter is simpler (and perhaps makes
clearer the logical relationship between the rules), the former surely makes it clearer how the information
is to be merged.

Example 3.8 A simplified version of the pair of rules from Example 3.7.

Rulecode is 12 (Status = optional)

EquivalentTerms(//weatherreport/today, X)
IMPLIES AddText(X, weatherreport/today)

Rulecode is 13 (Status = optional)

NotEquivalentTerms(//weatherreport/today, X)
IMPLIES AddText(X, weatherreport/today)

3.5.6 How many rules should a rule set have?

As a limiting case, it would of course be possible to deal with any application by formulating a single
rule, with a predicate name of, say,merge, taking as its arguments a set variable for each element in the
input reports. The knowledgebase would then have to be marginally more complex, having the extramerge
predicate in addition to those predicates dealing with individual input report elements. But there are serious
disadvantages with this approach.

25

First, it would not be possible to tell, simply by inspecting the rule, how the different report elements were
to be merged; that is, the rule itself would not specify how conflicts should be resolved — should conflicts
between textentries for today’s weather be settled by some form of voting, or by preferences over sources,
etc. Instead, the reader would have to determine this by inspecting the knowledgebase.

Second, the rule itself would likely be difficult to understand because an action must be included for each
output report element. Depending on the size of the ouput report, then, the single rule could be quite
unwieldy.

Third, and most seriously, it is much easier to change the aggregation predicate involved in merging the
textentries for a particular report element by editing a fusion rule than it is to recode part of the knowl-
edgebase. Suppose, for example, that we wish to resolve conflicts for today’s weather by using majority
voting rather than first-past-the-post voting. Using a normal set of fusion rules all this requires, assuming
the definitions for the predicates already exists in the knowledgebase, is the substitution of one predicate
name for another in the appropriate fusion rule.8 By contrast, even if the code for all the required aggre-
gation predicates exists in the knowledgebase, if there were only one rule, the subsidiary predicate dealing
with today’s weather would have to be recoded so that it called a different helper aggregation predicate.
Although such recoding is not difficult, editing a fusion rule is clearly much simpler.

What emerges from this are the advantages, where possible, of using more rather than less fusion rules
to input data into a knowledgebase. First, and as was the case with the number of conditions in a rule, it
makes it clearer than it would otherwise be what aggregation predicates are being used to merge conflicting
information. (Though to be sure, inspection of the knowledgebase is still required to appreciate the exact
definition being used.) And, second, given that the knowledgebase already contains a library of aggregation
predicates, changes as to which predicates are to be used are more easily effected by editing fusion rules
than by editing the knowledgebase itself.

Another factor that may determine the number of fusion rules is computational efficiency. Example 3.9
is from a case study in bioinformatics where the objective is to find subsets of a set of protein domains
that exhibit varying degrees of functional similarity. This similarity is to be determined on the basis of an
ontology of molecular functions that had been incorporated into the knowledgebase. Because this ontology
is comprised of a class hierarchy of molecular functions, finding functionally similar subgroups is achieved
on the basis of locating subgroups whose least upper bound (that function in the hierarchy that is general
enough to include all the functions in a subgroup, but that is no more general than necessary) is deemed
sufficiently specific. In addition to finding these functional subgroups, the rules were also to produce a
list of the key words and phrases belonging to the functional annotations true of all of the proteins in the
subgroups. There were, then, two distinct tasks for the rules, and so it would be natural to assign each
task to a separate rule. However, because finding the keywords and phrases for a subgroup is a matter of
finding the keywords and phrases that belong to the annotations for the least upper bound, and to all of its
superclass molecular functions, producing this information in a separate rule would have meant in large
part repeating the computations required by the first rule. Hence, for reasons of efficiency at runtime, the
two tasks were combined into a single rule.

Looking at the matter in general terms, then, there seem to be competing considerations as to how many
rules a rule set would require. But given a particular application — a particular set of input reports —
can we say with any confidence how many rules are required of a well-engineered set? A crude way of
estimating this would be to make the following three assumptions: (1) That we are interested in every
element in the input reports (that is, none of the information is irrelevant to our interests). (2) That in
determining the structured report to be output, the information contained in each input report element is
to be treated independently of the information contained in the other input elements. And (3), that we
will need a pair of rules to deal with each input report element, one specifying what action to take if
a certain condition holds, the other specifying what action to take if the condition fails. If these three

8We have implemented in Java a fusion rule editing tool, with a graphical user interface, that would allow changes such as this to
be made simply by selecting a different predicate name from a dialog combo box. See www.cs.ucl.ac.uk/staff/a.hunter/frt for details.

26

assumptions hold, then we can say that the total number of rules will be roughly twice the number of input
report elements. And, indeed, in both the bioinformatics and the weather reports case studies that we have
undertaken, this is what we find. In the former case mentioned in Example 3.9, the input reports concerning
individual protein domains had in effect only one attribute, the functional annotation accession number for
that domain (see Example 3.10); as a result, the rule set for merging a group of protein domain reports
contained only two rules: one to deal with the case where the domains were similar enough to be merged,
and the second to deal with the case where they were not.

Example 3.9 A rule from a bioinformatics case study that selects from a family of protein domains sub-
groups that are functionally similar. The first condition finds a list of the subgroups that are functionally
similar, and uses it to bind the logical variableX. It also counts the number of such subgroups (binding
the variableN), so that the first action knows how manyfunctionalgroup elements to add to the merged
report. The second condition finds the least upper bound for each subgroup (this is the function that is
general enough to include all of the functions of the protein domains in the subgroup, but that is no more
general than necessary) and uses the list of these common functions to bind the variableY. The third condi-
tion exploits this list of common functions to find the key words and phrases from amongst those functional
annotations that apply to all protein domains in the subgroup — i.e. from amongst the annotations of the
least upper bound and its superclasses in the Gene Ontology class hierarchy.

Rulecode is 1 (Status = foundational)

SelectFunctionalGroups(//protein/function, //protein/name, X, N)
AND GetLeastUpperBounds(X, Y)
AND GetKeywords(Y, Z)
IMPLIES Initialize(biofusionanalysis)
AND RepeatAddNode(functionalgroup, N, biofusionanalysis)
AND RepeatAddNode(selectedproteins, 1, biofusionanalysis/functionalgroup)
AND RepeatAddText(X, biofusionanalysis/functionalgroup/selectedproteins)
AND RepeatAddNode(commonfunction, 1, biofusionanalysis/functionalgroup)
AND RepeatAddText(Y, biofusionanalysis/functionalgroup/commonfunction)
AND RepeatAddNode(keywords, 1, biofusionanalysis/functionalgroup)
AND RepeatAddAtomicTrees(Z, keyword, biofusionanalysis/functionalgroup/keywords)

TheRepeatAddNode(Tagname, Number, Branch) predicate specifies the action that the branch given by
Branch is extended by a number of children, each of which has the tagname given byTagname, and the
number of these children is given byNumber. TheRepeatAddText(List, Branch) predicate specifies the
action that the branch given byBranch is extended by a number of children where there is one child per
textentry inList. TheRepeatAddAtomicTree(ListofLists, Tagname, Branch) predicate specifies the
action that for the ith occurrence of the branch given byBranch is extended by theith list of textentries
in the list of lists of textentries inListofLists as follows: For each occurrence of a branch of the form
Branch, thejth extension of that occurrence of the branch is a child node with tagname given byTagname
followed by a leaf node and the leaf node is thejth textentry in theith list of textentries (inListofLists).

Example 3.10 An example of an individual protein report that could serve as part of the input for the rule
in example 3.9. Thename tag serves to identify the entity being merged, a protein domain. Thefunction
tag serves to express the single attribute of this entity, its molecular function.

〈protein〉
〈name〉 1c4tC0 〈/name〉
〈function〉 GO : 0004149 〈/function〉

〈/protein〉

In the weather reports case study, by contrast, the input reports contained eighteen separate elements (see
Figure 2 and Example 3.11). The elements for source, location, and date in effect identify the individual

27

〈!ELEMENT weatherreport(source, date, city, today, temp,
windspeed, relativehumidity, daylighthours,
pressure, visibility, visibilitydistance,
airpollutionindex, sunindex, sunindexrating,
dewpoint)〉

〈!ELEMENT temp(max, min)〉
〈!ELEMENT daylighthours(sunrise, sunset)〉
〈!ELEMENT pressure(absolutevalue, directionofchange)〉
〈!ELEMENT α(#PCDATA)〉

Figure 2: A condensed version of the DTD for the weather reports whereα is instantiated
with any of source, date, city, today, max, min, windspeed, relativehumidity, sunrise,
sunset, absolutevalue, directionofchange, visibility, airpollutionindex, sunindex, and
dewpoint.

reports, and so were combined into a single, foundational rule. The remaining fifteen elements were merged
independently of each other, and so required two rules each. Thus a total of thirty one rules were required
for this application, and that number remained the same no matter which of around a dozen different
aggregation functions were used.

Example 3.11 An example of an individual weather report from the weather reports case study that con-
forms to the DTD in figure 2.

〈weatherreport〉
〈source〉 BBCi 〈/source〉
〈date〉 10/12/02 〈/date〉
〈city〉 London 〈/city〉
〈today〉 cloudy 〈/today〉
〈temp〉

〈max〉 3C 〈/max〉
〈min〉 − 1C 〈/min〉

〈/temp〉
〈windspeed〉 11mph 〈/windspeed〉
〈relativehumidity〉 63% 〈/relativehumidity〉
〈daylighthours〉

〈sunrise〉 7.13 〈/sunrise〉
〈sunset〉 15.51 〈/sunset〉

〈/daylighthours〉
〈pressure〉

〈absolutevalue〉 1021mb 〈/absolutevalue〉
〈directionofchange〉 rising 〈/directionochange〉

〈/pressure〉
〈visibility〉 good 〈/visibility〉
〈airpollutionindex〉 3 〈/airpollutionindex〉
〈sunindex〉 1 〈/sunindex〉
〈dewpoint〉 2C 〈/dewpoint〉

〈/weatherreport〉

But in some cases these assumptions do not hold. The fact is that what determines the number of rules
for an application is simply what we want todo with the information in the input reports. There may be
cases where, despite the fact that the input reports contain a lot of elements that describe the attributes of
the report entity, the purpose of the application is to use all of those attributes together to do one thing. In
cases such as this, the number of fusion rules required will be small.

An example of a case study with a small number of fusion rules is an application for merging information
from individual reports containing clinical information about patients being treated for breast cancer (see
Example 3.12). Besides a unique identifier, each report contained twenty six elements recording various

28

clinical attributes of each patient. Yet the set of rules to deal with these reports contained only two rules.
This was because the purpose of “merging” a set of such reports was to test the hypothesis that three of
these attributes could be used, when combined in various ways, as new indicators of a patient’s prognosis.
This test was to be done by using six of the other attributes to classify each patient’s prognosis as “Best”
or “Worst” according to recognized criteria, and then to use the three further attributes to arrive at an
additional classification, so that the two classifications could be compared. Doing this required using all
of this information from each patient to produce a single result — could three of the attributes be used to
provide a reliable indicator of the patient’s prognosis? Hence, only a single rule was required.

Example 3.12 An example of an individual patient report of the type used in a clinical case study. Fictional
data has been substituted.

〈patient〉
〈id〉 B05− 5566; 〈/id〉
〈type〉 Lob 〈/type〉
〈size〉 28mm〈/size〉
〈grade〉 2〈/grade〉
〈LVI〉 Yes〈/LVI〉
〈Ln〉 0/14〈/Ln〉
〈npi〉 5.8〈/npi〉
〈ER〉

〈positive〉 3 〈/positive〉
〈total〉 105 〈/total〉
〈percent〉 2.86% 〈/percent〉

〈/ER〉
〈PR〉

〈positive〉 78 〈/positive〉
〈total〉 152 〈/total〉
〈percent〉 51.31% 〈/percent〉

〈/PR〉
〈Ki67〉

〈positive〉 410 〈/positive〉
〈total〉 480 〈/total〉
〈percent〉 85.41% 〈/percent〉

〈/Ki67〉
〈Mcm2〉

〈positive〉 300 〈/positive〉
〈total〉 300 〈/total〉
〈percent〉 100% 〈/percent〉

〈/Mcm2〉
〈G94〉

〈positive〉 38 〈/positive〉
〈total〉 294 〈/total〉
〈percent〉 12.92% 〈/percent〉

〈/G94〉
〈G95〉

〈positive〉 93 〈/positive〉
〈total〉 510 〈/total〉
〈percent〉 18.23% 〈/percent〉

〈/G95〉
〈HER2〉 − 〈/HER2〉
〈history〉 chemo 〈/history〉

〈/patient〉

3.5.7 Rule order and action order

Rules are executed by the action engine in the order in which they occur in the rule set. The fact that the
output report takes the form of a tree places some constraints on the order of the rules. In particular, all
rules with Initialize actions must precede all rules lacking such actions so that there is a tree of some sort
to which those other actions can add a text entry or a subtree.

But more generally, if a particular action adds a text entry or a subtree to a target node in the output report,

29

then the ordering of the rules must be such as to ensure that the target node is already present in the output
report as so far constructed. Provided, however, that this condition is met, there is little significance to the
ordering of the rules beyond the ordering of elements which the rule engineer seeks in the output report; if,
for example, we want the entry fortemperature in the output report to precede that forhumidity, then
the rules should occur in a similar order.

Moreover, within a particular subgroup of rules (that is, a group of rules all of whose actions deal with
the same output report element) there also seems little significance to the order of the rules: for example,
although it may be natural for a pair of rules whose condition literals aresimilartemperatures and
notsimilartemperatures to occur in that order, there is no reason, as far as their conditions are con-
cerned, why the order should not be reversed. What is important is not their order but that, for any set of
input reports, the conditions and the knowledgebase are such that at most one rule in this pair should be
fired. In fact, as far as the production of a correct output report is concerned, it is not even essential that
all the rules in a particular subgroup occurconsecutively, though it is obviously confusing to their human
reader if the two rules concerned with temperatures are separated by a pair of rules dealing with humidity.

In general, then, there is a good deal of flexibility, both in the orderingbetweensubgroups of rules in a rule
set, and in the orderingwithin subgroups of rules.

The case is somewhat different for actions. In most cases, though not all, the order of actions in a single
rule is significant. Where the order is significant this is for the same reason that the order of rules can be
important: if an action adds a text entry or a subtree to a target node, then that target must already be in the
output report tree. That is why, for example, if a rule contains an Initialize action, that action must be the
first action of the rule. The reason why order is more often important for actions than for rules is simply that
when a rule has more than one action, generally (though not always), that will be because one action will
indeed be adding a new node to a report that will be the target node for other actions. A good example of
this is the rule from the bioinformatics case study given in Example 3.9. In this rule, fourRepeatAddNode
actions add nodes to the output report that are targets for subsequentRepeatAddNode, RepeatAddText or
RepeatAddAtomicTrees actions. EachRepeatAddNode action must thus precede theRepeatAddNode,
RepeatAddText or RepeatAddAtomicTrees action of which it provides the target node or nodes. The
order of these actions is not, however, absolute: after theInitialize action, all of theRepeatAddNode
actions could have preceded all of the other actions.

3.5.8 Algorithm for grouping rules into subgroups

Having investigated some of the conditions required of a well-engineered set of rules, we turn to an inves-
tigation of what help in the form of automated support can be given to the rule engineer to check if these
conditions are satisfied.

We have shown that if a set of rules is to have the correct logical behaviour with respect to a set of input
reports then that set must first be decomposed into disjoint subsets — subsets whose rules have to work
together such that they conform to Conditions 1 and 2.

The algorithm for separating a set of rules into subgroups is as follows (see Figure 3). While the set of
rules contains more than one rule do the following: remove the first rule from that set and add it to a new
subgroup. Extract the merged report node with which the last action of that rule is concerned to use as a
test. Then, loop over the remaining rules in the rule set. Extract the node from the last action of each rule
and compare that node with the node extracted from the rule in the new subgroup. If they are the same,
then delete that rule from the rule set, and add to the new subgroup. When comparisons have been made
with all of the remaining rules, check the size of the new subgroup; if it is greater than one, add it to the list
of subgroups.

This algorithm delimits a set of rules into subgroups on the basis of the rules’ actions being concerned

30

while Rules > 1
let Rule ∈ Rules
let Rules:= Rules\ Rule
let SGRules:= {Rule}
let actionNode:= node from last action of Rule
for i := 0, until i < Rules

let nextNode:= node from last action of Rules[i]
if actionNode= nextNode

let Rules:= Rules\ Rules[i]
let SGRules:= SGRules∪ {Rules[i]}
i := i− 1

i := i+ 1
if SGRules > 1

let GRules := GRules∪ {SGRules}

Figure 3: The algorithm for grouping a set of rules into subgroups, where those subgroups are rules that
deal with the same output report element. Let Rules be the set of rules and let GRules be the set of
subgroups of rules that deal with the same output report element; let SGRules be the new subgroup of rules
dealing with a particular output report element; let Rule be a rule remaining in the list of rules, Rules; and
let actionNode be the output report node with which the last action of a given rule is concerned. Note that
how this node is extracted from a given action depends on the kind of action. For example withAddText,
it will be the node in the merged report to which the text is to be added. WithAddAtomicTree it will be
the node that is to be added to the merged report.

with the same output report element. In determining, in turn, with which output report element a rule is
concerned we must look at the rule’sactions. But often rules have more than one action, and those actions,
of course, are concerned with different output report elements. For example, one action might add a node
to the merged report tree (saydaylighthours), and then a second will add an atomic tree to that node
(say, the nodesunrise, together with a textentry specifying the time). This means that in determining
whether a rule belongs to a particular subgroup a decision has to be made as to which action of a rule (if
there is more than one) to consider. It seems reasonable to suppose that it is thelast action of a rule that
indicates with which report element it is concerned. This is because actions prior to the last action in a rule
tend to be concerned with setting up the merged report tree so that the textentry or subtree can be added
at the right point. In the case of the rules dealing with the hours of sunrise and sunset, for example, the
nodes containing this information have to be added to the nodedaylighthours, but the action that adds
that node should not be used in determining with which output report element these rules are concerned.
However, checking only the last action in a rule in determining to which subgroup the rules belongs is a
risky assumption.9

Having grouped the rules into subgroups in this way it is now possible to test if they conform to condition
1. This is done by making pairwise comparisons for inconsistency, something which is done by checking
for the occurrence of the string “not”, either as a separate word, or as a prefix, together with the presence
of the same condition name. However, as we have already noted, instead of being indicated by the string
“not”, the inconsistency of two rules may be guaranteed, rather, by the structure of the knowledge itself
in a particular domain; for example, if one rule has conditionp and a second conditionq, it may be that
wheneverp succeeds,q fails. For this reason, the automated approach given here may flag some subgroups
as not being pairwise inconsistent (as failing Condition 1) when in fact they are pairwise inconsistent, and

9In fact, we have already seen a case where this assumption does not hold. (See example 3.9) Here, it is not the case that only the
last action of the rule is concerned with adding the results of some merging operation to the output report; rather, several actions in
this single rule are concerned with adding the results of different merging operations to different parts of the output report. However,
this does not show that the grouping algorithm is useless; it merely shows that we have no need for it in cases where the number of
rules in the rule set is very small (in this example there were only two).

31

for i := 0, until i < no. of elements in Elements
Flags[i] := false
ruleLoop: for j := 0, until j < no. of rules in Rules

for k := 0, until k < no. of actions in Actions
for m := 0, until m < no. of constants in Constants

if last segment of Constants[m] = Elements[i]
Flags[i] := true
break ruleLoop

m := m+ 1
k := k + 1

j := j + 1
i := i+ 1

for all i, if Flags[i] = true, Rulesare minimally adequate.

Figure 4: The algorithm for determining if a set of rules meets the minimum adequacy condition for
coverage of output report elements. Rules is an array containing the set of rules being tested; Elements
is the list of elements in the merged report that have textentries as their children; Flags is the array of
Booleans flagging if each element in Elements is covered by at least one action; Actions is an array of the
actions belonging to the rule being checked; and Constants is an array of the report branches which are
the constants belonging to the action being checked. The list Elements is extracted from the DTD for the
merged output report.

so do conform to the condition. That is, the check may result in some false negatives.

3.5.9 Rule coverage

Although we cannot fully automate the process of checking whether a set of rules meets the two conditions
outlined above, we can formulate a much weaker, minimal, adequacy condition or lower bound on a set of
rules covering an output report, a condition that can be checked automatically:

Condition 3: A set of rules is minimally adequate with respect to coverage if it contains at least one action
that deals with each element in theoutputreport.

It is coverage of output report elements that determines whether a set of rules is minimally adequate in this
sense because: (1) in merging a set of reports not every input report element may be relevant to producing
an output, merged report. It may be that for some applications there are some input report elements with
which we are simply not interested. And (2) the element names of the output report may be different to
those of the input reports.

The algorithm (see Figure 4) is used to check if a set of rules is minimally adequate with respect to coverage
of output report elements: Using the DTD for the merged (output) report, extract a list of those report
elements that have textentries as children. Create an array of Boolean flags, initialized to false, of the same
size as this list. For each element in the list, check the rules in the rule set as follows; if the current rule
has an action that contains aconstantwith a report branch whose last segment matches the current element
in the list, set the corresponding Boolean flag to true, and proceed to check the next element in the list. If
at the end of checking the list of elements, the array of flags are all true, then the set of rules is minimally
adequate. If not, then in combination with the list, the flags which are false indicate which output report
elements have not been covered by any rule.

Note that it isaction constantsthat are used to check for rule coverage because branches in schema variables

32

in actions will be referring to the elements in the input reports from which textentries are to be extracted,
rather than to the elements in output reports to which the results of merging are to be added. And in any
case, even when the elements in the input reports do match those in the output report (which often they
will do), in many cases schema variables are replaced in rules by logical variables from which, of course,
it cannot be determined which report elements they are concerned with.

Example 3.13 Consider the following simple DTD for an output report that is to be produced by merging
weather reports.

<!ELEMENT weatherreport (source, date, city, today, temp) >
<!ELEMENT temp (max, min) >
<!ELEMENT source (#PCDATA) >
<!ELEMENT date (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT today (#PCDATA) >
<!ELEMENT max (#PCDATA) >
<!ELEMENT min (#PCDATA) >

A set of rules that met the minimal adequacy condition for coverage of output report elements would have
to contain at least six actions, since the DTD indicates that the output report must have six elements that
have textentries:source, date, city, today, max, andmin. Each of the six actions would have to contain
a constant that matched one of these elements.

An alternative way of considering the coverage of a set of rules is with respect to the input reports rather
than the output report. A set of rules could be considered to meet an alternative minimum adequacy
condition for coverage if it contains at least one condition dealing with each element in the input reports.
In this case, the test for meeting such an adequacy condition would be that for every complete branch in
the input reports (i.e. a branch terminating in a textentry), the rule set contains at least one condition with
a schema variable with a matching branch. Obviously, the greater the number of elements in the input
reports, the greater the number of conditions required of a minimally adequate set of rules. And, given
that we want to merge the elements in the input reports independently of one another (something which
is not always true — see the breast cancer case study above), the greater the number of rules that will be
required of an adequate rule set. It should be emphasized that this adequacy condition only applies on the
assumption that we are in fact interested in all of the information contained in the input reports (again,
something that is not true in the case of the breast cancer case study). But, provided that is so, then we
could combine both of these conditions to produce a more stringent condition on rule coverage.

Condition 4: A set of fusion rules is minimally adequate with respect to coverage if for each leaf element
in the input reports, it contains at least one condition that deals with that element, and for each leaf element
in the output report it contains at least one action that deals with that element.

3.5.10 Checking the structure of the output report

A set of rules that are minimally adequate with respect to coverage of input and/or output report elements
may well have serious shortcomings in other respects. One is that the actions in a set of rules may not in
fact build an output report with a coherent tree structure. This could simply be because a target node, to
which a new node or textentry is to be added, has not yet have been added to the tree because the rules are
in the wrong order; or, more seriously, it might be because the target node is completely absent from the
tree, indicating that a rule or an action is missing.

To check that the rules, as ordered, do in fact construct an output report with a correct tree structure, an
algorithm can be used to reconstruct the tree, if any, that the rules would assemble if executed (see Figure

33

for i := 0, until i < no. of distinct Initialize atoms in Rules
construct the initial tree, T, according to InitializeAtoms[i]
for j := 0, until j < no. of rules without Initialize atoms in Rules

for k := 0, until k < no. of actions in Actions
extract targetBranchfrom the target constant in Actions[k]
boolean match:= false
for m := 0, until m < no. of branches in T

if targetBranch= Branches[m]
add any new nodes added by Actions[k] to T
boolean match:= true
break

m := m+ 1
if match= false

generate appropriate error message
k := k + 1

j := j + 1
i := i+ 1

Figure 5: The algorithm for reconstructing the tree (or trees), if any, that a set of rules would construct
if it were executed. Rules is a array containing the set of rules being tested; InitializeAtoms is an array
of the distinctInitialize atoms in Rules; Actions is an array of the actions belonging to the rule being
checked; Branches is an array of the branches in the tree, T, constructed by the rules in Rules checked so
far; targetBranch is the branch constant belonging to the action being checked which represents the branch
in the merged report to which are to be added any new nodes or textentries specified by the action; and the
Boolean match flags if targetBranch matches a branch in T.

5). First, we must take account of the fact that a set of rules may contain more than one action with an
Initialize atom, and those atoms may be distinct in that they would lead to the construction of merged
reports with different tree structures. So, for each distinctInitialize atom in the rule set, construct the
initial tree according to that atom. Then, check each action of each rule in the rule set, except rules with
other Initialize atoms, by extracting the constant which specifies the target branch for that action. The target
branch constant is the constant that specifies the branch in the merged report to which a textentry or node
is to be added by the action (as opposed to a constant which specifies the nodebeing added). If the target
branch extracted matches a branch in the tree constructed so far, then add to the tree any new nodes added
by this action. Otherwise, generate an error message.

Viewing the output of this algorithm will allow the rule engineer to see if her rules construct a coherent
tree. But, by itself, this tree will not allow her to see if the rules will produce the tree that sheintendsthem
to construct. To see if they do that, a tree should also be constructed from the original merged report DTD,
and the two trees compared.

3.6 The relationship between fusion rules and a knowledgebase

As has already been mentioned (Section 3.5), fusion rules are an overarching mechanism for controlling
knowledgebased merging in that they are both a way of querying a knowledgebase and a way of compiling
the results of those queries into a merged report. Looked at in this way fusion rules can be thought of as an
interface between the input and output reports, on the one hand, and the knowledgebase itself, on the other.
However, the relationship between a set of fusion rules and a knowledgebase is in fact more intimate than
this way of considering fusion rules would suggest. This is because fusion rules can embody or contain
knowledge about a domain of application, and in such cases they are thus themselves also apart of the

34

knowledge for merging. For example, a rule merging reports for today’s weather may deal with conflict by
using a voting function with a threshold, so that only if, say, at least 75% of input reports agree on a value
will it be included in the output report. This threshold may be specified in the resource queried by the fusion
rule, but it may instead be explicitly specified (as a constant) in the fusion rule itself. Or consider another
example: a fusion rule merging textentries for temperature may deem them to be not conflicting if they are
all within a certain acceptable range, say 3C. Again, in this case the knowledge as to what constitutes an
acceptable range of temperatures could be specified in the resource being queried, but it could equally be
explicitly specified in the fusion rule itself. (see example 3.14)

Example 3.14 A rule for merging the textentries for the maximum temperature as specified by a set of
weather reports. If the temperatures are deemed to be within an acceptable range then the logical variable,
X, is bound by a string specifying the interval from the smallest to the largest values (or just a single value
if they are all the same), and this interval is added as the textentry for the maximum temperature in the
merged report. However, given this way of writing the rule, the user of this application would have to
inspect the resource being queried in order to find out what that acceptable range is.

Rulecode is 8 (Status = optional)

SimilarTemps(//weatherreport/temp/max, X)
IMPLIES AddText(X, weatherreport/temp/max)

The same rule rewritten so as explicitly to display the accepted range within which values for the maximum
temperature are deemed not to conflict. This range, 3C, is specified in the rule by the addition of a constant.
By checking the values in the input reports, the user of this rule can now easily see why the rule succeeds
or fails when the rules are executed.

Rulecode is 8 (Status = optional)

SimilarTemps(//weatherreport/temp/max, 3C, X)
IMPLIES AddText(X, weatherreport/temp/max)

For a given application domain there is thus some leeway as to what knowledge is included in the resource
queried and what is included in the fusion rules, and for this reason it is better to consider both as consti-
tuting the knowledge for that application. Moreover, because one of the virtues of fusion rules is that they
make it clearer why the reports are being merged as they are, in general it is to be preferred that simple
knowledge, such as acceptable ranges or voting thresholds, should be explicitly included in the fusion rules
rather than buried in the resource being queried.

3.7 Viability of knowledgebased merging using fusion rules

How easy is it, then, to develop knowledgebase merging for an application? Obviously any approach
to merging information using a knowledgebase requires getting to grips with the background knowledge,
but no specific problems arise in creating a knowledgebase to be used in conjunction with fusion rules.
Admittedly, in writing the fusion rules one must make sure that the order of the schema or logical variables
in the conditions matches the order of the arguments in the corresponding knowledgebase predicates, but
even if one were simply querying the knowledgebase in a standalone fashion one must get the order of the
arguments correct anyway.

In practice, the hardest and most time-consuming task in developing an application is the writing of the
clauses in the knowledgebase, and not the formulation of the fusion rules. The role of the fusion rules
is in large part simply to connect the input reports to the output merged report, by selecting textentries or

35

subtrees from the former and adding the results of merging these to the latter. As a result, the trickiest part in
formulating a set of fusion rules is simply making sure that they respect the structure of the input and output
reports; specifically, making sure that the conditions (and occasionally the actions) extract information from
the correct branches in the input reports, and that the actions add the merged results to the correct branches
in the output reports. It is easy to specify the wrong branch as part of a schema variable or constant, and
then things will go awry. But, as indicated in the previous sections, some automated support for this is
possible, and indeed all of the support outlined above has been implemented in a rule engineering tool that
we have developed.

There are some simple conditions that must be met if a set of fusion rules is to be well engineered, but
whether they are met can only be determined by inspecting the knowledgebase as well.

A key advantage of knowledgebased merging with fusion rules is the robustness to heterogeneity in the
information being merged. Heterogeneity comes in a variety of forms in the information to be merged
including:

Ontological heterogeneity Different textentries are used by different sources for the same concept and/or
the same textentry is used by different sources for different concepts.

Epistemic heterogeneityDifferent sources provide different beliefs, and these beliefs may conflict, and/or
different sources may attach different uncertainty evaluations to beliefs.

Structural heterogeneity Different subtree structures are used by different sources to represent the same
information and/or the same subtree structure may be used by different sources for different infor-
mation.

A knowledgebased merging approach has significant advantages over other approaches to merging in that
increasing relevant knowledge can increase robustness. In this case, relevant knowledge is knowledge that
specifies when textentries/subtrees are equivalent or not equivalent. In general, such equivalence informa-
tion can be more efficiently represented in quantified logical formulae than in other approaches. This rele-
vant knowledge can be used to address ontological, epistemic, and structural, heterogeneity, though except
in very limited applications, it is unlikely to address all cases of such heterogeneity. In addition to this rel-
evant knowledge about equivalences, deeper knowledge about time/events, uncertainty, inconsistency, etc.,
as discussed in Section 3.2, can provide an important support role in deciding equivalence/non-equivalence.

What emerges from the discussion are the advantages of using fusion rules to input data into a knowledge-
base. First, it makes it clearer than it would otherwise be what aggregation predicates are being used to
merge conflicting information. (Though to be sure, inspection of the knowledgebase is still required to
appreciate the exact nature of the concepts/definitions being used.) And, second, given that the knowledge-
base already contains a library of aggregation predicates, changes as to which predicates are to be used are
more easily effected by editing fusion rules than by editing the knowledgebase itself. Using a fusion rule
system may not make it any easier to construct a knowledgebase in the first place, but it does make the
knowledgebase easier to use. And, fusion rules themselves are not hard to write in general.

In order to demonstrate the viability of knowledgebased merging using fusion rules, we have provided
extensive coverage of two case studies (in weather and in bioinformatics) on our website10. This includes
a number of input and output reports, together with knowledgebases and sets of fusion rules. The website
also has downloadable versions of the FusionTool, which incorporates the FusionEngine and RuleEngine,
and the RuleTool, for engineering sets of fusion rules.

10Fusion Rule Technology Website: www.cs.ucl.ac.uk/staff/a.hunter/frt

36

4 Conclusions

We summarise the advantages of a knowledgebased approach to merging based on fusion rules as fol-
lows: (1) Structured reports to be merged can be treated as logical terms in the knowledgebase and so the
information in the reports to be merged can be reasoned with in the knowledgebase; (2) Merged reports
can be obtained by logical inference from the knowledgebase; (3) Merging based on fusion rules supports
context-sensitive integration of information based on the contents of the structured reports to be merged
and on the background knowledge; (4) The type of fusion sanctioned by the fusion rules can depend on the
coherence of the input and the reliability and disposition of the sources; (5) The knowledgebase used for
merging can incorporate specific and generic knowledge which can be based on rich theories for knowl-
edge representation and reasoning for handling concepts such as time, events, space, and uncertainty; (6)
The knowledgebase used for merging can incorporate ontological knowledgebases such as knowledgebases
defined in a description logic; (7) Using the combination of a knowledgebase and fusion rules for merging
offers some robustness to ontological heterogeneity, epistemic heterogeneity, and structural heterogeneity,
in the structured reports to be merged; and (8) Fusion rules give the provenance of the merged information
and so can be treated as meta-data or meta-knowledge associated with the merged structured report.

Our logic-based approach differs from other logic-based approaches for handling inconsistent informa-
tion such as belief revision theory (e.g. [Gar88, DP98, KM91, LS98]) and knowledgebase merging (e.g.
[KP98, BKMS92]). These proposals are too simplistic in certain respects for handling structured reports.
Each of them has one or more of the following weaknesses: (1) One-dimensional preference ordering over
sources of information — for structured reports we require finer-grained preference orderings; (2) Primacy
of updates in belief revision — for structured reports, the newest reports are not necessarily the best reports;
and (3) Weak merging based on a meet operator — this causes unnecessary loss of information. Further-
more, none of these proposals incorporate actions on inconsistency or context-dependent rules specifying
the information that is to be incorporated in the merged information, nor do they offer a route for specifying
how merged reports should be composed.

Other logic-based approaches to fusion of knowledge include the KRAFT system and the use of Belnap’s
four-valued logic. The KRAFT system uses constraints to check whether information from heterogeneous
sources can be merged [PHG+99, HG00]. If knowledge satisfies the constraints, then the knowledge
can be used. Failure to satisfy a constraint can be viewed as an inconsistency, but there are no actions
on inconsistency. In contrast, Belnap’s four-valued logic uses the values “true”, “false”, “unknown” and
“inconsistent” to label logical combinations of information (see for example [LSS00]). However, this
approach does not provide actions in case of inconsistency.

Merging information is also an important topic in database systems. A number of proposals have been
made for approaches based in schema integration (e.g. [PM98]), the use of global schema (e.g. [GM99]),
and conceptual modelling for information integration based on description logics [CGL+98b, CGL+98a,
FS99, PSB+99, BCVB01]. These differ from our approach in that they do not seek an automated approach
that uses domain knowledge for identifying and acting on inconsistencies. Heterogeneous and federated
database systems are relevant, but they do not identify and act on inconsistency in a context-sensitive way
[SL90, Mot96, CM01], though there is increasing interest in bringing domain knowledge into the process
(e.g. [Cho98, SO99]). Also relevant is revision programming, a logic-based framework for describing and
enforcing database constraints [MT98].

Our approach also goes beyond other technologies for handling heterogeneous information. The approach
of wrappers offers a practical way of defining how heterogeneous information can be merged (see for
example [HGNY97, Coh98, SA99]) and NLP/NLG offer some techniques for identifying information in
input reports and generating a natural language summary [BME99]. However, in these approaches there is
little consideration of problems of conflicts arising between sources. Our approach therefore goes beyond
these in terms of formalizing reasoning with inconsistent information and using this to analyse the nature
of the news report and for formalizing how we can act on inconsistency.

37

References

[ABC99] M Arenas, L Bertossi, and J Chomicki. Consistent query answers in inconsistent databases.
In In Proceedings ACM PODS, pages 68–79. ACM Press, 1999.

[AKS96] Y Arens, C A Knoblock, and W M Shen. Query reformulation for dynamic information
integration.Journal of Intelligent Information Systems, 6(2):99–130, 1996.

[BB03] L Bravo and L Bertossi. Logic programs for consistently querying data integration systems.
In Proceedings of the International Joint Conference on AI (IJCAI’03), pages 10–15. 2003.

[BBB+98] P G Baker, A Brass, S Bechhofer, C Goble, N Paton, and R Stevens. Tambis: Transpar-
ent access to multiple bioinformatics information sources. an overview. InProceedings of
the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB’98),
pages 25–34. AAAI Press, 1998.

[BC03] L Bertossi and J Chomicki. Query answering in inconsistent databases. In G. Saake
J. Chomicki and R. van der Meyden, editors,Logics for Emerging Applications of Databases.
Springer, 2003.

[BCVB01] S Bergamaschi, S Castano, M Vincini, and D Beneventano. Semantic integration of hetero-
geneous information sources.Data and Knowledge Engineering, 36:215–249, 2001.

[BGP92] D Barbara, H Garcia-Molina, and D Porter. The management of probabilistic data.IEEE
Transactions on Knowledge and Data Engineering, 4:487–502, 1992.

[BKMS92] C Baral, S Kraus, J Minker, and V Subrahmanian. Combining knowledgebases consisting of
first-order theories.Computational Intelligence, 8:45–71, 1992.

[BKY +99] Greg Barish, Craig A Knoblock, Yi-Shin Chen, Steven Minton, Andrew Philpot, and Cyrus
Shahabi. Theaterloc: A case study in information integration. InInformation Integration
Workshop, Stockholm, Sweden (IJCAI’99), 1999.

[BL99] T Berners-Lee.Weaving the Web. Orion Business Books, 1999.

[BLHL01] T Berners-Lee, J Hendler, and O Lassila. The semantic web.Scientific American, 284(5):34–
43, 2001.

[BME99] R Barzilay, K McKeown, and M Elhadad. Information fusion in the context of multi-
document summarization. InProceedings of 37th Annual Meeting of the Association of Com-
putational Linguistics, 1999.

[Bra01] I Bratko.Prolog: Programming for Artificial Intelligence. Addison Wesley, 2001.

[CG04] L Chovy and C Garion. Querying several inconsistent databases.Journal of Applied Non-
classical Logic, 14(3):295-328, 2004.

[CGL+98a] D Calvanese, G De Giacomo, M Lenzerini, D Nardi, and R Rosati. Description logic frame-
work for information integration. InProceedings of the 6th Conference on the Principles of
Knowledge Representation and Reasoning (KR’98), pages 2–13. Morgan Kaufmann, 1998.

[CGL+98b] D Calvanese, G De Giacomo, M Lenzerini, D Nardi, and R Rosati. Source integration in
data warehousing. InProceedings of the 9th International Workshop on Database and Expert
Systems (DEXA’98), pages 192–197. IEEE Computer Society Press, 1998.

[Cho98] L Cholvy. Reasoning with data provided by federated databases.Journal of Intelligent Infor-
mation Systems, 10:49–80, 1998.

[CM01] L Cholvy and S Moral. Merging databases: Problems and examples.International Journal
of Intelligent Systems, 10:1193–1221, 2001.

38

[Coh98] W Cohen. A web-based information system that reasons with structured collections of text.
In Proceedings of Autonomous Agents’98, 1998.

[CP87] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. InProceedings of
VLDB’87, pages 71–81, 1987.

[Cru86] D Cruse.Lexical Semantics. Cambridge University Press, 1986.

[Dem67] A P Dempster. Upper and lower probabilities induced by a multivalued mapping.Annuals of
Mathematics and Statistics, 38:325–339, 1967.

[DP88] D Dubois and H Prade.Possibility theory: An approach to the computerized processing of
uncertainty. Plenum Press, 1988.

[DP98] D Dubois and H Prade, editors.Handbook of Defeasible Resoning and Uncertainty Manage-
ment Systems, volume 3. Kluwer, 1998.

[Fen00] D Fensel. The semantic web and its languages.IEEE Intelligent Systems, 14:67, 2000.

[FHvH+00] D Fensel, I Horrocks, F van Harmelen, S Decker, M Erdmann, and M Klein. Oil in a nutshell.
In R Dieng, editor,Proc. of the 12th European Workshop on Knowledge Acquisition, Mod-
eling, and Management (EKAW’00), volume 1937 ofLecture Notes in Artificial Intelligence,
pages 1–16. Springer-Verlag, 2000.

[FS99] E Franconi and U Sattler. A data warehouse conceptual data model for multidimensional
aggregation. In S Gatziu, M Jeusfeld, M Staudt, and Y Vassiliou, editors,Proceedings of the
Workshop in Design and Management of Data Warehouses, 1999.

[FvHH+02] D Fensel, F van Harmelen, I Horrocks, D L McGuinness, and P F Patel-Schneider. Oil: An
ontology infrastructure for the semantic web.IEEE Intelligent Systems, 16:38–45, 2002.

[Gar88] P Gardenfors.Knowledge in Flux. MIT Press, 1988.

[GM99] G Grahne and A Mendelzon. Tableau techniques for querying information sources through
global schemas. InProceedings of the 7th International Conference on Database Theory
(ICDT’99), Lecture Notes in Computer Science. Springer, 1999.

[HG00] K Hui and P Gray. Developing finite domain constraints – a data model approach. InPro-
ceedings of Computation Logic 2000 Conference, pages 448–462. Springer, 2000.

[HGNY97] J Hammer, H Garcia-Molina, S Nestorov, and R Yerneni. Template-based wrappers in the
TSIMMIS system. InProceedings of ACM SIGMOD’97. ACM, 1997.

[HL05a] A Hunter and W Liu. Fusion rules for merging uncertain information.Information Fusion,
(in press), 2005.

[HL05b] A Hunter and W Liu. A logical reasoning framework for modelling and merging uncertain
semi-structured information. In B Bouchon-Meunier, G Coletti and R Yager, editors,Modern
Information Processing: From Theory to ApplicationsElsevier, (in press), 2005.

[HL05c] A Hunter and W Liu. Merging uncertain information with semantic heterogeneity in XML.
Knowledge and Information Systems, (in press), 2005.

[HL05d] A Hunter and W Liu. Measuring the quality of uncertain information using possibilistic logic.
In Quantitative and Qualitative Approaches to Reasoning with Uncertainty, LNCS Volume
3571, pages 415-426, Springer, 2005.

[HS03a] A Hunter and R Summerton. FusionRuleML: Representing and executing fusion rules. Tech-
nical report, UCL Department of Computer Science, 2003.

39

[HS03b] A Hunter and R Summerton. Propositional fusion rules. InSymbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty, volume 2711 ofLecture Notes in Computer Science,
pages 502–514. Springer, 2003.

[HS04a] A Hunter and R Summerton. Fusion rules for context-dependent aggregation of structured
news reports.Journal of Applied Non-classical Logic, 14(3):329-366, 2004.

[HS05] A Hunter and R Summerton. Merging news reports that describe events.Data and Knowledge
Engineering, (in press), 2005.

[Hun02a] A Hunter. Logical fusion rules for merging structured news reports.Data and Knowledge
Engineering, 42:23–56, 2002.

[Hun02b] A Hunter. Measuring inconsistency in knowledge via quasi-classical models. InProceedings
of the 18th National Conference on Artificial Intelligence (AAAI’2002), pages 68–73. MIT
Press, 2002. ISBN 0-262-51129-0.

[Hun02c] A Hunter. Merging structured text using temporal knowledge.Data and Knowledge Engi-
neering, 41:29–66, 2002.

[Hun03] A Hunter. Evaluating the significance of inconsistency. InProceedings of the International
Joint Conference on AI (IJCAI’03), pages 468–473, 2003.

[Hun04] A Hunter. Logical comparison of inconsistent perspectives using scoring functions.Knowl-
edge and Information Systems Journal, 6(5):528-543, 2004.

[Hun05] A Hunter. How to act on inconsistent news: Ignore, resolve, or reject.Data and Knowledge
Engineering, (in press), 2005.

[KLM03] S Konieczny, J Lang, and P Marquis. Quantifying information and contradiction in proposi-
tional logic through epistemic actions. InProceedings of the 18th International Joint Confer-
ence on Artificial Intellignce (IJCAI’03), pages 106–111, 2003.

[KM91] H Katsuno and A Mendelzon. On the difference between updating a knowledgebase and
revising it. InPrinciples of Knowledge Representation and Reasoning: Proceedings of the
Second International Conference (KR’91), pages 387–394. Morgan Kaufmann, 1991.

[KM98] C Knoblock and S Minton. The Ariadne approach to Web-based information integration.
IEEE Intelligent Systems, 13(5):17–20, 1998.

[KMA +98] C Knoblock, S Minton, J Ambite, N Ashish, P Modi, I Muslea, A Philpot, and S Tejada.
Modeling web sources for information integration. InProceedings of the Fifteenth National
Conference on Artificial Intelligence. Madison, WI, 1998.

[KMA +99] C Knoblock, S Minton, J Ambite, N Ashish, P Modi, I Muslea, A Philpot, and S Tejada. The
Ariadne approach to information integration.International Journal of Cooperative Informa-
tion Systems, 1999.

[Kni01] K Knight. Measuring inconsistency.Journal of Philosophical Logic, 31:77–98, 2001.

[Kni03] K Knight. Two information measures for inconsistent sets.Journal of Logic, Language and
Information, 12:227–248, 2003.

[Kno95] C Knoblock. Planning, executing, sensing, and replanning for information gathering. In
Proceedings of IJCAI-95. Montreal, Canada, 1995.

[KP98] S Konieczny and R Pino Perez. On the logic of merging. InProceedings of the Sixth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR’98), pages
488–498. Morgan Kaufmann, 1998.

40

[KS86] R Kowalski and M Sergot. A logic-based calculus of events.New Generation Computing,
4:67–95, 1986.

[Lee92] S Lee. Imprecise and uncertain information in databases: An evidential approach.Proceed-
ings of Sixth International Conference on Data Engineering (ICDE), pages 614–621, 1992.

[Lev00] A Levy. Logic-based techniques in data integration. In Jack Minker, editor,Logic Based
Artificial Intelligence. Kluwer, 2000.

[Loz94] E Lozinskii. Resolving contradictions: A plausible semantics for inconsistent systems.Jour-
nal of Automated Reasoning, 12:1–31, 1994.

[LS98] P Liberatore and M Schaerf. Arbitration (or how to merge knowledgebases).IEEE Transac-
tions on Knowledge and Data Engineering, 10:76–90, 1998.

[LSS00] Y Loyer, N Spyratos, and D Stamate. Integration of information in four-valued logics un-
der non-uniform assumptions. InProceedings of 30th IEEE International Symposium on
Multiple-Valued Logic (ISMVL2000). IEEE Press, 2000.

[Mot96] A Motro. Cooperative database systems.International Journal of Intelligent Systems, 11:717–
732, 1996.

[MS99] R Miller and M Shanahan. The event calculus in classical logic: An alternative axiomatisa-
tions. Linkoping Electronic Articles in Computer and Information Science, 4(16), 1999.

[MT98] V Marek and M Truszczynski. Revision programming.Theoretical Computer Science,
190:241–277, 1998.

[NS94] R Ng and V Subrahmanian. Stable semantics for probabilistic deductive databases.Informa-
tion and Computation, 110(1):42–83, 1994.

[PHG+99] A Preece, K Hui, A Gray, P Marti, T Bench-Capon, D Jeans, and Z Cui. The KRAFT
architecture for knowledge fusion and transformation. InExpert Systems. Springer, 1999.

[PM98] A Poulovassilis and P McBrien. A general formal framework for schema transformation.
Data and Knowledge Engineering, 28:47–71, 1998.

[PSB+99] N Paton, R Stevens, P Baker, C Goble, S Bechhofer, and A Brass. Query processing in the
TAMBIS bioinformatics source integration system. InProceedings of the 11th International
Conference on Scientific and Statistical Databases, 1999.

[SA99] A Sahuguet and F Azavant. Building light-weight wrappers for legacy web data-sources using
W4F. InProceedings of the International Conference on Very Large Databases (VLDB’99),
1999.

[SGHB01a] R Stevens, C Goble, I Horrocks, and S Bechhofer. Building a bioinformatics ontology using
oil. Special issue: IEEE Information Technology in Biomedicine, 2001.

[SGHB01b] R Stevens, C Goble, I Horrocks, and S Bechhofer. Oiling the way to machine understandable
bioinformatics resources.Special issue: IEEE Information Technology in Biomedicine, 2001.

[Sha76] G Shafer.A Mathematical Theory of Evidence. Princeton University Press, 1976.

[Sha99] M Shanahan. The event calculus explained. In M.J.Wooldridge and M.Veloso, editors,Ar-
tificial Intelligence Today, volume 1600 ofSpringer Lecture Notes in Artificial Intelligence,
pages 409–430. Springer, 1999.

[SL90] A Sheth and J Larson. Federated database systems for managing distributed, heterogeneous,
and autonomous databases.ACM Computing Surveys, 22:183–236, 1990.

41

[SO99] K Smith and L Obrst. Unpacking the semantics of source and usage to perform semantic
reconciliation in large-scale information systems. InACM SIGMOD RECORD, volume 28,
pages 26–31, 1999.

[TKM98] S Tejada, C Knoblock, and S Minton. Handling inconsistency for multi-source integration.
In Workshop on AI and Information Integration (AAAI’98). AAAI, 1998.

42

