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Abstract

Handling inconsistency is an increasingly important issue in data and knowledge engi-

neering. A number of logic-based proposals have been made for handling aspects of incon-

sistency in beliefs (where we use beliefs as a general term to encompass representations of

the real world) including belief revision theory, truth-maintenance, argumentation systems,

and knowledgebase merging. In contrast, there are relatively few logic-based proposals for

handling inconsistency in requirements (where we use requirements as a general term to en-

compass representations of a required world). Whilst there is a signi�cant overlap between

the issues of concern for handling inconsistency in beliefs and in requirements, there are also

some signi�cant di�erences. In this paper, we present a logic-based framework for merging

requirements from a set of ranked agents. In the following, we will present and motivate the

framework, and then compare the framework with related logic-based proposals.

1 Introduction

Requirements can be expressed by agents (human or arti�cial) in the course of addressing goals of

those agents. Often an agent does not operate in isolation. This may involve a set of agents each

with some objectives and some autonomy who need to collaborate or co-operate in order to meet

their own objectives. In this paper, we restrict consideration to some examples of human agents

buying, or building, something.

The �rst phase of building something (eg engineering a software system), or buying something,

is the requirement elicitation phase. Requirements are sentences which express some properties

that the artefact, when built, or purchased, should satisfy. The requirement elicitation phase then

consists in collecting the requirements from one or more agents.

Even in the simple case when the requirements are provided by only one agent, the problem of their

\correctness" is raised. In [Cho98], one can �nd the formal de�nition of requirement correctness.

Roughly speaking, the requirements are correct if and only if they do not specify an artefact which
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cannot be built, because of some domain constraints, and they do not specify an artefact which,

even if it can be built, will violate some regulations.

In the case where several agents are involved in the process of expressing requirements about an

artefact, the problem of requirements merging is raised. And, of course, even in this case, the

problem of the correctness of the whole requirements set is also raised. In other words, even if the

requirements set provided by each agent is independently correct, it may happen that collecting

them leads to an incorrect set of requirements. We will also say \incompatible" requirements. Let

us give an example in order to illustrate intuitively this problem.

Example 1.1 Consider that two agents, named 1 and 2, express requirements about a house to

be built. Assume that agent 1 requires that: (i) The house to be built must have white external

walls; and (ii) The house must be big. Assume that agent 2 requires that: (i) The house must have

external walls in brick; (ii) There must be a garden around the house; (iii) The house must be

downtown; and (iv) The house must be less than 100 000 dollars.

These requirements may be globally \incompatible", in a given context. Assume for instance, that,

in the town where this house will be built, building a big house costs more than 100 000 dollars.

Furthermore, assume that there is a regulation which forbids downtown houses having external

walls painted white. Then according to this context, the whole set of requirements provided by the

two agents are \incompatible": the house cannot be big and be less than 100 000 dollars. I.e, it is

impossible to build a big house less than 100 000 dollars. Furthermore, even if it could be built,

this house would violate the regulation, since downtown, external walls must not be painted in

white.

This paper addresses the problem of merging requirement sets provided by several agents. In sec-

tion 2, we present the way we have chosen for representing the information which are pertinent

to this problem: the requirements, the domain constraints and the regulations. And we intro-

duce the notion of compatible requirements. In section 3, we assume that the agents have the

opportunity to express preferences on their own sets of requirements. This notion of preference

between requirements is semantically characterized in terms of preferred sets of worlds, and also

syntactically characterized in terms of a set of formulae which represents a set of compatible re-

quirements. Section 4 addresses the problem of merging requirements from several agents. We �rst

de�ne the notion of compatible merged requirements. In most cases in practice, merged require-

ments, provided by several agents, will not be compatible. This raises the need of strategies for

getting compatible requirements from some incompatible merged requirements. We present two

based on the assumption that the agents can be ranked according to a total order. In section 5,

we provide a comparison with related logical approaches | in particular belief revision theory,

knowledgebase merging, and logical inferencing with inconsistent information. Finally in section

6, we discuss issues of applying the framework | in particular handling agents that are not totally

ranked, expectations on merges in practice, and on handling contingent inconsistencies that may

arise in practice.

2 Representing information for merging

When addressing the problem of merging requirements, there is the the problem of formally

representing the requirements. In addition, as mentioned in the introduction, we also need to

represent two other kinds of information pertinent to the problem.

The second kind of information which needs to be represented is called \domain constraints".

These are sentences which express what is true in any instance of the real world. We call them
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\domain constraints" because of course, they depend on the domain of application. For instance,

if the artefact to be built is a house, then the domain constraints are relative to the domain of

architecture. For instance, they express that a level is more or less 3 meters high; the depth of the

foundation depends, by a speci�c function, of the building height and the material it is made of.

And so on. If the artefact to be designed is a plane, then the domain constraints are those of uid

mechanics, geometry, structure and stability theories.

Finally, the third kind of information which needs to be represented is called \regulations". These

are sentences which express what is obligatory, permitted or prohibitted in the considered domain

i.e, the domain relative to the artefact to be designed. For instance, if the artefact to be designed

is a house, then several regulations must be taken into account. There is the regulation speci�c

to the town in which the house will be built. Such a regulation for instance, de�nes the minimal

distance between a house and the boundaries of the land, or between the house and the street. It

also de�nes the maximal height of the houses and so on.

Below, we present the way we formalize requirements, domain constraints and regulations. In this

paper, we have chosen to use classical propositional logic to represent this information. We are

aware of the fact that modal logics are more appropriate if one wants to de�ne a logic for reasoning

with all these di�erent types of information. For instance, in [Cho98], several modal operators are

introduced in order to distinguish between requirements, constraints and regulations. The di�erent

axioms associated with these modal operators are then collected together in order to de�ne a logic.

However, in the present paper, our aim is not to de�ne a logic but only to give a semantical

characterization of what are compatible merged requirements and how to get them. Any strategy

which will be presented in section 4 could, of course, leads to the de�nition of a logic. And for

doing this, using modal logics will be necessary. But we must insist on the fact that these logics

are not yet de�ned.

2.1 Representing requirements

In this work, we consider that a requirement set, provided by an agent, is a consistent set of

propositional formulae which express the properties that, according to this agent, the object should

satisfy.We restrict to consistent sets since it is reasonable to assume that the agent does not require,

even implicitly, a property and its negation.

Let us denote L the set of formulae of a propositional language.

De�nition 2.1 The requirement set provided by the agent x is denoted �

x

and de�ned as a �nite

consistent subset of L.

Example 2.1 In the example given in introduction, there are two requirement sets:

�

1

= fbig house; white wallsg

�

2

= fbrick walls; garden; downtown; less 100000g.

2.2 Representing domain constraints

Domain constraints are sentences which express what is necessarly true in the real world i.e, what

is true in any instance of the real world. As said previously, in this paper, we consider that domain

constraints are expressed by propositional formulae. This leads to the following de�nition.
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De�nition 2.2 The set of domain constraints is denoted Dom and de�ned as a consistent subset

of L.

Example 2.2 The domain constraint set of example 1.1 can be represented by: Dom = fbig house !

:less 100000g

2.3 Representing regulations

Regulations are sets of sentences which express properties which are obligatory (or by duality

whose negation are forbidden) or permitted in the real world. In fact, for the problem of checking

the compatibility of requirements, and the compatibility of merged requirements, we only need

to focus on obligations and prohibitions. Indeed, the problem is to check if the requirements do

not specify an object whose some properties are forbidden (or by duality whose negation are

obligatory). This is why we can consider only the parts of the regulations which de�ne obligations

(thus, prohibitions) and represent them by propositional formulae which express what is obligatory

(or by duality, what is forbidden).

De�nition 2.3 A regulation is denoted Reg and de�ned as a consistent subset of L.

We restrict to a consistent subset since we assume that a regulation is not self-contradictory i.e,

it does not oblige both something and its contrary.

Example 2.3 The regulation of the example 1.1, can be represented by:

Reg = fdowntown! :white walls; g

De�nition 2.4 (Coherence assumption)This is the assumption that Dom[Reg is consistent.

That is, the regulations are consistent with the domain constraints.

This assumption is legitimate since regulations are supposed to be compatible with the domain

constraints. I.e, anything which is obligated (i.e, j= Reg ! a) must be possible (i.e, 6j= Dom! :a).

The main reason we separate Dom and Reg is that the information these sets provide are of

di�erent types. Of course, here, we restrict the generality by assuming that they can both be

represented in classical propositional logic. But, if we wanted to be more general, these two types

of information should be represented by more complicated and di�erent logics. For instance, mod-

elling norms in regulations implies using a deontic logic and the kind of deontic logic depends on

the type of the norms we want to model. Furthermore, for conicts on requirements resolution, we

need to be clear about the di�erent types of information held by an agent, and so structuring the

di�erent types of information should facilitate analysis or negotiation processes that are required

in the case where the agents involved do not agree on a suggested merge of the requirements.

Notice that, if we do use di�erent logics for the domain constraints and regulations then we need

a framework for integrating the reasoning. There is a range of possibilities. A simple option is just

assuming the inferential closure of the domain constraints and of the regulations, and then just

querying the closure as a database. A more sophisticated option is a hybrid reasoning system such

as based on �bred semantics [Gab99].
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2.4 Compatibility of requirements

Finally, we focus on the notion of compatibility of requirements.

De�nition 2.5 Let �

x

be a requirement set provided by an agent x. Let Dom be a domain con-

straint set and Reg be a regulation. �

x

is correct with respect to Dom and Reg i� �

x

[Dom[Reg

is consistent. We will also say that the requirements in �

x

are compatible given Dom and Reg.

There is a close relationship between �nding a compatible set of requirements and �nding a set of

beliefs consistent with integrity constraints. We discuss this relationship with respect to speci�c

proposals in section 5.

3 Preferences over requirements

In this section, we extend the formalization given in 2.1, so that the user can express preferences on

his requirements. This extension is motivated by the fact that, in the general case, the requirements

expressed by an agent may be incompatible given the constraints and the regulations. This means

that some of his requirements must be rejected. The intuitive idea is to use the preference of

the user, so that the most preferred requirements are kept if possible (given the constraints and

regulations).

However, we insist on the fact that, even when ordered, all the requirements are required by the

user. I.e, if it was possible, given the constraints and the regulations, the user would prefer that

the object being built or bought satis�es all his requirements. Preferences are a form of meta-level

information that are used to help combine or merge object-level information [CH97].

3.1 Representation of preferences

The set of requirements of an agent x is then represented as a set of formulae �

x

together with

a preference over these formulae. The preference is linear and total so the requirements for an

agent x together its ordering can be represented as a tuple denoted �

x

. At each point in the

ordering, only a single formula is assigned. (If more then one formula is required at the point, the

conjunction of them is used).

De�nition 3.1 Let �

x

= f�

1

; :::; �

n

g be the requirements for agent x. The tuple �

x

= [�

1

; :::; �

n

]

is called the position for agent x. Furthermore, �

x

contains exactly the same formulae as �

x

and

the ordering is such that �

i

occurs to the left of �

j

in the tuple i� �

i

is preferred to �

j

. Therefore a

position for agent x implicitly de�nes a linear (irreexive, antisymmetric, and transitive) ordering

relation over �

x

called the preference relation for agent x.

De�nition 3.2 Let M be the set of classical propositional models. For a formula �, a

delineation, denoted [[�]], is the set of models that satisfy �:

[[�]] = fM 2M jM j= �g

More generally,

[[�

1

; ::; �

n

]] = fM 2M jM j= �

1

and � � � and M j= �

n

g
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Let Q be the set of delineations where,

Q = f[[�

1

; ::; �

n

]] j �

1

; ::; �

n

2 Lg

Clearly, [[>]] =M and [[?]] = ;.

3.2 Semantical characterization of preferences

This section gives a semantical characaterization in terms of sets of models, of the position of an

agent, that is, the semantical characterization of his preferences over a set of requirements. Let us

�rst illustrate intuitively the semantics by giving examples.

Example 3.1 Let �

x

= [�; �]. First, this means that the agent has expressed two requirements �

and �, i.e, he expects that the object to be built will satisfy the two properties � and �. Secondly,

this means that the agent prefers � to �. I.e, the agent would like the object to satisfy both � and

�. But, if it is not possible (because of the constraints and the regulations) then the agent accepts

that the object sati�es � only, (and thus :�). But if it is not possible (because of the constraints

and the regulations) then he accepts that the object sati�es � only (and thus :�). Finally, at the

end, if this is not possible (because of the constraints and the regulations), then he accepts that the

object sati�es neither � nor �.

This means that the position �

x

= [�; �] leads to the following ordering over delineations :

[[�; �]]>

x

[[�;:�]]>

x

[[:�; �]]>

x

[[:�;:�]]

(where, here, >

x

denotes the order relation over delineations)

Example 3.2 Let �

x

= [�; �; ]. This position induces the following ordering on delineations:

[[�; �; ]] >

x

[[�; �;:]]>

x

[[�;:�; ]]>

x

[[�;:�;:]]

>

x

[[:�; �; ]] >

x

[[:�; �;:]] >

x

[[:�;:�; ]]>

x

[[:�;:�;:]]

The lexicographic ordering in both examples seems to be a reasonable interpretation of preferences

over a set of requirements.

We now generalize these examples and formalize the generation of the ordering over delineations

that can be obtained from a position. First, we de�ne a function, which associates any position

with a set of delineations. Then, we de�ne a linear ordering on non-empty delineations.

De�nition 3.3 Let Compromises be a function which associates any position with a set of de-

lineations, such that:

Compromises([�

1

; ::�

n

]) = f[[�

1

; ::; �

n

]] j �

1

2 f�

1

;:�

1

g and � � � and �

n

2 f�

n

;:�

n

gg

Example 3.3 Continuing 3.1, for the position [�; �], we obtain:

Compromises([�; �]) = f[[�; �]]; [[�;:�]]; [[:�; �]]; [[:�;:�]]g

De�nition 3.4 An n-place binary ordering is (N;>), where N is the set of n-digit binary numbers

(from 0 to 2

n

), and > is the usual ordering over the binary numbers. Let

N = fN j N is the set of n-digit binary numbers and n is a natural numberg
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De�nition 3.5 Let �

x

= [�

1

; ::; �

n

] be a position and let (N;>) be a binary ordering. Let C be

a function, C : N �! Q, such that for p 2 N there is C(p) 2 Q where (1) if the ith digit of the

binary number p is 1, then the ith term of the compromise is �

i

; and (2) if the ith digit of the

binary number p is 0, then the ith term of the compromise is :�

i

.

De�nition 3.6 Let �

x

= [�

1

; ::; �

n

] be a position with a n-place binary ordering (N;>). Let C be

a function de�ned by the previous de�nition. A binary relation R

x

is de�ned on Compromises(�

x

)

by: C(p) R

x

C(q) i� p > q

De�nition 3.7 Let �

x

= [�

1

; ::; �

n

] be a position. Let R

x

be the binary relation previously de�ned.

A binary relation >

x

is de�ned on Compromises(�

x

) n f;g by: let E and F be two delineations in

Compromises(�

x

) n f;g. E >

x

F i� E R

x

F .

Proposition 3.1 Let � = [�

1

:::�

n

] be a position. The relation >

x

previously de�ned is a linear

order over Compromises(�

x

) n f;g).

Proof. We prove that all the delineations in Compromises([�

1

; :::; �

n

] n f;g) are di�erent.

Recall that a delineation is the set of models of a set of formulas of the form fP

1

; :::; P

n

g where 8i =

1:::n; P

i

= �

i

or P

i

= :�

i

. Assume that there are two delineations in Compromises([�

1

; :::; �

n

] n

f;g) which are identical. Let us write them:

[[fP

i

j i 2 I

1

g; fP

i

j i 2 I

2

g]] = [[fP

i

j i 2 I

1

g; f:P

i

j i 2 I

2

g]]

This implies: j= fP

i

j i 2 I

1

g [ fP

i

j i 2 I

2

g ! f:P

i

j i 2 I

2

g

Thus, fP

i

j i 2 I

1

g [ fP

i

j i 2 I

2

g [ _

i2I

2

fP

i

g is inconsistent

I.e, fP

i

j i 2 I

1

g [ fP

i

j i 2 I

2

g is inconsistent,

So jjfP

i

j i 2 I

1

g [ fP

i

j i 2 I

2

gjj = ;.

This is impossible since this delineation is di�erent from ; by assumption.

Thus, all the delineations of Compromises([�

1

; :::; �

n

] n f;g) are di�erent

(End of proof)

Example 3.4 Let us return to Example 3.1, where �

x

= [�; �]. Where � and � are two proposi-

tional variables.

So, n = 2, and therefore N = f11; 10; 01; 00g. The compromises are given by C below:

C(11) = [[�; �]]

C(10) = [[�;:�]]

C(01) = [[:�; �]]

C(00) = [[:�;:�]]

So, [[�; �]] R

x

[[�;:�]], [[�;:�]] R

x

[[:�; �]], [[:�; �]] R

x

[[:�;:�]]

Finally, this gives the order: [[�; �]]>

x

[[�;:�]]>

x

[[:�; �]]>

x

[[:�;:�]]
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Example 3.5 Now assume that �

x

= [�; �_ �].

We notice that [[�;:(�_ �)]] = ;. So we get the order: [[�]] >

x

[[:�; �]] >

x

[[:�;:�]]

In the two next sections, we show that, given a set of constraints Dom and a regulation Reg, any

set of totally ordered requirements �

x

, may be associated with a set of requirements which are

compatible with Dom and Reg, even if the initial requirements were not compatible.

In section 3.3, this set of compatible requirements is semantically characterized, by the delineation

which is the maximal delineation, in Compromises(�

x

) n f;g, a model of which is also a model of

Dom [Reg.

In section 3.4, this set of compatible requirements is syntactically characterized as the result

of a recursive algorithm on the initial set of requirements. The equivalence of the semantical

characterization and the syntactical characterization is proved.

3.3 Semantical characterization of a set of compatible requirements

In this section, we show how to use the ranking >

x

over delineations obtained from a position

�

x

, in order to semantically characterize a set of requirements which are compatible given the

constraints and the regulations.

First, we show, by the following proposition, that, if �

x

is a position, at most one delineation in

Compromises(�

x

) n f;g intersects [[Dom ^Reg]].

Proposition 3.2 Let Dom be a set of constraints, Reg be a regulation and �

x

be a position.

Then, there is a non-empty delineation D, in Compromises(�

x

) such that: 9M 2 D and M j=

Dom [Reg.

Proof: If D

i

is a delineation in Compromises(�

x

) we denote d

i

a formula such that [[d

i

]] = D

i

.

We �rst prove that d

1

_ d

2

_ ::: _ d

2

n

is equivalent to true. This is obvious by de�nition of

Compromises(�

x

).

Now, assume that 8D

i

2 Compromises(�

x

); 8M 2 D

i

;M 6j= Dom [Reg. This means that 8D

i

2

Compromises(�

x

); d

i

[Dom[Reg is inconsistent. This implies that 8D

i

2 Compromises(�

x

); j=

Dom [ Reg ! :d

i

. Thus, j= Dom [ Reg ! :(d

1

_ ::: _ d

2

n

). This implies that Dom [ Reg is

inconsistent, which is impossible by the Coherence assumption.

(End of proof)

So, the set fD : D 2 Compromises(�

x

) and 9M 2 D such that M j= Dom [ Regg is not

empty. So, the maximal

1

element, of this set and for the relation >

x

, exists. It is unique since >

x

is linear on Compromises(�

x

) n f;g. Thus, the following de�nition has a meaning.

Notation. Let us denote 

x

a set of formulae such that

[[

x

]] = Max

>

x

fD : D 2 Compromises(�

x

) and 9M 2 D such that M j= Dom [Regg

1

If E is a set and > an order relation on E, then the maximal elements for > in E are fe : e 2 E and (8f 2 E;

if f > e then f = e)g
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Proposition 3.3 Let Dom be a set of constraints and Reg be a regulation. Let �

x

be the position

of agent x and 

x

de�ned as previously. Then 

x

is a set of requirements, compatible with Dom

and Reg.

Proof: 

x

is a compatible with Dom and Reg i� 

x

[Dom [Reg is consistent. That is, i� there

is a model M in [[

x

]] which is also a model of Dom [ Reg. But, this is ensured by de�nition of

[[

x

]]. So, 

x

is a set requirements compatible with Dom and Reg.

(End of proof)

This proposition shows that, given Dom and Reg, a set of ordered requirements �

x

, possibly

incompatible, can be associated with a set of requirements 

x

which are compatible with Dom

and Reg and such that [[

x

]] is the most preferred, in terms of the relation >

x

, of the delineations

of Compromises(�

x

) a model of which is also a model of Dom [Reg.

Proposition 3.4 If �

x

are compatible requirements then 

x

is equivalent to �

x

.

Proof: If �

x

is a set of compatible requirements, this implies that �

x

[Dom [Reg is consistent.

Thus, there exists a model in [[�

x

]] which is also a model of Dom [ Reg. So, because [[�

x

]] is

the maximal element in Compromises(�

x

) n f;g for >

x

, , it is then the maximal element of

fD : D 2 Compromises(�

x

) and 9M 2 D such that M j= Dom [Regg. So [[�

x

]] = [[

x

]]. This

proves that �

x

and 

x

are equivalent.

(End of proof)

Example 3.6 Let us again consider �

x

= [�; �]. Assume that Dom = f:(� ^ �)g and Reg =

;. One can notice that the requirements in �

x

are not compatible given Dom and Reg. Then,

according to the previous de�nition, one can de�ne a set of compatible requirements, 

x

such that

[[

x

]] = [[�;:�]].

Assume now that Dom = f:�g and Reg = f:�g. Then according to the de�nition, one can de�ne

a set of compatible requirements, 

x

such that [[

x

]] = [[:�;:�]].

3.4 Syntactical characterization of a set of compatible requirements

De�nition 3.8 Let �

x

= [�

1

; :::; �

n

] be the position of agent x. We de�ne n functions, f

1

; :::; f

n

,

which associate a set of formulae E such that E[Dom[Reg is consistent, with the sets f

1

(E); :::; f

n

(E)

as follows:

� If E [ f�

i

g [Dom [Reg is consistent then, f

i

(E) = E [ f�

i

g

� Else, (in such a case E [ f:�

i

g [Dom [Reg is consistent), f

i

(E) = E [ f:�

i

g

Notice that, for any �

i

and any set E such that E [Dom [Reg which is consistent, E [ f�

i

g [

Dom [Reg and E [ f:�

i

g [Dom [ Reg cannot be both inconsistent. Indeed, if it was the case,

we could infer that E [Dom [Reg is inconsistent. This justi�es why there are only two cases in

the previous de�nition.
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Proposition 3.5 Let �

x

= [�

1

; :::; �

n

] be the position of an agent x. Then f

n

(::::f

2

(f

1

(;))) is a

set of requirements which are compatible given Dom and Reg.

Proof: This proposition is proved by induction on n. The compatibility is obvious, by de�nition

of the functions f

i

's.

This proposition means that from a set of requirements expressed by an agent, and from his

preference over this set, taking the constraints and the regulations into account, one can charac-

terize syntactically, by the previous functions, a set of requirements which are compatible with

the constraints and the regulation and which optimizes the user's preference.

The following proposition shows the equivalence between the semantical characterization of a set

of compatible requirements, obtained from a position, a set of constraints and a regulation, given

in section 3.3 and the syntactical characterization given here.

Proposition 3.6 Let Dom be a set of constraints, Reg be a regulation and �

x

= [�

1

; :::; �

n

] be

the position of agent x. Then, [[f

n

(:::f

2

(f

1

(;))::)]] = [[

x

]].

Proof:

� We �rst prove that [[f

n

(:::f

1

(;)::)]] belongs to Compromises(�

x

) by proving that 8i; �

i

2

f

n

(:::f

1

(;)::) or :�

i

2 f

n

(:::f

1

(;)::).

� We then prove that 9M 2 [[f

n

(:::f

1

(;)::)]] such that M j= Dom [ Reg. This is obvious,

because, by de�nition f

n

(:::f

1

(;)) [Dom [Reg is consistent.

� Finally, we prove that [[f

n

(:::f

1

(;))]] is maximal for >

x

.

Assume the existence of a delineation, denoted [[D

0

]] (where D

0

is a set of formulae) , such

that:

(a) [[D

0

]] 2 fD : D 2 Compromises(�

x

)and9M 2 D;M j= Dom [Regg, and

(b) [[D

0

]] >

x

[[f

n

(:::f

1

(;):::)]].

If [[D

0

]] >

x

[[f

n

(:::f

1

(;):::)]], then 9i;:�

i

2 f

n

(:::f

1

(;):::) and ` D

0

! �

i

and 8j < i; �

j

2

f

n

(:::f

1

(;):::) i� ` D

0

! �

j

.

Let us denote fi(:::f1(;):::) = E

i�1

[ f:�

i

g. So by de�nition of the fi

0

s, E

i�1

[ f:�

i

g [

Dom [Reg is consistent.

Thus, E

i�1

[ f�

i

g [Dom [Reg is inconsistent.

So, 8M; if M j= E

i�1

[ f�

i

gthenM 6j= Dom [Reg.

Thus, 8M 2 [[D

0

]];M 6j= Dom [Reg. This contradicts the assumption (a).

So, such a delineation [[D

0

]] does not exist.

(End of proof)

Example 3.7 Let us consider Dom = fdowntown ! :less 100000g and Reg = fdowntown !

:white wallsg. Assume that an agent has the following position:

� = [downtown; less 100000; white walls; garden].
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This means that, by order of preference, the agent requires his house to be downtown, to be less

than 100000 dollars, to have white walls and a garden. According to the previous de�nitions, we

get the following set of requirements:

 = fdowntown;:less 100000;:white walls; gardeng

which are compatible given Dom and Reg.

Indeed, since it is impossible to build a house downtown for less than 100000 dollars, and because

the agent wants his house to be downtown more than to be less than 100000 dollars, we get a

requirement set which speci�es a house downtown but which will be more than 100000 dollars.

Furthermore since downtown it is forbidden to paint walls in white and since the agent wants the

house to be downtown more than to have white walls, then we get a requirement set which speci�es

a house downtown the walls of which will not be painted in white. Finally, nothing prevents the

user nor forbids him to have a garden, so we get a requirement set which requires a garden as

initially required.

Example 3.8 Let us consider another example with disjunctive requirements. Assume that:

� = fdowntown _ nearby station;white walls; quiet]

Dom = fnearby station! :quietg and

Reg = fdowntown! :white wallsg

The  is equivalent to:

fdowntown _ nearby station;white walls;:quietg

Thus, by taking constraints and regulations into account, we can say that any house which satis�es

fnearby station;white walls;:quietg will ful�ll the user's requirements at the best.

This also means that any house situated near a station with white walls will unfortunately not be

quiet (due to the constraint) but will satis�es the most preferred requirement (it is downtown or

near a station) and also ful�ll the second most preferred requirement: it has white walls.

One can wonder why a quiet house, situated downtown (thus with non white walls) does not suit

more the user's requirements ? In fact such a house also satis�es the most preferred requirement

(it is downtown or near a station) but it does not ful�ll the second most preferred requirement but

only the third one. This is why such a solution is not provided.

4 Merging requirements

In this section we generalize the notion of compatibility of requirements to merged requirements,

and then consider strategies for merging. We consider two strategies M1 and M2 in detail.

4.1 Compatibility of merged requirements

The de�nition of compatible requirements introduced in section 2.5 is here extended to the case

of merged requirements.

11



De�nition 4.1 Let �

1

... �

n

be requirement sets provided by some agents named 1 ... n. Let

Dom a domain constraint set and Reg a regulation. The merged requirement set is correct in

regard with Dom and Reg i� �

1

[ ::: [ �

n

is correct in with respect to Dom and Reg i.e, i�

�

1

[ ::: [ �

n

[ Dom [ Reg is consistent. We will also say that the merged requirements are

compatible given Dom and Reg.

Example 4.1 Let us come back to example 1.1 again. Obviously, the requirements of �

1

[�

2

are

not compatible given Dom and Reg. Indeed, the set as represented below is not consistent.

big house; white walls;

brick walls; garden;

downtown; less 100000;

big house! :less 100000; downtown! :white walls

The requirement elicitation phase aims to collect requirements which are compatible with the

constraints and the regulations. Indeed, as seen previously, if the requirements are not compatible

with the constraints and the regulations, this means that it will be impossible to build the object

that is being speci�ed or if it can be built, it will violate some regulation. So, if the requirement

elicitation phase leads to requirements which are not compatible (with the constraints and the

regulations), one has to identify some subset of them which are compatible. In the following

subsections, we address this problem.

4.2 Generalities about strategies for merging requirements

Several strategies can be de�ned for using the preferences the agents have expressed on their own

requirements, in order to characterize requirements which are compatible with the constraints

and the regulations. In this paper we focus on strategies based on a ranking over agents. This is

motivated by the idea that, even if, from the preferences an agent expresses on his own requirements

can be used to build a compatible set of requirements (by the process described previously) the

resulting sets of requirements can be incompatible. So, the individual preferences are not su�cient

to de�ne a global set of compatible requirements.

We claim that other \meta" information can be used to solve this problem: this is an order between

the agents. This ranking among the agents can allow someone to express a kind of importance

attributed to the di�erent agents. Let us consider an example in order to illustrate this idea.

Example 4.2 Consider a commercial research center in the process of choosing a new computer.

Since the centre depends on intellectual property with copyrights and patents, some regulations

oblige the centre to chose a computer system that ensures the con�dentiality and integrity of clas-

si�ed data. Besides that, the budget for buying the computer is limited. Before buying the computer

system, the manager asks some people for their own requirements regarding the new computer.

These people are: the computer service manager, one secretary and one researcher. These last two

people will be users of the new computer, while the �rst one will have to install it and maintain it.

Since the way these agents will use the machine are di�erent and since their particular interests are

di�erent too, the whole set of requirements may be incompatible: the secretaries, who do not know

how machines and software are built, may require things that cannot be developed. The researcher

may want an e�cient and up-to-date machine that the computer service manager does not want

to install and maintain or which is too expensive. Conversely, the computer service manager may

require a machine of the kind he knows the best but which does not suit the researcher or/and to

the secretary or which does not ensure the con�dentiality of data.
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We claim that, in such a situation, if a negotiation is not envisaged, the centre manager will make

choices by expressing priorities among the three agents. For instance, he can consider that, since

the centre is a research centre, the most important requirements about the new machine are the

ones expressed by the researcher. The other most important requirements are the ones expressed

by the secretary since one of his job is to help the researcher by writing reports, sending papers...

Finally, the least important requirements are the ones of the computer service manager.

Of course, the centre manager may express a di�erent priority among the requirements. He can

consider that the one who knows the things the best is the computer service manager, so he can

give priority to his requirements. Then he can decide that the secretary's requirements must be

ful�lled if possible, because the union of the secretaries in the centre is very strong and he does

not want a strike. Finally, requirements of the researcher are considered as the least important

because, anyway, researchers can use any kind of machine.

In the next two subsections, we consider two strategies. Unfortunately, expressing a ranking over

agents (or a total ranking) is not always possible. In such a case, we have to �nd other kind

strategies. We discuss this problem in [CH99].

4.3 Merging strategy M1

De�nition 4.2 (Merging strategy M1) Let us assume n agents, denoted 1...n, who express

requirements and preferences on them. Let us denote �

1

:::�

n

their associated positions. Let us

denote 

1

:::

n

the sets of requirements, associated with �

1

:::�

n

, compatible with the constraints

and the regulations, which have been syntactically characterized in section 3.4. Let us assume a

total order, denoted �, on the agents. For simplicity, but without loosing generality, we consider

that the ranking is: 1 � ::: � n. A new position

2

, denoted � is de�ned by: � = [

1

; :::; 

n

].

De�nition 4.3 The set of requirements obtained from merging �

1

:::�

n

and assuming the ranking

1 � ::: � n is de�ned by  associated with � and syntactically characterized in section 3.4.

This de�nes the merged requirements by a two-steps method:

� With each position, �

i

, we associate (by the syntactical charcaterization described in section

3.4 ) a set of requirements, compatible with the constraints and the regulations: 

i

.

� Then we de�ne, from these sets and the ranking over the agents 1 � ::: � n a new position:

� = [

1

; :::; 

n

]. Finally, with position �, we associate, through the same process, the set 

of requirements which are proved to be, by de�nition, compatible with the constraints and

the regulations.

Example 4.3 Let us take again the example given in the introduction and assume that the pref-

erences of each agent are the following:

�

1

= [big house; white walls]

�

2

= [less 100000; downtown; garden; brick walls].

Remember that Dom = fbig house! :less 100000g and that Reg = fdowntown! :white wallsg.

2

We should index � by the order 1 � ::: � n and by the sets 

1

:::

n

but we omit this index for clarity
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Assume that the agents are ranked as 1 � 2. Then strategy M1 leads to the following set of

requirements:  = fbig house; white walls;:(less 100000^ downtown ^ garden ^ brick walls)g.

Assume now that the agents are ranked as 2 � 1. Then strategy M1 leads to the following set of

requirements:  = fless 100000; downtown; garden; brick walls;:(big house ^ white walls)g.

4.4 Merging strategy M2

De�nition 4.4 (Merging strategy M2) Let us consider again n positions �

1

:::�

n

, such that

�

i

is [�

1

i

:::�

k

i

i

], for i 2 f1; :::; ng. Let us assume a ranking on the agents. Again, for simplicity,

but without loosing generality, we consider the ranking: : 1 � ::: � n. A new position

3

, denoted �

is de�ned by : � = [�

1

1

; :::; �

k

1

1

; :::; �

1

n

; :::; �

k

n

n

].

The results of section 3 ensure that this position � is associated with a set of requirements, com-

patible with the constraints and the regulations. This set, denoted , is syntactically characterized

by the process of section 3.4.

De�nition 4.5 As previously, the set of requirements obtained from merging �

1

:::�

n

and assuming

the ranking i

1

� ::: � i

n

is de�ned by  associated with �.

Example 4.4 Let us consider again the previous example. If the ranking over the agents is: 1 � 2,

then strategy M2 leads to the following set of requirements: fbig house; white walls;:less 10000;

:downtown; garden; brick wallsg. If the ranking is 2 � 1, then it leads to fless 100000; downtown;

garden; brick walls;:big house;:white wallsg

De�nition 4.6 Let � = [�

1

; :::; �

k

] and �

0

= [�0

1

; :::; �0

k

] be two positions. We say that they are

equivalent (denoted � � �

0

) i� 8i 2 f1:::kg j= �

i

$ �0

i

.

Proposition 4.1 Let �

1

:::�

n

be n positions and �

0

1

:::�

0

n

be n other positions. Let 

1�:::�n

(resp,

0

1�:::�n

) denote the result by strategy M2 of merging the requirements �

1

:::�

n

(resp, �

0

1

:::�

0

n

)

when the ranking on the agents is 1 � ::: � n. If 8i 2 f1:::ng;�

i

� �

0

i

, then j= 

1�:::�n

$ 0

1�:::�n

Proof: Let us write: �

i

= [�

1

i

; :::; �

k

i

i

] and �

0

i

= [�

01

i

; :::; �

0k

i

i

] for i 2 f1; :::; ng.

By proposition 3.6, 

1�:::�n

is equivalent to f

k

n

n

(:::f

1

1

(;)::) where

f

j

i

(E) = E [ f�

j

i

g if E [ f�

j

i

g [Dom [Reg is consistent and f

j

i

(E) = E [ f:�

j

i

g else.

and 

0

1�:::�n

is equivalent to f

0k

n

n

(:::f

01

1

(;)::) where

f

0j

i

(E) = E [ f�

0j

i

g if E [ f�

0j

i

g [Dom [Reg is consistent and f

0j

i

(E) = E [ f:�

0j

i

g else.

Since 8i 2 f1:::ng8j 2 f1:::k

i

g j= �

j

i

$ �

0j

i

, we have j= f

k

n

n

(:::f

1

1

(;)::)$ f

0k

n

n

(:::f

01

1

(;)::)

So j= 

1�:::�n

$ 

0

1�:::�n

(End of proof)

3

Again, we should index � by the order 1 � ::: � n and by the sets �

1

:::�

n

but we omit this index for clarity
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This proposition ensures that the strategy M2 is syntax-independent. I.e, if the agents express

di�erent but equivalent requirements ordered by the same preference, then we obtain an equivalent

set of merged requirements.

Proposition 4.2 If j= 

1

! � then j= 

1�:::�n

! �.

Proof: We have : 

1�:::�n

$ f

k

n

n

(:::f

1

n

(::::(f

k

1

1

:::f

1

1

(;):::)::)::).

By de�nition (f

k

1

1

:::f

1

1

(;):::) is included in f

k

n

n

(:::f

1

n

(::::(f

k

1

1

:::f

1

1

(;):::)::)::).

Thus any formula implied by (f

k

1

1

:::f

1

1

(;):::) is also implied by f

k

n

n

(:::f

1

n

(::::(f

k

1

1

:::f

1

1

(;):::)::)::).

So, any formula implied by 

1

is also implied by 

1�:::�n

.

(End of proof)

This proposition ensures that the set of requirements compatible with the constraints and the

regulations which are characterized by the position of the agent who is considered as the most

important, belongs to the merged requirements.

Note, that it can happen that some formula �, implied by 

2

and consistent with 

1

[Dom[Reg

is not implied by 

1�2

, although it seems to be the case. Here is a counter-example:

Example 4.5 �

1

= [a], �

2

= [b; c]. Dom = fb! :cg and Reg = f:(a ^ b)g.



1

= fag; 

2

= fb;:cg and 

1�2

= fa;:b; cg.



2

implies :c, 

1

[Dom [Reg [ f:cg is consistent but 

1�2

does not imply :c.

Indeed, :c was in 

2

because c was required by agent 2, but b was also required by agent 2 and most

preferred. Because of the constraint, c was not kept as a requirement, but :c was. When merging

the requirements from the two agents, assuming that 1 � 2, because the most preferred requirement

is now a, requirement b is rejected and requirement c now can be kept. So, :c is not kept.

5 Comparison with related logical approaches

In this section, we compare our approach with belief revision theory, knowledgebase merging

techniques, and logical inferencing with inconsistent information.

5.1 General observations

Let us make some general observations to compare and contrast the essential characteristics of

beliefs and of requirements.

Beliefs When �nding a set of beliefs consistent with a set of integrity constraints, for example

in database updating, or in a diagnostic decision-support system, there is uncertainty about

whether the beliefs hold. Deciding on which beliefs to adopt is about constructing a model

of the real-world. Some or all of the beliefs might actually be unjusti�ed, and so these beliefs
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might actually turn out to be false when checked against the real world. In �nding a set

of beliefs consistent with a set of integrity constraints, the aim is to maintain as many of

the beliefs as possible, and only allow a belief to be dropped when it violates the integrity

constraints. When a belief is dropped, the negation of the belief does not necessarily have

to be adopted.

Requirements When �nding a compatible set of requirements, there is no uncertainty about

whether the requirements hold since the choice of requirements is still in the hands of the

agents. Nothing has been committed yet. Deciding on which requirements to adopt is about

constructing a model of an idealized world, and so it is not a matter of a requirements

being true or false in the real-world. In �nding a compatible set of requirements, the aim

is to maintain as many of the requirements as possible, and only allow a requirement to

be dropped when it is inconsistent with the domain and regulation set. However, when a

requirement is dropped, the negation of the requirement is necessarily adopted.

Adopting the negation of a desired requirement in case of conict di�erentiates our approach from

the proposals on database updating, knowledgebase merging, and reasoning with maximally con-

sistent subsets of inconsistent data. Nonetheless, there are clearly signi�cant similarities between

handling beliefs and handling requirements. Therefore, in the following subsections we compare

our framework with some key proposals for handling beliefs.

5.2 Belief revision theory

The previous general observations led us to conclude that reasoning with incompatible require-

ments and reasoning with inconsistent beliefs are not exactly the same problem. In the same way,

�nding a set of compatible requirements and �nding a set of consistent beliefs are not exactly

the same problem. However, they do have some similarities and it is pertinent to compare our

approach to �nding correct requirements with that of belief revision theory [AGM85, Gar88].

The way we proceed for this comparision is the following: we �rst recall the set of postulates

which have been accepted by the community to characterize belief revision operators. We then

show that it is not possible to �t our approach into this framework. So, we turn to characterize

the requirement merging process, not as a single function, but as the iterative application of one

operator. We show that this operator satis�es the postulates for requirement revision which are

an adaptation of the belief revision postulates for our problem.

De�nition 5.1 If K is a belief state and � is a formula, then K � � is a belief state, the result

of revising K with �. We assume here classical logic with the usual de�nition for models (the

entailment relation). Note, � is a belief revision function, L is the set of all sentences in the

language and K + � = Cn(K [ f�g).

K1 K � � is a deductively closed theory

K2 � 2 K � �

K3 K � � � K + �

K4 If :� 62 K then K = � � K � �

K5 K � � = L imlies � = ?

K6 If j= �$  then K � � = K �  

K7 K � (� ^  ) � K � �+  

K8 If : 62 K � � then K � �+  � K � (� ^  )

We would like to view our framework as �tting into the framework of belief revision theory.

However, we have the notion of a position and so require some form of iterated belief revision where
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the consistency Dom [ Reg takes priority over all the formulae in the position, and furthermore

where Dom [ Reg is not an inference unless it is also expressed as a requirement. To address

this, we require an alternative set of postulates, and so we propose the following requirements

revision postulates. For requirements revision, we suggest the need for an iterative revision that

is quali�ed by consistency with a formula X. The motivation for each of R1; :::R8 corresponds to

the motivation for each of K1; ::;K8 respectively. In addition, we add R9.

De�nition 5.2 If K, X, and � are formulas, then K �

X

� is a revised formula, the result of

revising K with �, with respect to X. R1 to R9 are requirements revision postulates:

R1 K �

X

� is a formula

R2 � 2 K �

X

�

R3 If K ^ � ^Xis consistent then K �

X

� � K + �

R4 If K ^ � ^X is consistent, then K + � � K �

X

�

R5 If K �

X

� ^X is inconsistent then � ^Xis inconsistent

R6 If j= �$  then K �

X

� = K �

X

 

R7 If K ^ � ^  ^Xis consistent, then K �

X

(� ^  ) � (K �

X

�) +  

R8 If (K �

X

�) ^  ^Xis consistent, then (K �

X

�) +  � K �

X

(� ^  )

R9 (K 2 K �

X

�) or (:K 2 K �

X

�)

We now consider the following particular function.

De�nition 5.3 The operator �

DR

: L�L! L is de�ned as follows, where DR is the conjunction

of formulas of Dom [Reg:

 �

DR

� = � ^  i� � ^  ^DR is consistent

 �

DR

� = � ^ : else.

Proposition 5.1 �

DR

satis�es R1...R9

So, �

DR

, is a requirement revision function.

Proposition 5.2 If � = [�

1

:::�

n

] is a position, Dom is a set of constraints, Reg be a regulation,

and  is the set of requirements, obtained from � and compatible with Dom and Reg, then the

following holds:

 = (�

n

�

DR

(::::(�

2

�

DR

(�

1

�

DR

True)):::))

Proof: Let f

1

; :::; f

n

be function as de�ned as in De�ntion 3.7. For f

1

, f

1

(;) = �

1

� >, and for

each i > 1, we have

f

i

(:::(f

1

(;))) = �

i

� (::::(�

1

� >))

So by Proposition 3.5, we obtain from f

n

the result that  is the set of requirements obtained

from � and compatible with Dom [Reg.

(End of proof)
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So, the process of de�ning a set of requirements compatible with some constraints and regulations,

can be seen as an iterated process of requirements revision.

There have been many other developments of belief revision theory including iterated belief revision

[DP97, Leh95], and relating belief revision to database updating [KM92]. These also o�er intuitive

abstract constraints for revision/updating. For a review of belief revision theory see [DP98].

There are some more concrete proposals for knowledgebase merging that adhere to belief revision

postulates. In Konieczny and Pino Perez [KP98], there is a proposal for merging beliefs based on

semantically characterizing interpretations which are \closest" to some sets of interpretations. But

the approach does not exploit any meta-level information such as preferences. The approach has

been generalized by considering merging with respect to integrity constraints [KP99].

Another approach that extends belief revision theory, called arbitration operators, is by Liberatore

and Schaerf [LS98]. This form of merging is restricted to merging only two knowledgebases and

it forces the result to be the disjunction of the two original knowledgebases. Also it does not use

any meta-level information such as preferences.

More concrete proposals for belief revision that do incorporate priorities include ordered theory

presentations [Rya92] and prioritized revision [GR96, GR97]. These approaches aim to keep as

much of the original beliefs by adopting a more sophisticated view of re�ning beliefs. In ordered

theory presentations, if a formula is less preferred than another which contradicts it, those aspects

of it which are not contradicted are preserved. This is done by adopting an inferentially weaker

formula to avoid the contradiction with the more preferred formula. This merging can be under-

taken in an arbitrarily large partially ordering of formulae. In prioritized revision, a belief revision

operator is de�ned in terms of selecting the model that satis�es the new belief and is nearest to

the existing beliefs. The measure of nearness can be used in iterated belief revision where the more

preferred items are used in later revisions.

We can see the di�erence between these approaches and our approach by considering the very

simple example of a knowledgebase containing two items f: ; � ^  g, where the �rst item is

preferred to the second. In our approach, we obtain f: g as the merged set of requirements,

whereas in the other approaches we obtain f: ; �g. In this way, we see that our approach is

more concerned with identifying requirements being accepted or negated in the merged form. In

contrast, these alternatives are concerned with using the priorities to preserve as much of the

beliefs as is permitted without violating consistency.

5.3 Knowledgebase merging techniques

In addition to the techniques of Konieczny and Pino Perez [KP98, KP99] that we discussed in the

previous subsection, we need to consider knowledgebase merging, by Baral et al [BKMS92] which

o�ers two approaches to combining prioritized theories. These two approaches assume a linear

ordering over a set of sets of formulae. The �rst technique is top-down merging and the second is

bottom-up merging.

In the top-down version of merging, the most preferred set �

1

is taken and combined with the

next most preferred set �

2

by taking the maximal subset of �

2

that is consistent with �

1

. This

technique is then iterated by taking the result from the previous cycle the most preferred set, and

�

3

is the next most preferred set. This process is repeated until all sets have been considered.

In the bottom-up version of combination, the least preferred set �

n

is taken and combined with

the next least preferred set �

n�1

by taking the maximal subset of �

n

that is consistent with

�

n�1

. This technique is then iterated by taking the result from the previous cycle as regarded as

18



the least preferred set, and �

n�2

is the next least preferred set. This process is repeated until all

sets have been considered.

Example 5.1 Consider the following sets where �

0

is a set of integrity constraints,�

1

is preferred

to �

2

and �

0

is preferred to both:

�

0

= fc! :a;:c! :bg

�

1

= fa; bg

�

2

= fcg

The top-down merging, and the bottom-up merging, gives either fag or fb; cg, whereas M2 gives

f(:a _ :b); cg, assuming that �

0

is treated as Dom [Reg.

So whilst this approach gives the same result as our approach in many cases if we equate integrity

constraints with the union of the domain and regulation sets, there is a signi�cant di�erence

between their approach and ours. As discussed in Section 2.4 in our approach, if a requirement is

withdrawn, then the negation of the requirement is included in the merged knowledgebase. This

is not the case with withdrawing beliefs in [BKMS92]. In addition, in our approach we generate a

merged position in the merging process, and so information about priorities is maintained, whereas

in top-down and bottom-up merging, the priorities are lost.

5.4 Logical inferencing with inconsistent information

So far we have focussed on merging or revising a knowledgebase by rejecting items that cause

inconsistency. A closely related approach is to keep all formulae, but to reason with maximally

consistent subsets of the knowledgebase (see for example [MR70, BDP93, EGH95]). One of the

problems with reasoning with maximally consistent subsets is that there may be many of them.

This can be ameliorated by assuming meta-level information such as priorities over formulae. Here

we consider some proposals based on this idea.

In [Bre89], a knowledgebase � is a tuple (�

1

; :::;�

n

) where each �

i

is a set of classical formulae.

Information in �

i

is preferred to (or more certain than) information in �

j

if i < j. Given a

knowledgebase �, a preferred subtheory � � � is obtained using the following de�nition:

� = �

1

[ :::[�

n

is a preferred subtheory of �

i� 8k(1 � k � n) �

1

[ :::[ �

k

is a maximal consistent subset of �

1

[ :::[�

k

So to obtain a preferred subtheory of �, we have to start with any maximal consistent subset

of �

1

, add as many formulae from �

2

as consistently can be added and continue the process

with �

3

,...,�

n

. Reasoning is then done using classical logic with the preferred subtheory. We can

regard a preferred subtheory as a merged knowlegebase. Indeed without integrity constraints it is

the same method as the top-down merging process of [BKMS92].

In [BDP95], another approach to reasoning from an inconsistent knowledgebase is proposed, where

each knowledgebase � is partitioned into a sequence of disjoint subsets �

1

,...,�

n

, and �

i

is more

certain than �

j

if i < j holds. From these subsets, the following sets can be formed for i (1 � i � n)

�

i

= �

1

[ :::[�

i

. Assuming � be a knowledgebase, we can also form the following sets,
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MaxCon(�) = f� j � is a maximally consistent subset of �g

Free(�) =

T

MaxCon(�)

Inc(�) = �� Free(�)

An inference � follows from� i� there is a positive integer such that � is a classical inference from

Free(�

i

). We can regard Free(�

i

) as a merged knowledgebase though it is more constrained than

other proposals. Instead of considering a maximally consistent subset as acceptable. This approach

requires the intersection of all maximally consistent subsets with respect to requirements this seems

overconstrained, since valuable information maybe dropped as a result.

In [CRS93], preferences over individual formulae in a knowledgebase are used to generate prefer-

ences over subsets of the knowledgebase. Given a knowledgebase �, and a preference relation <

�

over �, where for x; y 2 �, x <

�

y i� x is less preferable than y. A preference relation over }(�)

is obtained from (�; <

�

) using either the democratism aggregation principle, or the strati�cation

aggregation principle, de�ned as follows:

Democratism Let � and 	 be two non-empty subsets of �. � is democratically preferred to 	,

denoted 	 <

�

demo

� i� for any  2 � n	, there is � 2 	 n� such that  <

�

� and � 6<

�

 .

Strati�cation Let � and 	 be two non-empty subsets of �. � is preferred by strati�cation to

	, denoted 	 <

�

strat

� i� for all � 2 �, and for all  2 	,  <

�

� and � 6<

�

 .

In general, the democratically preferred subsets of a knowledgebase � are preferred subtheories

of � (using the de�nition of [Bre89]), and the preferred subtheories of � are strati�cation-based

preferred subsets of �. However, if <

�

is a total pre-ordering, then <

�

strat

and <

�

demo

coincide.

We can compare this approach with ours, if we can generate an ordering over individual formulae

based on the ranking of agents. Then we can regard the maximal items in <

�

strat

and <

�

demo

that

are consistent as merged knowledgebases. Since we assume the agents are totally ordered, then <

�

will be a total pre-ordering, and so this approach will coincide with that of preferred sub-theories.

Our review here of logical inferencing with inconsistent information has focussed on approaches

closely related to knowledgebase merging. However, there are a number of other signi�cant pro-

posals for logical inferencing with inconsistent information (for a review see [Hun98]).

6 Applying the framework

In this section we consider applying the framework. In particular, techniques for handling agents

who are not totally ordered, expectations users might have on merging in practice, and introduce

the notion of scenarios that are used to identify contingent inconsistencies that could arise in

speci�cations.

6.1 Handling agents who are not totally ordered

So far in our framework, we have focussed on totally ordered sets of agents. However, we can apply

these techniques even if the agents are not totally ordered. For any set poset (A;�

A

), where A
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is a set of agents and �

A

is an ordering over them, if �

A

is transitive and reexive, then we can

form a set of linear ordering from �

A

by adopting the following linearization function.

De�nition 6.1 Let �

A

be a transitive reexive relation. A linearization function, h, is mapping

from the set pre-ordering relations to the power set of pre-ordering relations.

h(�

A

) = fR j R is a total ordering over A satisfying the following conditions g

8x; y ((x �

A

y) ^ (y 6�

A

x))! (xRy) [Condition 1]

8x; y ((x �

A

y) ^ (y �

A

x))! ((xRy) _ (yRx)) [Condition 2]

8x; y ((x 6�

A

y) ^ (y 6�

A

x))! ((xRy) _ (yRx)) [Condition 3]

The three conditions on h, mean it is not an ordering preserving mapping. However, if �

A

is also

anti-symmetric, then h is order-preserving, ie.

8x; y x 6�

A

y ! xRy

Furthermore, if (A;�

A

) is also acyclic, and so it constitutes a directed acyclic graph, then h gives

the topological sorts of the graph.

Example 6.1 Let A = a,b,c,d, and �

A

= f(a; b); (b; d); (a; c); (c; d)g. Here, if we adopt the lin-

earization function, we obtain two preordering relations:

R

1

= f(a; b); (b; c); (c; d)g

R

2

= f(a; c); (c; b); (b; d)g

Of course there is a cost involved in adopting this approach since the number of merges considered

increases enourmously. However, it does not always seem necessary to generate all these ordering.

Rather, just adopting one linearization often seems appropriate until that linearization is untenable

and should be dropped in favour of alternative linearizations. An analogous approach is taken in

[CRS93] that generalizes democratism and strati�cation discussed in section 5.4.

We don't necessarily expect a linear order at the start. Rather we expect a dialogue with the users

to develop a linear ordering. So adopting a linearization from a partial ordering over agents o�ers

a perturbation that may lead to decision being made. It o�ers a way of exploring possibilities.

In the extreme case, we may have no priorities over agents. We consider this case in [CH99] by

adopting a measure of the distance of each possible model of the merged requirements from each

agent's position. Using this measure, we can identify an optimal choise in terms of minimizing the

sum of the distances for each agent to that choice. This can be seem as adaptation of approaches

such as by Katsumo and Mendelzon [KM91].

6.2 Expectations on merges in practice

We now consider how the framework �ts into wider technology solutions, and consider the expec-

tations this raises on knowledgebase merging. We start with considering software engineering, and

then distributed multi-agent systems.

The development of most large and complex systems necessarily involves many people, each with

their own perspectives on the system de�ned by their knowledge, responsibilities, and commit-

ments. Inevitably, the di�erent perspectives of those involved in the process intersect, giving rise
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to conicts. In a formal methods approach, a conict can be manifested as a logical contradiction,

giving rise to the need for consistency checking and inconsistency handling techniques [FGH

+

94].

However, contradictions are often di�cult to handle in requirements speci�cations. There is often

a vast amount of information in any real speci�cation. To address this problem, we can consider

decomposing a speci�cation, so as to select the aspects of the speci�cation that are more likely

to be in conict, or where it is more important to know that they are consistent. In addition,

we require paraconsistent reasoning and analystical techniques for localizing inconsistency and

qualifying inferences in the presence of inconsistency, such as those proposed in [HN97, HN98]. In

this context, the proposal in this paper o�er further useful tools for software engineering.

If we are using these merging techniques in decision-support, say in software engineering, we are

not necessarily looking for the best merge. Rather we are looking at possible or reasonable merges,

providing the original agents with a reduced search space of options from which the agents can

then select, or if none of the options is chosen, then it may provide further discussions so relevant

and provocative choices are useful. For this reason, the underlying logic is not necessarily the same

as that for reasoning about beliefs or for reasoning about predictions.

If we are using these merging techniques as part of a resolution strategy to be used by autonomous

agents, then the possible merges can be used as part of negotiation strategy | a number of proposal

are now being made for automated negotiation for example for buying and selling items over the

web | and we could see the proposals in this paper as being incorporated into such systems. Here

the emphasis would be on co-operation | aiming to �nd possible or reasonable merges, providing

the original agents with a reduced search space of options from which the agents can then select,

or if none of the options is chosen, then options for compromise or automated negotiation.

In all the applications we have considered in this paper, we have adopted the coherence assumption

(ie that the union of the domain and regulations is consistent). We assume that a group of agents

would normally �nd it easier to decide on a mutually acceptable coherent set of domain and

regulation formulae prior to considering their requirements. Another assumption we have made

throughout this paper is that each position is totally ordered. Yet, it in practice it would be

desirable to relax this constraint. There are a number of strategies for addressing this | analogous

to the techniques used for agents who are not totally ordered (as discussed in section 6.1).

6.3 Incorporating scenarios

In order to explore a speci�cation, with respect to domain knowledge and regulations, we need to

also consider some kinds of information that may hold, but don't necessarily hold. For example, if

we are designing an umbrella, then we may want to know how the speci�cation would be behave

if it were raining, or if it were blustery and raining, or if it were sunny and cold. Each of these

situations can be regarded as a scenario, and can be represented by a set of formulae. So when we

are considering the consistency of our merged requirements, we may also which to consider these

scenarios. If a merged requirement was consistent with respect to the union of the Domain and

Regulation sets, but inconsistent with respect to the union of the Domain set, the Regulation set,

and a scenario set, then the inconsistency is a contingent inconsistency.

The simplest solution to incorporating scenarios is to add the elements of a scenario to theDom set,

and obtain a merged set of requirements. Then repeat the process with a di�erent scenario. If the

second set of requirements obtained from merging is di�erent from the �rst, then the requirements

require amendment otherwise continue with another scenario.
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7 Discussion

In this paper, we have presented a framework for merging requirements from a set of ranked agents.

Whilst there are similarities with approaches to merging beliefs from a set of ranked agents, there

are fundamental di�erences. Essentially the di�erences emanate from viewing beliefs as being for

constructing models of the real-world. This is in contrast to viewing requirements as being for

constructing models of an ideal world.

We believe that the framework presented here is applicable to a range of data and knowledge

engineering problems | in particular for developing decision-support technology for software en-

gineering, and as part of conict resolution and negotiation strategies for distributed multi-agent

systems.
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