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Abstract

The language for describing inconsistency is underdeveloped. If a database (a set of for-
mulae) is inconsistent, there is usually no qualification of that inconsistency. Yet, it would
seem useful to be able to say how inconsistent a database is, or to say whether one database
is “more inconsistent” than another database. In this paper, we provide a more general char-
acterization of inconsistency in terms of a scoring function for each database ∆. A scoring
function S is from the power set of ∆ into the natural numbers defined so that S(Γ) gives
the number of minimally inconsistent subsets of ∆ that would be eliminated if the subset
Γ was removed from ∆. This characterization offers an expressive and succinct means for
articulating, in general terms, the nature of inconsistency in a set of formulae. We then com-
pare databases using their scoring functions. This gives an intuitive ordering relation over
databases that we can describe as “more inconsistent than”. These techniques are potentially
useful in a wide range of problems including monitoring progress in negotiations between a
number of participants, and in comparing heterogeneous sources of information.

Keywords: inconsistency handling; conflict resolution; logic-based negotiation; heterogeneous
knowledge

1 Introduction

Inconsistency handling is a big problem in computer science and IT. Techniques for comparing
sets of formulae on the basis of inconsistency should be important instruments in helping to
address this problem. Currently techniques for measuring the degree of inconsistency in a set of
formulae are underdeveloped. Some approaches touch on the topic. In diagnostic systems, there are
proposals that offer preferences for certain kinds of consistent subsets of inconsistent information
[KW87, Rei87], in proposals for belief revision, epistemic entrenchment is an ordering over formulae
which reflects the preference for which formulae to give up in case of inconsistency [Gar88], in
proposals for drawing inferences from inconsistent information there is a preference for inferences
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from certain consistent subsets (E.g. [MR70, Bre89, BDP93, CRS93, Cho95, EGH95]), in proposals
for approximating entailment, two sequences of entailment relation are defined (the first is sound
but not complete, and the second is complete but not sound) which converge to classical entailment
[SC95], and in proposals for partial consistency checking, checking is terminated after the search
space exceeds a threshold which gives a measure of partial consistency of the data (E.g. Maximum
generalized satisfiability [Pap94]). However, none of these proposals provide a direct definition for
degree of inconsistency.

To address this need for a more direct way of comparing sets of formulae on the basis of the
inconsistencies arising, we present a new approach based on scoring functions. A scoring function
can be determined for any set of formulae ∆. The scoring function S is from the power set of ∆
into the natural numbers defined so that S(Γ) gives the number of minimally inconsistent subsets
of ∆ that would be eliminated if the subset Γ was removed from ∆.

Scoring functions are a straightforward way of summarizing the nature of the inconsistencies
arising in a database. They are a more expressive approach than counting the number of minimally
inconsistent subsets, or looking at the cardinality of the union of the minimally inconsistent subsets.
They are more succinct than presenting all the minimally inconsistent subsets, or presenting the
union of them.

Furthermore, we can compare databases by comparing the scoring function for each database.
Consider the scoring function Si for database ∆i and Sj for ∆j . If there is a bijection f from the
subsets of ∆i to the subsets of ∆j such that for all Γ ∈ ℘(∆i), Si(Γ) ≤ Sj(f(Γ)), then ∆j is more
inconsistent than ∆i. We believe that there are a variety of applications that could benefit from
this proposal including:

Monitoring progress in negotiations Negotiations often start from a position of conflict. A
group of participants may each have their own perspectives and agenda, and the group as
a whole has to move to a position that is consistent. Suppose, each participant represents
their perspective by a classical logic formula, then the group view can be represented by a
set of formulae (for example in requirements engineering [HN98]). If this set of formulae is
inconsistent, then each participant is able to revise their contribution. This revision may be
iterated a number of times until eventually, a consistent set of formulae is obtained. Now
if we have an intermediate position ∆, and this is revised by the participants to give ∆′,
then it would be desirable to know whether ∆′ is less inconsistent than ∆. If it is not, then
there is a danger that the negotiations are going off track. Ideally, we would like a sequence
of positions ∆1, . . . ,∆n where ∆1 is the starting position, . . . ,∆n is the final position, and
that for each i, ∆i+1 is less inconsistent than ∆i.

Comparing heterogeneous sources Suppose we have a number of sources providing informa-
tion on some topic. Maybe we are dealing with a group of clinicians advising on some patient,
a group of witnesses of some incident, or a set of newspaper reports covering some event.
These are all situations where we expect some degree of inconsistency in the information.
Also suppose that the information by each source i is represented by the set Φi. Each source
may provide information that conflicts with the domain knowledge Ψ. Let us represent
Φi ∪ Ψ by ∆i for each source i. Now if we were to offer some tool support for analysing the
information from each of these sources, we may want to know whether one source is more
inconsistent than another — so whether ∆i is more inconsistent that ∆j — and in particular
determine which is the least inconsistent of the sources and so identify a minimal ∆i in this
inconsistency ordering. We may then view this minimal database as the least problematical
or most reliable source of information.

The notions of scoring functions and score orderings are novel approaches to analysing inconsistent
information. In this paper, we define, motivate, and analyse, them.
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2 Related work

In belief revision theory, and the related field of knowledgebase merging, there are some proposals
that do provide some description of the degree of inconsistency of a set of formulae. For example,
the Dalal distance, essentially the Hamming distance between two propositional interpretations,
can be used to give a profile of an inconsistent knowledgebase. Let dalal(w,w′) denote the Dalal
distance from w to w′, let [α] denote the set of classical models of α, and let d(w,α) be the w′ ∈ [α]
such that dalal(w,w′) is minimized. Now suppose we have a knowledgebase {α1, .., αn} where
each αi is inconsistent but the knowledgebase may be inconsistent. We can then obtain a value of
d(w,αi) for each world w and each formula αi in the knowledgebase. Unfortunately, this does not
provide a very succinct way of describing the degree of inconsistency in a given set of formulae,
and it is not clear how we could compare sets of formulae using this approach. Furthermore,
operators for aggregating these distances such as the majority operator [LM98], egalitarist operator
[Rev97], or the leximax operator [KP98], do not seem to be appropriate summaries of the degree
of inconsistency in the original knowledgebase since they seek to find the most appropriate model
for particular kinds of compromise of the orginal knowledge. Related techniques for knowledge
base revision (for a review see [Pap00]) are similarly inappropriate for describing inconsistency in
a set of formulae.

Another approach to handling inconsistent information is that of possibility theory [DLP94]. Let
(φ, α) be a weighted formula where φ is a classical formula and α ∈ [0, 1]. A possibilistic knowl-
edgebase is a set of weighted formulae. An α-cut of a possibilistic knowledgebase, denoted B≥α, is
{(ψ, β) ∈ B | β ≥ α}. The inconsistency degree of B, denoted Inc(B), is the maximum value of α
such that the α-cut is inconsistent. As presented, the problem with this measure is that it assumes
weighted formulae. In other words, we need some form of preference ordering in addition to the
set of classical formulae in the knowledgebase. The knowledgebase can be used to induce such
an ordering as suggested in [BDKP00], where an ordering over inferentially weaker forms of the
orginal formulae are generated. Again this does not offer a direct lucid view on the inconsistency
in the original set of formulae.

Some notions of measuring the “amount information” is related to the idea of measuring informa-
tion. Information theory can be used to measure the information content of sets of inconsistent
formulae. Developing Shannon’s measure of information, Lozinskii proposes that the information
in a set of propositional formulae Γ, that has been composed from n different atom symbols, is the
the logarithm of the number of models (2n) divided by the number of models for the maximum
consistent subsets of Γ. This information theoretic measure increases with additions of consistent
information and decreases with additions of inconsistent information.

However, as highlighted by Wong and Besnard, the measure by Lozinskii is sensitive to the presence
of tautologies in Γ. To address, they suggest the use of a normal form for the formulae in Γ that is
obtained by rewriting Γ into conjunctive normal form, and then applying disjunction elimination
and resolution exhaustively [WB01]. However, neither this approach nor Lozinskii’s approach
provide a direct measure of inconsistency since for example, the value for {α} is the same as for
{α,¬α, β}.

3 Basic definitions

We start with a few definitions for classical logic.

Definition 3.1 Let L be the set of classical propositional formulae formed from a set of
atoms, and the logical connectives {∨,∧,¬,→}. Let ⊥ denote any inconsistent formula.
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Definition 3.2 Let D be the set of databases formed from L, where D = ℘(L). Let N be the set
of natural numbers. For n ∈ N, Dn is the set of databases of size n where

Dn = {Γ ∈ D | |Γ| = n}

Definition 3.3 Let ∆ ∈ D, Con(∆) = {Γ ⊆ ∆ | Γ 6⊢ ⊥}, and Incon(∆) = {Γ ⊆ ∆ | Γ ⊢ ⊥}.

MC(∆) = {Φ ∈ Con(∆) | ∀Ψ ∈ Con(∆) Φ 6⊂ Ψ}

MI(∆) = {Φ ∈ Incon(∆) | ∀Ψ ∈ Incon(∆) Ψ 6⊂ Φ}

We call MI(∆) the set of minimally inconsistent subsets of ∆, and MC(∆) the set of maximally
consistent subsets of ∆.

Definition 3.4 Let Free(∆) be the intersection of the maximally consistent subsets of ∆ and
Core(∆) be the union of the minimally inconsistent subsets of ∆. We consider Free(∆) as the
unproblematical formulae in ∆, and we consider Core(∆) as the problematical formulae in ∆.

The value of |MI(∆)| does not uniquely determine the value for |MC(∆)|, and vice versa, as
illustrated by Example 3.1. This indicates the difficulty in abstracting sufficiently expressive yet
concise parameters for describing inconsistency in a set of formulae.

Example 3.1 Consider ∆1 = {α ∧ ¬α}, ∆2 = {α,¬α}, ∆3 = {α,¬α ∧ β,¬α ∧ γ}, and ∆4 =
{α,¬α}. Here, we have the following relationships:

|MI(∆1)| = |MI(∆2)| |MC(∆1)| 6= |MC(∆2)|

|MC(∆3)| = |MC(∆4)| |MI(∆3)| 6= |MI(∆4)|

For further discussion of some of the relationships between MI, MC, Free, and Core see [MR70,
BDP93, CRS93, EGH95].

4 Scoring functions

For each Γ ∈ ℘(∆), the scoring function for ∆ gives the number of minimally inconsistent subsets
of ∆ that would be removed if Γ were removed from ∆.

Definition 4.1 Let ∆ ∈ D. Let S be the scoring function for ∆ defined as follows, where
S : ℘(∆) 7→ N and Γ ∈ ℘(∆)

S(Γ) = |MI(∆)| − |MI(∆ − Γ)|

The scoring function for a database is an abstraction of the information we have about the
database, and it says much about the inconsistencies arising in the database.

Example 4.1 Let ∆ = {α,¬α, β}, where S is the scoring function for ∆, defined as follows:

S({α}) = 1 S({¬α}) = 1 S({β}) = 0
S({α,¬α}) = 1 S({α, β}) = 1 S({¬α, β}) = 1

S({α,¬α, β}) = 1
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Example 4.2 Let ∆ = {α,¬α, β∧¬β}, where S is the scoring function for ∆, defined as follows:

S({α}) = 1 S({¬α}) = 1 S({β ∧ ¬β}) = 1
S({α,¬α}) = 1 S({α, β ∧ ¬β}) = 2 S({¬α, β ∧ ¬β}) = 2

S({α,¬α, β ∧ ¬β}) = 2

Example 4.3 Let ∆ = {α,¬α∨¬β, β}, where S is the scoring function for ∆, defined as follows:

S({α}) = 1 S({¬α ∨ ¬β}) = 1 S({β}) = 1
S({α,¬α ∨ ¬β}) = 1 S({α, β}) = 1 S({¬α ∨ ¬β, β}) = 1

S({α,¬α ∨ ¬β, β}) = 1

Example 4.4 Let ∆ = {α ∧ ¬α, β, γ}, where S is the scoring function for ∆, defined as follows:

S({α ∧ ¬α}) = 1 S({β}) = 0 S({γ}) = 0
S({α ∧ ¬α, β}) = 1 S({α ∧ ¬α, γ}) = 1 S({β, γ}) = 0

S({α ∧ ¬α, β, γ}) = 1

4.1 Score orderings

We can compare databases using the scoring function for each database. For this we define score
orderings.

Definition 4.2 A score ordering, denoted ≤, is defined as follows1. Assume ∆i,∆j ∈ Dn, for
some n, and Si is the scoring function for ∆i, and Sj is the scoring function for ∆j. Si ≤ Sj

holds iff there is a bijection f : ℘(∆i) 7→ ℘(∆j) such that the following condition is satisfied:

∀Γ ∈ ℘(∆i), Si(Γ) ≤ Sj(f(Γ))

Note, Si < Sj iff Si ≤ Sj and Sj 6≤ Si. Also, Si ≃ Sj iff Si ≤ Sj and Sj ≤ Si. We say ∆j is
more inconsistent than ∆i iff ∆i ≤ ∆j.

Example 4.5 Let ∆1 = {α,¬α} and ∆2 = {α, β ∧ ¬β}. Let S1 be the scoring function for ∆1

and S2 be the scoring function for ∆2, and so S2 < S1.

S1({α}) = 1 S2({α}) = 0
S1({¬α}) = 1 S2({β ∧ ¬β}) = 1
S1({α,¬α}) = 1 S2({α, β ∧ ¬β}) = 1

Example 4.6 Consider ∆1 = {α ∧ ¬α, β, γ} and ∆2 = {α ∧ ¬α, β ∧ ¬β, δ}. If S1 is the scoring
function for ∆1, and S2 is the scoring function for ∆2, then S1 < S2.

We can consider scoring functions as giving information about the overlaps of the minimally
inconsistent subsets. For example, for ∆i,∆j ∈ Dn, if |MI(∆i)| = |MI(∆j)| and Si ≤ Sj then
the inconsistencies are more overlapping in ∆j . In other words, more of the formulae are in more
minimally inconsistent subsets.

In case we want to compare sets of different cardinality, we can add dummy propositions to the
smaller set to make it the same size as the larger set. These dummy propositions are literals that
do not appear elsewhere and so can be assumed to not be in any of the minimally inconsistent
subsets of the database.

1Note, we are now using the ≤ symbol for the usual ordering over the natural numbers and as defined here for

an ordering over score functions. Hopefully, this overloading of the symbol will not cause confusion.
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4.2 Comparing inconsistent perspectives

Our motivation for using scoring functions is to compare inconsistent perspectives. This includes
applications in monitoring progress in negotiations and in comparing heterogeneous sources of
information.

For the following example of negotiation, we will keep the domain knowledge separate from the
perspectives of the participants. In other words, we will consider the domain knowledge as being
correct and not subject to negotiation. This will allow us to focus our attention on the perspectives
of the participants.

Example 4.7 Consider three members of a family who are discussing their wishes for their next
family car. Let the domain knowledge Ψ be:

red → fast

fast → ¬fuelEfficient
offRoad → expensive

sporty → (expensive ∧ (black ∨ red ∨ white))
¬expensive → under$20K

cabriolet → ¬bigCapacity
fuelEfficient → ¬offRoad

Let the initial preferences (requirements or demands) for each family member (participant 1, par-
ticipant 2, and participant 3) be represented by Φ1

1, Φ2
1 and Φ3

1 respectively.

Φ1
1 = {red, offRoad}

Φ2
1 = {¬expensive, fuelEfficient}

Φ3
1 = {sporty, cabriolet, bigCapacity}

So the starting point of the discussions is captured by ∆1.

∆1 = Ψ ∪ Φ1
1 ∪ Φ2

1 ∪ Φ3
1

Let S1 be the scoring function for ∆1. Now consider S1 for some subsets of ∆1.

S1({red}) = 1 S1({bigCapacity}) = 1
S1({sporty}) = 1 S1({offRoad}) = 2

S1({fuelEfficient}) = 2 S1({¬expensive}) = 2

S1({cabriolet}) = 1
S1({red, bigCapacity}) = 2

S1({¬expensive, fuelEfficient}) = 4
S1({red, offRoad}) = 3

S1({sporty, cabriolet, bigCapacity}) = 2
S1(∆1) = 5

We see from S1 that each of the preferences is individually inconsistent with the domain knowledge.
We also see that Φ2

1 has the highest score (4) of the initial preferences and it would be a good starting
point for discussion.

Suppose after some discussion, Φ1
1 is changed to Φ1

2 by participant 1, Φ2
1 to Φ2

2 by participant 2,
and Φ3

1 to Φ3
2 by participant 3, as follows.

Φ1
2 = {red ∨ black, sporty ∨ offRoad}

Φ2
2 = {¬expensive}

Φ3
2 = {sporty, bigCapacity}
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This intermediate point is captured by ∆2.

∆2 = Ψ ∪ Φ1
2 ∪ Φ2

2 ∪ Φ3
2

Let S2 be the scoring function for ∆2. Now consider S2 for some subsets of ∆2.

S2({sporty}) = 1
S2({¬expensive}) = 2

S2({sporty ∨ offRoad}) = 1
S2(∆2) = 2

We see that S2 < S1. Furthermore, we see that the preference for ¬expensive is the most prob-
lematical.

Now suppose after further discussion, Φ1
2 is changed to Φ1

3 by participant 1, Φ2
2 to Φ2

3, and Φ3
2 to

Φ3
3, as follows.

Φ1
3 = {red ∨ black, sporty ∨ offRoad}

Φ2
3 = {interestFreeCredit, diesel}

Φ3
3 = {sporty ∨ offRoad, bigCapacity}

This final situation is captured by ∆3.

∆3 = Ψ ∪ Φ1
3 ∪ Φ2

3 ∪ Φ3
3

Let S3 be the scoring function for ∆3. We see that S3 < S2. Also for all Γ ∈ ∆3, we have S3(Γ) = 0.
So ∆3 could be regarded as an acceptable end-point.

In the above example, we see that the scoring functions allow us to focus on the more problematical
data, and use this to facilitate conflict resolution.

5 Characterising scoring functions

In this section, we show how scoring functions are a concise and yet expressive encodation of the
nature of the inconsistencies that arise in a set of formulae.

5.1 Properties of scoring functions

We make a few simple observations regarding scoring functions.

Proposition 5.1 For ∆ ∈ D, where S is the scoring function for ∆,

S(Core(∆)) = S(∆) = |MI(∆)|
S(Free(∆)) = 0

From the scoring function for a database ∆, it is straightforward to calculate the cardinality of
Free(∆) and Core(∆).

Proposition 5.2 If ∆ ∈ D and S is a scoring function for ∆, then

|Free(∆)| = |{α ∈ ∆ | S({α}) = 0}|
|Core(∆)| = |{α ∈ ∆ | S({α}) 6= 0}|
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There is no simple counterpart to these propositions for determining the cardinality of the set of
maximally consistent subsets of a database directly from the scoring function for the database.

Proposition 5.3 Let ≤ be the usual ordering relation over N. For all ∆ ∈ D, and Γi,Γj ∈ ℘(∆),
where S is the scoring function for ∆,

S(Γi ∩ Γj) ≤ min({S(Γi), S(Γj)})

max({S(Γi), S(Γj)}) ≤ S(Γi ∪ Γj)

Note, S(Γi) + S(Γj) ≤ S(Γi ∪ Γj) does not necessarily hold as illustrated below.

Example 5.1 Let S be the scoring function for ∆, and let Γ1 = {¬α, α ∧ β}, and let Γ2 =
{¬α, α ∧ ¬β}, and let ∆ = Γ1 ∪ Γ2. So S(Γ1) = S(Γ2) = 2, but S(Γ1 ∪ Γ2) = 3.

Also, a pair of scoring functions may agree on all singleton sets modulo some bijection, but this
does not necessarily mean the scoring functions are equal as illustrated below.

Example 5.2 Consider ∆1 and ∆2 below. Let S1 be the scoring function for ∆1 and S2 be the
scoring function for ∆2.

∆1 = {α, (¬α ∨ ¬β) ∧ φ, β, (¬α ∨ ¬β) ∧ ψ}
∆2 = {¬α, α, α ∧ β,¬β}

For singleton sets Γ, S1(Γ) = S2(f(Γ)), where f is a bijection defined as follows f({α}) = ¬α,
f({(¬α ∨ ¬β) ∧ φ}) = α, f({β}) = α ∧ β, and f({(¬α ∨ ¬β) ∧ ψ}) = ¬β. Hence, S1({α}) =
S2({¬α}) = 2, S1({(¬α ∨ ¬β) ∧ φ}) = S2({α}) = 1, S1({β}) = S2({α ∧ β}) = 2, and S1({(¬α ∨
¬β) ∧ ψ}) = S2({¬β}) = 1. However, S1(∆1) 6= S2(f(∆1)). Since S1(∆1) = 2 and S2(∆2) = 3.
There are a further three bijections f where S1(Γ) = S2(f(Γ)) for each singleton set Γ, but none
where S1(∆1) = S2(f(∆2)).

5.2 Properties of score orderings

The following two results indicate the implicit constraints on a pair of databases for one to be
more inconsistent than the other.

Proposition 5.4 For each n ∈ N, the score ordering ≤ over Dn is reflexive and transitive, but
not antisymmetric.

Proposition 5.5 Let ∆i,∆j ∈ Dn, where Si is a scoring function for ∆i, and Sj is a scoring
function for ∆j. If Si ≤ Sj holds, and Sj ≤ Si holds, then there is a bijection f from ℘(∆i) to
℘(∆j) such that for all Γ ∈ ℘(∆i), Si(Γ) = Sj(f(Γ)).

Proof: We assume there is a bijection f : ℘(∆i) 7→ ℘(∆j), such that ∀Γ ∈ ℘(Γi) Si(Γ) ≤ Sj(f(Γ)),
and there is a bijection f ′ : ℘(∆i) 7→ ℘(∆j), such that ∀ ∈ Γ℘(∆i) Si(Γ) ≥ Sj(f

′(Γ)). It is no loss
of generality to assume that for each Γ ∈ ℘(∆i), we have Si(Γ) = Sj(f

′(Γ)) iff Si(Γ) = Sj(f(Γ)).
Let E(∆i) = {Γ ∈ ℘(∆i) | Si(Γ) = Sj(f(Γ))}, and E′(∆i) = {Γ ∈ ℘(∆i) | Si(Γ) = Sj(f

′(Γ))}. So
E(∆i) = E′(∆i). Also let N(∆i) = {Γ ∈ ℘(∆i) | Si(Γ) < Sj(f(Γ))}, and N ′(∆i) = {Γ ∈ ℘(∆i) |
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Si(Γ) > Sj(f
′(Γ))}. So N(∆i) = ℘(∆i)−E(∆i), and N ′(∆i) = ℘(∆i)−E′(∆i). Hence, N(∆i) =

N ′(∆i). But this is only possible, if N(∆i) = N ′(∆i) = ∅. As a result, E(∆i) = E′(∆i) = ℘(∆i).
Therefore, ∀Γ ∈ ℘(∆i) Si(Γ) = Sj(f(Γ)) = Sj(f

′(Γ)). ✷

The following two results show in part how a score ordering can be viewed as an aggregation
of parameters including the relative number of minimally inconsistent formulae and the relative
number of free formulae.

Proposition 5.6 For n ∈ N, and ∆i,∆j ∈ Dn, if Si is the scoring function for ∆i, and Sj is the
scoring function for ∆j, then

Si ≤ Sj implies |MI(∆i)| ≤ |MI(∆j)|

Note, the converse does not hold.

Proof: If Si ≤ Sj , then there is a bijection f such that Si(∆i) ≤ Sj(f(∆j)), and hence |MI(∆i)| ≤
|MI(∆j)|. As a counterexample for the converse, consider the sets ∆1 = {α,¬α, α→ β,¬β}, and
∆2 = {α,¬α, β ∧ ¬β, γ ∧ ¬γ}. If S1 is the scoring function for ∆1, and S2 is the scoring function
for ∆2, then S1 6≤ S2 and S2 6≤ S1.✷

Proposition 5.7 For n ∈ N, and ∆i,∆j ∈ Dn, if Si is the scoring function for ∆i, and Sj is the
scoring function for ∆j, then

Si ≤ Sj implies |Free(∆i)| ≥ |Free(∆j)|

Note, the converse does not hold.

Proof: If Si ≤ Sj , then there is a bijection f such that ∀Γ ∈ ∆i, Si(Γ) ≤ Sj(f(Γ)). This implies
∀Γ ∈ ∆i if Sj(f(Γ)) = 0, then Si(Γ) = 0. Finally this implies |Free(∆i)| ≥ |Free(∆j)|. As a
counterexample for the converse, let ∆1 = {α ∧ ¬α, β ∧ ¬β, γ} and ∆2 = {φ,¬φ ∨ ψ,¬ψ}. Hence,
|Free(∆1)| > |Free(∆2)|, but there is no bijection such that S1 ≤ S2 holds. ✷

With the same assumptions as those for Proposition 5.6, we do not get that Si ≤ Sj implies
|MC(∆i)| ≤ |MC(∆j)| or that it implies |MC(∆i)| ≥ |MC(∆j)|. This is captured in the following
example.

Example 5.3 Consider ∆1 = {α, β} and ∆2 = {α,¬α}. So S1 ≤ S2 and |MC(∆1)| ≤ |MC(∆2)|.
Now consider ∆3 = {α,¬α} and ∆4 = {β∧¬β, γ∧¬γ}. So S3 ≤ S4 and |MC(∆3)| ≥ |MC(∆4)|.

5.3 Comparison with ⊥-isomorphisms

Another approach to characterizing inconsistency in sets of formulae is based on inconsistency
isomorphisms. In this, we provide a way to say that a pair of databases are equivalent with regard
to inconsistency. This is based on the structure of the minimally inconsistent subsets of each set
including the number and overlap of the minimally inconsistent subsets.

Definition 5.1 Let n ∈ N, and ∆i,∆j ∈ Dn, and ∆i and ∆j are isomorphic with respect to

inconsistency iff there is a bijection h : ∆i 7→ ∆j such that for each subset {φ1, .., φp} of ∆i the
following equivalence holds:

{φ1, .., φp} ⊢ ⊥ iff {h(φ1), .., h(φp)} ⊢ ⊥
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If ∆i and ∆j are isomorphic with respect to inconsistency, then we say ∆j is an inconsistency

isomorphism (abbreviated to ⊥-isomorphism) of ∆i.

Example 5.4 The following two sets are isomorphic with respect to inconsistency:

∆1 = {α,¬α, α→ β,¬β}
∆2 = {α ∧ δ,¬α,¬α ∨ β,¬β}

Consider the bijection h(α) = α ∧ δ, h(¬α) = ¬α, h(α→ β) = ¬α ∨ β, and h(¬β) = ¬β.

Example 5.5 The following two sets are not isomorphic with respect to inconsistency:

∆1 = {α,¬α}
∆2 = {α ∧ ¬α, β}

Example 5.6 The following two sets are isomorphic with respect to inconsistency:

∆1 = {α ∧ β,¬(α ∧ β) ∨ γ,¬γ}
∆2 = {φ, φ→ ψ,¬ψ}

Consider the bijection h(α ∧ β) = φ, h(¬(α ∧ β) ∨ γ) = φ→ ψ, and h(¬γ) = ¬ψ.

Establishing that a pair of databases are isomorphic with respect to inconsistency allows for a
number of inferences regarding their relationship.

Proposition 5.8 For n ∈ N, and ∆i,∆j ∈ Dn, if ∆i and ∆j are isomorphic with respect to
inconsistency then the following equivalences hold, with a bijection h : ∆i 7→ ∆j.

{φ1, .., φp} ∈MC(∆i) iff {h(φ1), .., h(φp)} ∈MC(∆j)
{φ1, .., φp} ∈MI(∆i) iff {h(φ1), .., h(φp)} ∈MI(∆j)

Proposition 5.9 For n ∈ N, and ∆i,∆j ∈ Dn, if Si is the scoring function for ∆i, and Sj is the
scoring function for ∆j, then the following equivalence holds.

∆i and ∆j are ⊥-isomorphisms iff Si ≃ Sj

Proof: (⇒) If ∆i and ∆j are isomorphic with respect to inconsistency, then ∆i and ∆j are
identical with respect to their inconsistent subsets modulo the differences in names as cap-
tured by the bijection between the two sets of formulae. Hence, for each {φ1, .., φp} ⊆ ∆i,
Si({φ1, .., φp}) = Sj({h(φ1), .., h(φp)}). So if we let f({φ1, .., φp}) = {h(φ1), .., h(φp)}, then for
each {φ1, .., φp} ⊆ ∆i, Si({φ1, .., φp}) = Sj(f({φ1, .., φp})). (⇐) Assume Si ≃ Sj . So there is a
bijection f : ℘(∆i) 7→ ℘(∆j) such that ∀Γ ∈ ℘(∆i) [Si(Γ) ≤ Sj(f(Γ))] and there is a bijec-
tion f : ℘(∆j) 7→ ℘(∆i) such that ∀Γ ∈ ℘(∆j) [Sj(Γ) ≤ Si(f(Γ))]. This implies, by Propo-
sition 5.5, there is a bijection f : ℘(∆i) 7→ ℘(∆j) such that ∀Γ ∈ ℘(∆i) [Si(Γ) = Sj(f(Γ))].
So ∀{φ1, .., φp} ∈ ℘(∆i), let f({φ1, .., φp}) = {h(φ1), .., h(φp)}, and hence there is a bijection
h : ∆i 7→ ∆j such that {φ1, .., φp} ⊢ ⊥ iff {h(φ1), .., h(φp)} ⊢ ⊥. Therefore, ∆i and ∆j are
⊥-isomorphisms. ✷

The equivalence identified in Proposition 5.9 shows that the scoring functions subsume the ⊥-
isomorphisms.
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5.4 Comparison with the MI function

The scoring function for a database ∆ encodes the membership of the minimally inconsistent
subsets of ∆. In this section, we consider generating MI(∆) directly from the scoring function for
∆. To do this, we need to use the scoring functions to eliminate sets from ℘(∆) that are not in
MI(∆). Each Γ ∈ ℘(∆) can be classified as exactly one of five types of set.

1. Γ contains free items. Free items are formulae that are in Free(∆) and so are not in any
minimally inconsistent subset of ∆. These can be identified and eliminated easily by the
scoring function since these items, and only these items, have score 0 as a singleton set.

2. Γ contains a mixed pair. For a set of formulae ∆, {γ1, γ2} ∈ ℘(∆) is a mixed pair iff γ1 and
γ2 are not free items and they do not appear in the same minimally inconsistent subset of
∆. So any set containing a mixed pair is not a minimally inconsistent subset of ∆.

3. Γ is a combi set. A combi set of ∆ is a non-singleton set Γ ∈ ℘(∆) such that (1) each
immediate subset2 of Γ is in MI(∆) and (2) Γ does not contain a mixed pair.

4. Γ is strict subset of a minimally inconsistent subset

5. Γ is a minimally inconsistent subset

These five types of set are disjoint, and they cover all possibilities for ℘(∆). We illustrate some of
these types in the following examples.

Example 5.7 Let ∆ = {α,¬α, β}. Here, S({β}) = 0, and so {β}, {α, β} and {α,¬α, β} contain
free items.

Example 5.8 Let ∆ = {α,¬α, β,¬β}. Here there are four mixed pairs in ℘(∆) which are {α, β},
{α,¬β}, {¬α, β}, and {¬α,¬β}.

Example 5.9 Let ∆= {¬α, α∨β,¬β, β∧γ,¬δ, δ}. Mixed pairs in ℘(∆) include {¬δ,¬α}, {¬α, β∧
γ} and {β ∧ γ, δ}.

Example 5.10 Let ∆= {α ∧ ¬α, β ∧ ¬β}. There is one mixed pair in ℘(∆) which is ∆.

Example 5.11 Let ∆ = {¬α, α ∧ β, α ∧ ¬β}. So ∆ is a combi set of ∆.

Example 5.12 Let ∆ = {¬α1 ∧ (α2 ∨α4),¬α2 ∧ (α1 ∨α3),¬α3 ∧ (α2 ∨α4),¬α4 ∧ (α1 ∨α3)}. So
∆ is a combi set of ∆.

The process for generating MI(∆) is involved, but the aim is really to demonstrate the express-
ibility of scoring functions. We sketch the process as follows, where we start with any database ∆,
and go through the following four steps eliminating elements of ℘(∆):

1. To remove sets containing free items, remove sets {α} ∈ ℘(∆), where S({α}) = 0, and then
remove any supersets of {α}.

2For a set Γ, an immediate subset of a set Γ′ ⊂ Γ is such that Γ\Γ′ is a singleton set.
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2. To remove sets containing mixed pairs, we use the following means of identification: {γ1, γ2}
is a mixed pair of ∆ iff S({γ1, γ2}) = S({γ1}) + S({γ2}). Any sets containing mixed pairs
should be removed. The motivation for this is that γ1 and γ2 do not appear together in
any minimally inconsistent subset iff the set of minimally inconsistent subsets removed from
℘(∆) by removing γ1 is disjoint from the set of minimally inconsistent subsets removed from
℘(∆) by removing γ2.

3. To remove combi sets, we use the following means of identification: For a non-singleton set Γ,
S(Γ) = |Γ| iff Γ is a combi set. The motivation for this is that Γ has |Γ| immediate subsets,
and so if each is in MI(∆), then S(Γ) = |Γ|. Furthermore, if S(Γ) = |Γ|, and Γ is not a
singleton set, and Γ contains no mixed pairs, then each member of Γ appears with every
other member of Γ in a minimally inconsistent subset of ∆, and no formula in ∆\Γ is in any
of these minimally inconsistent subsets, and so every immediate subset of Γ is in MI(∆).

4. The remaining items from ℘(∆) are sets that are subsets of minimally inconsistent subsets of
∆. So the maximally inconsistent subsets are the maximal items according to the ⊆ relation.

To illustrate this process, consider the following examples.

Example 5.13 Let ∆ = {α,¬α ∧ β,¬α ∧ γ}. Here the scoring function is:

S(∆) = 2 S({α,¬α ∧ β}) = 2 S({α,¬α ∧ γ}) = 2
S({¬α ∧ β,¬α ∧ γ}) = 2 S({α}) = 2 S({¬α ∧ β}) = 1

S({¬α ∧ γ}) = 1

So the sets containing mixed pairs are {¬α ∧ β,¬α ∧ γ} and ∆. Also there are no combi sets in
℘(∆). So after removing these sets, the remainder of ℘(∆) is {{α,¬α∧β}, {α,¬α∧γ}, {α}, {¬α∧
β}, {¬α∧γ}}. There are two maximal elements here, and so MI(∆) = {{α,¬α∧β}, {α,¬α∧γ}}.

Example 5.14 Let ∆ = {α,¬α ∧ β,¬α ∧ ¬β}. Here the scoring function is:

S(∆) = 3 S({α,¬α ∧ β}) = 3 S({α,¬α ∧ ¬β}) = 3
S({¬α ∧ β,¬α ∧ ¬β}) = 3 S({α}) = 2 S({¬α ∧ β}) = 2

S({¬α ∧ ¬β}) = 2

So there are no mixed pairs in ∆. But there is a combi set which is ∆. After removing the combi set,
the remainder of ℘(∆) is {{α,¬α∧β}, {α,¬α∧¬β}, {¬α∧β,¬α∧¬β}, {α}, {¬α∧β}, {¬α∧¬β}}.
There are three maximal elements here, and so MI(∆) = {{α,¬α∧β}, {α,¬α∧¬β}, {¬α∧β,¬α∧
¬β}}.

We stress the aim of showing that we can generate MI(∆) from the scoring function of ∆ is to
illustrate the expressivity of scoring functions.

5.5 Syntax sensitivity

Clearly, scoring functions are syntax sensitive. As a result of this sensitivity, scoring functions
may also be regarded as being prone to semantic insensitivity. To illustrate semantic insensitivity,
consider the following two examples.

Example 5.15 Consider ∆1 and ∆2 below. Let S1 be the scoring function for ∆1 and S2 be the
scoring function for ∆2.

∆1 = {α,¬α}
∆2 = {α ∧ β,¬α ∧ β}

12



Here, S1 ≃ S2 and so the scoring functions do not differentiate ∆1 and ∆2. Yet it could be argued
that semantically ∆2 implies more (such as if paraconsistent logic inference were used) than ∆1.

Example 5.16 Consider ∆1 and ∆2 below. Let S1 be the scoring function for ∆1 and S2 be the
scoring function for ∆2.

∆1 = {α ∧ β ∧ γ, α ∧ ¬β ∧ γ,¬α ∧ β ∧ ¬γ}
∆2 = {α ∧ β ∧ γ, α ∧ ¬β ∧ γ,¬α ∧ β ∧ γ}

Here, the formulae in ∆1 and ∆2 are pairwise inconsistent, and the resulting scoring functions
are such that S1 ≃ S2. It may be argued that ∆2 is less inconsistent than ∆1 since all formulae in
∆2 agree on γ.

In response to the arguments raised in Example 5.15 and 5.16, we believe that this kind of se-
mantic insensitivity is useful in some applications. We believe that when a connective is used, it
is used with some intent. So for example, whilst α ∧ β and α, β are semantically equivalent, we
need to differentiate them also. This intent depends on the applications area, but to illustrate in
negotiation, consider a strategy for weakening the preferences (represented by a set of classical
formulae) of an agent is take a subset of the preferences. So if an agent starts with {α ∧ β} as its
preferences then the only possible weakening (using the ⊆ relation) is {}. Whereas if the agent
starts with {α, β} then weakenings also include {α} and {β}. In this application, the preference
α ∧ β is intended to mean that α ∧ β must occur together, and so if the preference α is dropped
then so is the preference β.

The general conclusion we draw from this discussion is that the syntax sensitivity, and the resulting
semantic insensitivity, found in scoring functions is useful in some applications.

6 Discussion

In this paper, we have proposed a framework for characterizing inconsistency that can be used
in processes for conflict resolution. For example, when a series of resolution steps are taken to
remove all inconsistencies in some multi-participant negotiation, then score ordering can be used
to ensure each resolution step is decreasing the degree of inconsistency. As another example, in
merging heterogeneous sources we may choose to ignore a source because it exceeds some threshold
of inconsistency in the score ordering.

Currently, we are investigating the incorporation of weighting of subsets of a database so that we
can view some inconsistencies as more significant than others. For example, in a report on a football
match, an inconsistency with regard to the final score is more significant than an inconsistency
with regard to the name of the player who scored the most goals.

We are also investigating the use of techniques for consistency checking to enable scoring func-
tions to be more efficiently obtained for any given database. Consistency checking is inherently
intractable in the propositional case. To address this problem, we can consider using (A) tractable
subsets of classical logic (for example binary disjunctions of literals [GJ79]), (B) heuristics to direct
the search for a model3 (for example in semantic tableau [OS88], GSAT [SLM92], and constraint
satisfaction [DP87]), and (C) formalization of approximate consistency checking based on notions
described below, such as approximate entailment and partial consistency.

3Heuristic approaches can be either complete such as semantic tableau or incomplete such as in the GSAT

system. Whilst in general, using heuristics to direct search has the same worst-case computational properties as

undirected search, it can offer better performance in practice for some classes of theories. Note, heuristic approaches

do not tend to be oriented to offering any analysis of theories beyond a decision on consistency.
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Approximate entailment Proposed in [Lev84], and developed in [SC95, Kor01], classical en-
tailment is approximated by two sequences of entailment relations. The first is sound but not
complete, and the second is complete but not sound. Both sequences converge to classical
entailment. For a set of propositional formulae ∆, a formula α, and an approximate entail-
ment relation |=i, the decision of whether ∆ |=i α holds or ∆ 6|=i α holds can be computed
in polynomial time.

Partial consistency Consistency checking does not necessarily involve an exponential search
space. Furthermore, consistency checking for a set of formulae ∆ can be prematurely termi-
nated when the search space exceeds some threshold. When the checking of ∆ is prematurely
terminated, partial consistency is the degree to which ∆ is consistent. This can be measured
in a number of ways including the proportion of formulae from ∆ that can be shown to form
a consistent subset of ∆. Maximum generalized satisfiability [Pap94] may be viewed as an
example of this.

Probable consistency Determining the probability that a set of formulae is consistent on the
basis of polynomial time classifications of those formulae. Classifications for the propositional
case can be based on tests including counting the number of different propositional letters,
counting the multiple occurrences of each propositional letter, and determining the degree
of nesting for each logical symbol. The more a set of formulae is tested, the greater the
confidence in the probability value for consistency/inconsistency, but this is at the cost of
undertaking the tests.

Identifying approximate consistency for a set of formulae ∆ is obviously not a guarantee that ∆
is consistent. However, approximate consistency checking is useful because it helps to focus where
problems possibly lie in ∆, and to prioritize resolution tasks.
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