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Abstract

It is well-known that knowledgebases may contain inconsistencies. We provide a measure to quantify
the inconsistency of a knowledgebase, thereby allowing for the comparison of the inconsistency of vari-
ous knowledgebases, represented as first-order logic formulas.. We use quasi-classical (QC) logic for this
purpose. QC logic is a formalism for reasoning and analysing inconsistent information. It has been used
as the basis of a framework for measuring inconsistency in propositional theories. Here we extend this
framework, by using a first-order logic version of QC logic for measuring inconsistency in first-order the-
ories. We motivate the QC logic approach by considering some formulae as database or knowledgebase
integrity constraints. We then define a measure of extrinsic inconsistency that can be used to compare
the inconsistency of different knowledgebases. This measure takes into account both the language used
and the underlying domain. We show why this definition also captures the intrinsic inconsistency of a
knowledgebase. We also provide a formalization of paraconsistent equality, called quasi-equality, and we
use this in an extended example of an application for measuring inconsistency between heterogeneous
sources of information and integrity constraints prior to merging.

1 Introduction

The need for handling inconsistencies in knowledgebases has been well recognized in recent years. Incon-
sistencies may arise for various reasons such as when information sources are merged or in the presence of
integrity constraints. The use of first-order logic becomes problematical because a single (local) inconsis-
tency leads to the (global) inconsistency of the entire knowledgebase. Paraconsistent logics allow for local
inconsistency without global inconsistency. Various approaches to the applications of paraconsistency to
knowledgebases were surveyed in [GS00]. Another method, not discussed there, is given in [BC03] for
querying inconsistent knowledgebases. Whilst these methods provide ways of using inconsistent knowl-
edgebases, they do not provide an adequate way of summarising the nature of the inconsistencies.
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Our interest in this paper is in providing a measure for the inconsistency of a knowledgebase represented as
a set of first-order logic formulas. By providing such a measure we can compare different knowledgebases
and evaluate their quality of information. If given the opportunity to choose between different knowledge-
bases, we may try to choose one that is least inconsistent. We use for our paraconsistent logic quasi-classical
(QC) logic because it is well-suited to deal with typical knowledgebase statements, particularly database
integrity constraints.

Paraconsistent reasoning is important in handling inconsistent information, and there have been a number
of proposals for paraconsistent logics (for reviews see [Hun98, CM02, Pri02]). However, developing non-
trivializable, or paraconsistent logics, necessitates some compromise, or weakening, of classical logic. Key
paraconsistent logics such asCω [dC74] achieve this by weakening the classical connectives, particularly
negation. Unfortunately, this results in useful proof rules such as disjunctive syllogism failing, and intuitive
equivalences such as¬α ∨ β ≡ α→ β not holding.

On the other hand, QC logic restricts the proof theory [BH95, Hun00a]. In this restriction, compositional
proof rules (for example, disjunction introduction) cannot be followed by decompositional proof rules (for
example, resolution). Whilst this gives a logic that is weaker than classical logic, it does mean that, in a
strong sense, the connectives behave classically at the object level. We believe the logic is appealing for
reasoning with inconsistencies arising in applications such as systems development [HN98, MDB02], and
for reasoning with structured text [Hun00b].

QC logic is particularly well suited to reasoning with integrity constraints that have been violated by data.
Suppose each integrity constraint is represented by a disjunction of literals and suppose data is represented
by literals. For an inconsistent set of integrity constraints and data, we need to be able to reason with the
information using disjunctive syllogism. So for example, we would want to deriveβ from set 1 of the form
{¬α, α ∨ β} and from set 2 of the form{¬α, α ∨ β,¬β}. Unfortunately with most paraconsistent logics
this is not possible. Some such as LPm [Pri89], and versions of Belnap’s four-valued logic restricted to
minimal models [AA98], will allow the derivation ofβ from set 1 but not set 2. In contrast, QC logic will
support the derivation ofβ from both set 1 and set 2. More generally, for any set of formulae∆, if there is a
clauseα1 ∨ ..∨αn ∈ ∆, whereα1, ..., αn are literals, and forαi ∈ {α1, .., αn}, there is a literal¬αi ∈ ∆,
then by QC logic, the resolvent ofα1 ∨ ..∨αn and¬αi (a clause formed fromα1 ∨ ..∨αn by deletingαi)
is an inference from∆.

QC logic has also been used for comparing heterogeneous sources where inconsistencies often arise be-
tween the sources. Suppose we are dealing with a group of clinicians advising on some patient, a group
of witnesses of some incident, or a set of newspaper reports covering some event. These are all situations
where we expect some degree of inconsistency in the information. Suppose that the information by each
source is represented by a set of formulae. We may then want to ask questions such as whether one source
is more inconsistent than another and by what degree. A novel approach to formalizing this problem is
to use propositional QC logic to measure inconsistency [Hun02, Hun03]. In this, each inconsistent set of
formulae is reflected in the quasi-classical models for the set, and then the inconsistency is measured in
the models. Obviously, this is not possible in classical logic, or indeed many non-classical logics, because
there is no model of an inconsistent set of formulae.

A key feature of the QC semantics is that there is a model for any formula, and for any set of formulae. There
is also a natural deduction proof theory for propositional QC logic [Hun00a]. Entailment for QC logic for
propositional CNF formulae is coNP-complete, and via a linear time transformation these formulae can be
handled using classical logic theorem provers [MP01]. QC logic has been extended to a first-order language
with the semantics based on a form of Herbrand interpretation [Hun01].

In this paper, we begin the study of measuring the inconsistency of knowledgebases written as first-order
formulae by using QC logic. We show that the concept of QC interpretation is natural if we think of
the disjunctive formulae as integrity constraints. We develop a measure for the inconsistency of a first-
order theory and give examples to illustrate its usefulness. In particular, we show how this measure allows
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for the comparison of inconsistent theories. This paper therefore extends our QC logic-based approach to
measuring inconsistencies in propositional theories [Hun02, Hun03] to the first-order case, by incorporating
the notion of “degrees of inconsistency” based on analysing both the first-order language and the domain
for the interpretations [Gra78]. This paper also extends QC logic with a form of equality, called quasi-
equality, appropriate for paraconsistent reasoning. We show the utility of quasi-equality in reasoning with
inconsistency in applications in reasoning with integrity constraints.

2 First-order QC logic

First-order QC logic contains the standard logical symbols: a set of variable symbolsV, the connectives
{¬,∨,∧,→}, the quantifiers{∀,∃}, as well as punctuation symbols as needed (parentheses and commas).
A specific languageL is determined by its set of predicate and function symbols. In this paper our focus is
on finite models, so we assume that all functions are 0-ary, that is, constants. In the examples, we present
specific languages by a tuple〈P, C〉whereP is a set of predicate symbols andC is a set of constant symbols.
We write the predicate symbols with their arities in parentheses. We use uppercase letters likeP andR for
predicate symbols, lowercase letters likea, b, c, andd, perhaps with subscript, for constant symbols, and
x andy, perhaps with subscript, for variable symbols. A term is either a constant or a variable. We assume
the usual classical definitions for the language including definitions for a free variable, a bound variable,
and a ground formula. An atom is of the formP (t1, . . . , tn), wheret1, .., tn are terms. As usual, a literal is
either an atom or the negation of an atom. The set of formulae is defined by the usual inductive definitions
for classical logic. We use the Greek lettersα, β, γ for literals,φ for a clause (a disjunction of literals),
ψ for a conjunction of clauses, andθ for any formula. For a languageL, the set of formulae that can be
formed by the usual inductive definitions is denotedFormulae(L).

Definition 1. Letα be an atom and let∼ be a complementation operation such that∼α is¬α and∼(¬α)
is α. The∼ operator is not part of the object language but it makes some definitions clearer.

In QC logic the focus of a clause, as defined below, plays an important role.

Definition 2. Letα1 ∨ . . . ∨ αn be a ground clause wheren > 1 and letαi be a ground literal. Thefocus
ofα1∨ . . .∨αn byαi, denoted⊗(α1∨ . . .∨αn, αi) is defined as the clause obtained by removingαi from
α1 ∨ . . . ∨ αn.

Example 1. Letα ∨ β ∨ γ be a ground clause. Then,⊗(α ∨ β ∨ γ, β) = α ∨ γ.

The notion of a structure in first-order QC logic is based on a standard notion of classical interpretation.

Definition 3. A classical structurefor the languageL is a pair (D, I) whereD is a non-empty set called
thedomain andI is a function called theinterpretation that assigns predicates overD to the symbols in
L as follows:

1. For every constant symbolc, I(c) ∈ D.

2. For every predicate symbolP (n) (of arity n > 0), I(P ) : Dn 7→ {0, 1} is an n-ary predicate.

To make the notation easier to follow, we will assume thatI maps the constant symbols to themselves;
henceD will always contain all the constant symbols ofL. This also means that all constant symbols are
mapped to distinct elements. Hence for a given languageL =< P, C > and domainD we must have
C ⊆ D. In order to express statements involving the elements ofD not in C, we expand the languageL
by adding constant symbols for all elements ofD − C. We writeL(D) for this language; in other words,
L(D) = 〈P, D〉. We handle variables in first-order formulae using the standard notion of an assignment.

3



Definition 4. Let (D, I) be a classical structure. Anassignmentis a functionA : V 7→ D. Given an
assignmentA, an x-variant assignmentA′ is the same asA except perhaps in the assignment for the
variablex. An assignmentA is extended to termst as follows:

A(t) = d if t = x andA(x) = d
A(t) = d if t = d

Definition 5. Let φ be a formula with one or more occurrences of a free variablex (i.e. x is not in the
scope of a quantifier) and letd be a constant. Thesubstitution of x byd in φ is obtained by replacing all
occurences of the free variable byd, and the result of this substitution is denotedφ[x/d].

We use a pair of classical interpretations to give a QC interpretation.

Definition 6. A bistructure is a tuple(D, I+, I−) where(D, I+) and (D, I−) are classical interpreta-
tions.

Using our conventions we must have for all constant symbolsc, I+(c) = I−(c). In the presence of function
symbols we would haveI+(f) = I−(f). So the classical interpretationsI+ and I− in a bistructure
can only differ in their assignment to predicate symbols. In effect,I+ is the interpretation for positive
literals andI− is the interpretation for negative literals. This is formalized in the definition for decoupled
satisfaction.

Definition 7. For a bistructureE = (D, I+, I−) and an assignment A, we define a satisfiability relation,
|=d, calleddecoupled satisfactionfor literals inL(D) as follows:

(E,A) |=d P (t1, .., tn) iff I+(P )(A(t1), .., A(tn)) = 1

(E,A) |=d ¬P (t1, .., tn) iff I−(P )(A(t1), .., A(tn)) = 1

Since we allow both an atom and its complement to be satisfiable, we have decoupled, at the level of the
structure, the link between a formula and its complement. In contrast, if a classical structure satisfies a
literal, then it is forced to not satisfy the complement of the literal. This decoupling gives the basis for
a semantics for paraconsistent reasoning. This intuition coincides with that of four-valued logics [Bel77].
However, we will not follow the four-valued lattice-theoretic interpretation of connectives given in [Bel77],
but instead provide a significantly different semantics next.

In the definition of entailment for QC logic two additional satisfaction relations, called strong satisfaction
and weak satisfaction, are required. However, in this paper we will only deal with strong satisfaction. We
will also assume that all formulae are in prenex conjunctive normal form (PCNF), that is, all the quantifiers
are in front and they (if any) are followed by a conjunction of clauses or a single clause1. It is known
that every formula is logically equivalent (using classical entailment) to one in PCNF (see for example
[Smu68]). There is a standard way in which the quantifiers can be moved to the front. Putting the rest
of the formula into conjunctive normal form involves using the standard commutative, associative, and
distributive laws; the rewriting of→ by ¬ and∨; however we do not allow the use of any rules involving
tautologies and contradictions. Our definition of strong satisfaction does not depend on which equivalent
PCNF version of a formula is used, assuming the proviso above.

Definition 8. A satisfiability relation,|=s, calledstrong satisfactionis defined by induction on the length

1The restriction to PCNF is not necessary for QC logic, but it makes the presentation simpler.
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of a formula as follows:

(E,A) |=s α iff (E,A) |=d α

(E,A) |=s α1 ∨ . . . ∨ αn

iff [(E,A) |=s α1 or ... or (E,A) |=s αn]
and∀i s.t.1 ≤ i ≤ n [(E,A) |=s∼αi implies(E,A) |=s ⊗(α1 ∨ . . . ∨ αn, αi)]

(E,A) |=s φ1 ∧ . . . ∧ φm iff [(E,A) |=s φ1 and . . . and(E,A) |=s φm]

(E,A) |=s ∃x θ iff for some x-variant assignmentA′, (E,A′) |=s θ[x/d] whereA′(x) = d

(E,A) |=s ∀x θ iff for all x-variant assignmentsA′, (E,A′) |=s θ[x/d] whereA′(x) = d

Definition 9. We extend strong satisfaction to a bistructure as follows:

E |=s θ iff for all assignmentsA, (E,A) |=s θ

Next we define the concept of a QC model. In this paper we will only deal with finite sets of sentences.

Definition 10. Let ∆ be a finite set of formulae and letE be a bistructure.E is a QC model of ∆ iff for
all θ ∈ ∆, E |=s θ.

We also require the following subsidiary definition to help analyse QC models.

Definition 11. For a languageL = 〈P, C〉 and a domainD,

Groundatoms(L, D) = {P (d1, .., dn) | P (n) ∈ P andd1, .., dn ∈ D}
Groundliterals(L, D) = Groundatoms(L, D) ∪ {¬α | α ∈ Groundatoms(L, D)}

Since we restrict each languageL in this paper to 0-ary functions, we can equivalently represent any QC
modelE = (D, I+, I−) by a set of ground literals as follows.

{α | E |=s α andα ∈ Groundliterals(L, D)}

We write QC(L,∆, D) for the class of QC models of∆ where the formulae in∆ are formulae inL,
and the domain for the QC models is D. We will useM to denote a QC model in the form of a set of
ground literals. It is possible to adopt this representation of models because earlier we assumed that for any
languageL =< P, C > and domainD we haveC ⊆ D. In the rest of this paper, we will assume that all
languagesL =< P, C > are finite (i.e.P is finite andC is finite) and that all domainsD are finite. This
means that all QC models we consider in this paper are finite.

Definition 12. LetL be a language. For a set of QC models{M1, ...,Mn}, where for allMi ∈ {M1, ...,Mn},
Mi ⊆ Groundliterals(L, D), the set ofsatisfied formulaeis given by the setSF({M1, ...,Mn}) as follows.

SF({M1, ...,Mn}) = {α ∈ Formulae(L) | for all Mi ∈ {M1, ...,Mn}Mi |=s α}

Clearly, we have∆ ⊆ SF(QC(L,∆, D)). Later, we use the notion of satisfied formulae to restrict our
attention to the most useful QC models for analysing inconsistency.

3 QC Models

In the previous section we defined the concept of a QC model. Here we give some examples to show the
desirability of using QC models for analysing inconsistencies in knowledgebases. For this we take both the
language and the domain into account.
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As different languages contain different sets of formulae, it will be useful to haveL as a parameter when
we discuss concepts about models. Also we will assume that∆ is a set of formulae ofL. We first note
that every set of formulae∆ has a QC model,UHM(∆), the universal Herbrand model of∆. To construct
this, we start with the Herbrand universe for∆, which is the set of all ground terms in the language of
∆ (if there are no constants in∆, add an arbitrary constant symbol), and thenUHM(∆) is obtained by
allowing all literals in the Herbrand universe,P (a1, . . . , an) and¬P (a1, . . . , an) to hold. SoUHM(∆)
can be represented by the set of all ground literals in the languageL.

We note that in a senseUHM(∆) is a “big” QC model for∆ and not probably the one we had in mind.
In measuring inconsistency we will usually need to deal with smaller QC models. But this depends on the
domain. In knowledgebases we usually have some domain in mind; such as certain character strings or
numbers. Consider a family database that might have in its domain names of people and numbers for year
of birth; or an employee database that might have names, addresses, salaries and other types of data. To
deal with the issue of what values are allowed where in predicates, we would need to use a sorted logic
to be precise. However, in order to make the presentation less complicated we do not use a sorted logic,
but assume that if sorts are needed, they can be introduced as unary predicates. In any case, we usually
have various domains in mind, such as all possible names or year values between 1600 and 2004 for the
family database. Thus the domain is important and we use it as a parameter. Under different circumstances,
different domains may be appropriate. We also assume for this paper that all the domains are finite. This is
reasonable because even for integer and real values only finitely many can be represented or would be used
in any case.

As mentioned above,UHM(∆) is a big model in some sense because it may have many more literals than
are needed to satisfy∆. On the other hand,UHM(∆) may be a small QC model if the Herbrand universe is
a small subset of the intended domain. For example, we may have only 50 different year values present in
a particular family database for year of birth, but would like the domain to include all possible such years.
For this reason we include in our definitions now the domain. Furthermore, in measuring the inconsistency
of a theory, it will be helpful to consider models that are minimal in some sense.

Definition 13. LetL be a language and∆ a set of formulae inL. The set of minimal QC models of∆ with
domainD is given byMQC(L,∆, D) as follows.

MQC(L,∆, D) = {M ∈ QC(L,∆, D) | if M ′ ⊂M, thenM ′ 6∈ QC(L,∆, D)}

The minimal QC models are just the models without irrelevant, useless information. They are analogous to
the role of k-minimal models in Belnap’s four-valued logic [AA98]. Restricting consideration to minimal
QC models does not affect the reasoning, as illustrated by the following result.

Theorem 1. LetL be a language,∆ a set of formulae inL andD a domain.

SF(QC(L,∆, D)) = SF(MQC(L,∆, D))

Proof. First, we show thatSF(MQC(L,∆, D)) ⊆ SF(QC(L,∆, D)). To do this, we require the following
definition for “acceptable”. ForN ⊆ Groundliterals(L, D), N is acceptable for∆ if for all θ ∈ ∆, N is
acceptable forθ. We define acceptable for any formulaθ as follows:

N is acceptable forα if α is a literal
N is acceptable forφ1 ∧ .. ∧ φn if N is acceptable forφ1 and . . . andN is acceptable forφn

N is acceptable forα1 ∨ .. ∨ αn if (for all i (1 ≤ i ≤ n) N |=s∼ αi impliesN |=s ⊗(α1 ∨ . . . ∨ αn, αi))
N is acceptable for∃xθ if N is acceptable forθ[x/d] for somed ∈ D
N is acceptable for∀xθ if N is acceptable forθ[x/d] for all d ∈ D

So ifM |=s θ, andN is acceptable forθ, thenM ∪N |=s θ. Furthermore, for allM ′ ∈ SF(QC(L,∆, D)),
for all M ∈ SF(MQC(L,∆, D)), if M ⊆ M ′, then there is anN ⊆ M ′ s.t.M ∪ N = M ′ andN is
acceptable for∆. So,SF(MQC(L,∆, D)) ⊆ SF(QC(L,∆, D)). Also MQC(L,∆, D) ⊆ QC(L,∆, D),
soSF(QC(L,∆, D)) ⊆ SF(MQC(L,∆, D)). Hence,SF(QC(L,∆, D)) = SF(MQC(L,∆, D)).
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Next we show the advantage of using minimal QC models for analysing inconsistent information.

Example 2. LetL = 〈{P (1)}, {a, b}〉, and∆ = {¬P (a) ∨ P (b), P (a)}. In this case there is only one
minimal QC model for anyD, M = {P (a), P (b)} but there is an additional minimal 4-valued model,
M ′ = {P (a),¬P (a)}.M ′ is not a QC model of∆ because in a QC model whereP (a) holds,⊗(¬P (a)∨
P (b),¬P (a)), which isP (b) must also hold. One way to interpret this is to include implication (→) in the
explanation, that is, that the formula¬P (a)∨P (b) representsP (a) → P (b) (as well as¬P (b) → ¬P (a)).
The concept of QC model makes sure that ifP (a) andP (a) → P (b) both hold, thenP (b) must also hold.

In the next example we see why the QC logic approach fits in well with the concept of integrity constraints
in databases.

Example 3. LetL = 〈{P (1), Q(1)}, {a, b, c}〉,D = {a, b, c}, and

∆ = {∀x(¬P (x) ∨Q(x)), P (a), P (c),¬P (c)}

In this case there are two minimal QC models for∆, namelyM1 andM2 below.

M1 = {P (a), Q(a),¬P (b), P (c),¬P (c), Q(c)}
M2 = {P (a), Q(a), Q(b), P (c),¬P (c), Q(c)}

Note thatM ′
1 andM ′

2 below are not (minimal) QC models.

M ′
1 = {P (a),¬P (a),¬P (b), P (c),¬P (c), Q(c)}

M ′
2 = {P (a),¬P (a), Q(b), P (c),¬P (c), Q(c)}

Not havingM ′
1 andM ′

2 as QC models for∆ is quite reasonable when we think of the first sentence in∆
as “All P’s are Q’s.” In that sense, ifP (a) is in the model,Q(a) should be there also. HenceM ′

1 andM ′
2

should not be QC models.

Next we give two examples with typical database integrity constraints: first a referential integrity constraint,
and then a multivalued dependency. In Section 6, we also give an example with a functional dependency.

Example 4. LetL = 〈{P (2), Q(2)}, {a, b, c}〉,D = {a, b, c, d}, and

∆ = {∀x∀y∃z(¬P (x, y) ∨Q(z, y)), P (a, b), P (b, b), Q(a, c),¬Q(a, c)}

The quantified statement represents the referential constraint (inclusion dependency) that every value of
the second attribute ofP must appear as the second attribute ofQ. There are numerous minimal QC
models for∆. However, they all containP (a, b),P (b, b),Q(a, c), and¬Q(a, c). As a result of the inclusion
dependency, they also all contain exactly one ofQ(a, b),Q(b, b),Q(c, b) or Q(d, b). An example of one of
these minimal QC models isM1 as follows:

M1 = {P (a, b), P (b, b), Q(a, c),¬Q(a, c), Q(a, b), Q(d, a), Q(b, c), Q(c, d)}

Example 5. LetL = 〈{P (3)}, {a, b, c, d, e}〉,D = {a, b, c, d, e}, and

∆ = {∀x∀y∀z∀u∀v(¬P (x, y, z) ∨ ¬P (x, u, v) ∨ P (x, y, v)), P (a, b, c),¬P (a, b, c), P (a, d, e)}

The universal statement represents the multivalued dependency of the second and third attributes ofP on
the first attribute. So each minimal QC model of∆ has the following as a subset.

{P (a, b, c),¬P (a, b, c), P (a, d, e), P (a, d, c), P (a, b, e),¬P (a, a, c),¬P (a, c, c),¬P (a, d, c),¬P (a, e, c)}

The multivalued dependency forcesP (a, d, c) andP (a, b, e) into each model. It also has the effect, because
of the 4-valued nature of our structures, of adding several negated atoms on account of¬P (a, b, c) being
in ∆.
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Whilst four-valued logic [Bel77] also directly models inconsistent sets of formulae, QC logic has the extra
constraint in the semantics for disjunction that ensures that if the complement of a disjunct holds in the
model, then the resolvent should also hold in the model (in effect disjunctive syllogism) irrespective of
other conflicting information holding. This means that the QC models are better at describing the incon-
sistencies arising between data and clauses (such as integrity constraints). The shortcomings of Belnap’s
four-valued logic also apply to minimal four-valued logics by [AA98], and to three-valued logics such as
3-interpretations by [Lev84], and a similar proposal by [Gra78], and minimal LPm [Pri89].

4 The inconsistency measure

In this section we propose a measure for the inconsistency of a theory based on the concept of degree of
inconsistency in [Gra78], but using QC logic and some ideas from [Hun02]. We take into account the fact
that a theory may have many different minimal QC models depending on the language and domain. We start
by defining an inconsistency measure for a QC model, based on the concept of coherence from [Hun02].
This measure is a ratio between 0 and 1 whose denominator is the total possible number of inconsistencies
in the bistructure.

Definition 14. For a QC modelM ,

Conflictbase(M) = {α | α ∈M and¬α ∈M}

Thus the size of the conflictbase of a QC model is the number of inconsistencies in the QC model.

Recall in Section 2, we assume all domainsD are finite and all modelsM are finite.

Definition 15. The measure of inconsistency for a modelM in the context of a languageL and a domain
D (i.e. Conflictbase(M) ⊆ Groundatoms(L, D) holds) is given by theModelInc function giving a value
in [0, 1] as follows.

ModelInc(M,L, D) =
|Conflictbase(M)|

|Groundatoms(L, D)|
Example 6. L = 〈{P (2), R(1)}, {}〉, D = {a, b, c}, M = {P (a, a),¬P (a, a), R(a),¬R(b), P (b, c)}.
Here, |Groundatoms(L, D)| = 12 (9 ground atoms forP and 3 forR). Conflictbase(M) = {P (a, a)}.
Hence,ModelInc(M,L, D) = 1

12 .

TheModelInc function is antimonotonic as follows.

• If L1 ⊆ L2, thenModelInc(M,L2, D) ≤ ModelInc(M,L1, D);

• If D1 ⊆ D2, thenModelInc(M,L, D2) ≤ ModelInc(M,L, D1).

For L,D, if ∆ contains only ground formulae (i.e. no formulae in∆ contain variables), andM1 ∈
MQC(L,∆, D), andM2 ∈ MQC(L,∆, D), thenModelInc(M1,L, D) = ModelInc(M2,L, D). However,
in general, forL,∆ andD, if M1 ∈ MQC(L,∆, D) andM2 ∈ MQC(L,∆, D), then it is not necessar-
ily the case thatModelInc(M1,L, D) = ModelInc(M2,L, D) holds. In fact,MQC(L,∆, D) may contain
both consistent (ModelInc(M) = 0) and inconsistent models as we show in the next example.

Example 7. LetL = 〈{P (1), Q(1)}{a}〉, ∆ = {∃x P (x),¬P (a) ∨ Q(a),¬Q(a)} andD = {a, b}. So
MQC(L,∆, D) = {M1,M2} where

M1 = {P (a),¬P (a), Q(a),¬Q(a)}
M2 = {P (b),¬P (a),¬Q(a)}

Hence,ModelInc(M1,L, D) > ModelInc(M2,L, D) holds.
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To address the fact that not all minimal QC models for a set of formulae have the same size conflictbase,
and hence do not all have the same assignment by theModelInc function, we restrict the class of minimal
QC models to the class of preferred QC models by taking only the minimal QC models with a minimal
conflictbase. Essentially, we are restricting consideration to the least “inconsistent” models. This is an
optimistic view saying that for the set of models for a set of formulae, we restrict consideration to the
least conflicting ones. This is analogous to the models that minimize the use of assignment ofBoth in the
minimal four-valued logic [AA98] and to the minimal LP models in LPm [Pri89].

Definition 16. Let∆ be a set of formulae in a languageL and letD be a domain. The set of preferred QC
models of∆ with domainD is given byPQC(L,∆, D) as follows.

PQC(L,∆, D) = {M ∈ MQC(L,∆, D) |
for all M ′ ∈ MQC(L,∆, D) |Conflictbase(M)| ≤ |Conflictbase(M ′)|}

Example 8. Continuing Example 4,PQC(L,∆, D) = MQC(L,∆, D).

Example 9. Continuing Example 7,PQC(L,∆, D) = {M2}.

There are non-minimal QC models that have a minimal conflictbase, as we show below.

Example 10. LetL = 〈{P (1)}{a}〉, ∆ = {P (a)}, andD = {a, b}. If M = {P (a), P (b)}, thenM ∈
QC(L,∆, D), butM 6∈ MQC(L,∆, D), even though|Conflictbase(M)| = 0.

Recall that our interest in usingMQC(L,∆, D) rather thanQC(L,∆, D), for a set of formulae of∆, is that
the models inMQC(∆) do not contain irrelevant information for analysing inconsistency. Furthermore, we
have shown in Theorem 1, that by using minimal QC models, we do not lose any useful information.

Now we show that for a particular class of formulae, all minimal models are preferred.

Theorem 2. For L, ∆ andD, if for all φ ∈ ∆, φ does not incorporate an existential quantifier, then
PQC(L,∆, D) = MQC(L,∆, D).

Proof. Assume∆ does not include any existentially quantified formulae. LetGrounding(∆, D) be the
smallest set such that: (1)∆ ⊆ Grounding(∆, D); (2) if ∀xψ ∈ Grounding(∆, D) andd ∈ D, then
ψ[x/d] ∈ Grounding(∆, D); and (3) ifφ1∧. . .∧φn ∈ Grounding(∆, D), thenφ1, . . . , φn ∈ Grounding(∆, D),
Let G(∆, D) = {θ ∈ Grounding(∆, D) | θ is a ground formula}. SoG(∆, D) is a set of ground clauses
formed inL(D). Let I(G(∆, D)) = {Γ ⊆ G(∆, D) | Γ is inconsistent}. Let MI(G(∆, D)) = {Γ ∈
I(G(∆, D)) | for all Γ′ ∈ I(G(∆, D)), if Γ′ ⊆ Γ, thenΓ′ = Γ}. For allM ∈ MQC(L,∆, D), αi ∈ M
and¬αi ∈ M iff there is aα1 ∨ .. ∨ αn ∈

⋃
MI(G(∆, D)) such thatαi ∈ {α1, .., αn}. Therefore,

for M1 ∈ MQC(L,∆, D) andM2 ∈ MQC(L,∆, D), αi ∈ M1 and¬αi ∈ M2 iff αi ∈ M2 and
¬αi ∈ M2. Therefore,Conflictbase(M1) = Conflictbase(M2). Hence, for allM,M ′ ∈ MQC(L,∆, D),
|Conflictbase(M)| = |Conflictbase(M ′)|, and soPQC(L,∆, D) = MQC(L,∆, D).

The need for the previous result, in part, stems from the non-standard behaviour of existential quantifica-
tion. We illustrate this, by extending Example 7, as follows.

Example 11. LetL = 〈{P (1), Q(1)}{a, b}〉, andD = {a, b}.

∆1 = {∃x P (x),¬P (a) ∨Q(a),¬Q(a)}
∆2 = {P (a) ∨ P (b),¬P (a) ∨Q(a),¬Q(a)}

In classical logic,∃x P (x) andP (a) ∨ P (b) are, in a sense, interchangeable whenD = {a, b}. But,
MQC(L,∆1, D) = {M1,M2}, andMQC(L,∆2, D) = {M2}, where

M1 = {P (a),¬P (a), Q(a),¬Q(a)}
M2 = {P (b),¬P (a),¬Q(a)}
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The non-standard behaviour is a result of the difference in the semantics for disjunction between classical
logic and QC logic.

GivenL andD, ModelInc measures the inconsistency of a theory in a uniform manner. AssumingM1 ∈
PQC(L,∆, D) andM2 ∈ PQC(L,∆, D), we have|Conflictbase(M1)| = |Conflictbase(M2)|, and there-
foreModelInc(M1,L, D) = ModelInc(M2,L, D). This means that although there may be many different
preferred QC models of a theory∆, if we fix L andD, then all such preferred QC models must have the
sameModelInc value.

Example 12. LetL = 〈{P (1), Q(1)}, {a, b, c, d}〉 andD = {a, b, c, d}.

∆1 = {P (a) ∧ ¬P (a), Q(a) ∧ (Q(b) ∨Q(c) ∨Q(d))}
∆2 = {P (a) ∧ ¬P (a), Q(a) ∨ (Q(b)}

Hence

PQC(L,∆1, D)
= {{P (a),¬P (a), Q(a), Q(b)}, {P (a),¬P (a), Q(a), Q(c)}, {P (a),¬P (a), Q(a), Q(d)}}

PQC(L,∆2, D)
= {{P (a),¬P (a), Q(a)}, {P (a),¬P (a), Q(b)}}

Therefore, we get the following evaluations.

for all M ∈ PQC(L,∆1, D) ModelInc(M,L, D) = 1/8
for all M ∈ PQC(L,∆2, D) ModelInc(M,L, D) = 1/8

Next, suppose that we take two different domains of the same size for a givenL. We show that theModelInc
value remains the same.

Theorem 3. GivenL and∆, letD1 andD2 be any two domains of the same size. IfM1 ∈ PQC(L,∆, D1)
andM2 ∈ PQC(L,∆, D2), thenModelInc(M1,L, D1) = ModelInc(M2,L, D2).

Proof. Suppose thatM1 ∈ PQC(L,∆, D1). We construct a modelM3 ∈ PQC(L,∆, D2) as follows.
Define a bijective functionF : D1 → D2 such that for allc ∈ C, F (c) = c. Write for each literalα ∈ L
F (α) for the literal where eachd ∈ D1 is replaced byF (d). Let M3 = {F (α) | α ∈ M1}. Clearly,
M3 ∈ QC(L,∆, D2). M3 must also be minimal because if a proper subset ofM3 were a QC model, by
applyingF−1 we could obtain a QC model withD1 for the domain makingM1 not minimal. Similarly we
can show thatM3 is preferred. The result now follows.

Using this theorem we are able to define, for a theory in a language, a sequence of inconsistency ratios, as
follows.

Definition 17. We define theextrinsic inconsistency of a theory∆ in a languageL, TheoryInc(∆,L),
as a sequence〈r1, r2, . . .〉, where for alln ≥ 1 let Dn be a domain for sizen, and if there is anM ∈
PQC(L,∆, Dn), then letrn = ModelInc(M,L, Dn), otherwise letrn = ∗. We use∗ as a kind of null
value.

This sequence captures how the inconsistency of a theory∆ in a languageL evolves with increasing domain
size. At one extreme, if∆ is consistent, thenTheoryInc(∆,L) = 〈0, 0, 0, ...〉. At the other extreme, there
are theories∆ such thatTheoryInc(∆,L) = 〈1, 1, 1, ...〉.

By Theorem 3,TheoryInc is well-defined.

Example 13. LetL = 〈{P (1)}, {a}〉. For ∆ = {P (a),¬P (a)}

TheoryInc(∆,L) = 〈1, 1
2 ,

1
3 , . . .〉
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Example 14. LetL = 〈{P (1)}, {a, b}〉. For ∆ = {P (a),¬P (a), P (b),¬P (b)}

TheoryInc(∆,L) = 〈∗, 1, 2
3 ,

1
2 , . . .〉

Example 15. LetL = 〈{P (1)}, {a, b, c}〉. For ∆ = {P (a),¬P (a), P (b),¬P (b), P (c),¬P (c)}

TheoryInc(∆,L) = 〈∗, ∗, 1, 3
4 ,

3
5 , . . .〉

Example 16. LetL = 〈{P (1), Q(1)}, {}〉.

∆1 = {∀x(P (x) ∧ ¬P (x)),∀xQ(x)}
∆2 = {∃x(P (x) ∧ ¬P (x)),∀xQ(x)}

Hence
TheoryInc(∆1,L) = 〈 1

2 ,
1
2 ,

1
2 , . . .〉

TheoryInc(∆2,L) = 〈 1
2 ,

1
4 ,

1
6 , . . .〉

For a languageLwith k constants, the sequence obtained fromTheoryInc(∆,L) starts withk−1 asterisks.

Proposition 1. LetTheoryInc(∆,L) = 〈x1, x2, . . .〉. If |C| = k, andk ≥ 1, then for all1 ≤ i < k, xi = ∗
and for all i ≥ k, xi 6= ∗.

Proof. The reason for the asterisks is that the domain, according to our definition, must have at least as
many elements as the number of constants inL, that is,|C|. It is always possible to increase the size of the
domain.

Proposition 2. Let TheoryInc(∆,L) = 〈r1, r2, . . .〉. If there is anri ∈ {r1, r2, ...} such thatri = 0, then
〈r1, r2, . . .〉 is of the form〈∗, . . . , ∗, 0, . . . , 0〉.

For a sequence〈r1, r2, ..〉 for a theory∆, if ri is ∗, then the domain of sizei is too small for the theory∆.
In this sense,ri does not tell us anything useful about the inconsistencies in the theory. This leads to the
following definition as capturing a natural ordering over sequences of inconsistency ratios.

Definition 18. We can adopt an ordering, denoted by the� relation, over the tuples generated by the
TheoryInc function. LetTheoryInc(∆1,L1) = 〈r1, r2, . . .〉 andTheoryInc(∆2,L2) = 〈s1, s2, . . .〉.

TheoryInc(∆1,L1) � TheoryInc(∆2,L2) iff for all i ≥ 1, ri ≤ si or ri = ∗ or si = ∗

Let TheoryInc(∆1,L1) ≺ TheoryInc(∆2,L2) abbreviateTheoryInc(∆1,L1) � TheoryInc(∆2,L2) and
TheoryInc(∆2,L2) 6� TheoryInc(∆1,L1) holding. In caseL1 = L2, we say that∆1 has smaller than or
equal inconsistency as∆2 iff TheoryInc(∆1,L) � TheoryInc(∆2,L). We denote this by∆1 ≤L

inc ∆2.

Example 17. Continuing Example 16,∆2 ≤L
inc ∆1.

Example 18. LetL = 〈{P (1)}, {a}〉, ∆1 = {P (a)}, and∆2 = {P (a),¬P (a)}. So∆1 ≤L
inc ∆2 holds

since we have the following.
TheoryInc(∆1,L) = 〈0, 0, 0, . . .〉
TheoryInc(∆2,L) = 〈1, 1

2 ,
1
3 , . . .〉

Given ∆ andL, it is not necessarily the case thatTheoryInc(∆,L)〈r1, r2, r3, . . .〉 is such that for all
ri ∈ {r1, r2, r3, . . .}, if ri 6= ∗, thenri ≥ ri+1. This is illustrated in the next example.

Example 19. LetL = 〈{P (2), Q(1)}, {}〉 and let∆ = {∀x∀y(P (x, y) ∧ ¬P (x, y))}. So,

TheoryInc(∆,L) = 〈 1
2 ,

2
3 ,

3
4 ,

4
5 , . . .〉
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TheTheoryInc function is monotonic with respect to∆ and antimonotonic with respect toL.

Proposition 3. If ∆1 ⊆ ∆2, thenTheoryInc(∆1,L) � TheoryInc(∆2,L)

Proof. Additional statements may add but cannot subtract inconsistencies.

Proposition 4. Let L1 = 〈P1, C1〉, andL2 = 〈P2, C2〉. If L1 ⊆ L2 (i.e. P1 ⊆ P2 andC1 ⊆ C2), then
TheoryInc(∆,L2) � TheoryInc(∆,L1)

Proof. For anyD, Groundatoms(L1, D) ⊆ Groundatoms(L2, D), but the size of the Conflictbase does
not change.

TheTheoryInc function is not monotonic with increasing membership of bothL and∆. The next example
shows that if∆1 ⊆ ∆2 andL1 ⊆ L2 then it is not necessarily the case thatTheoryInc(∆1,L1) �
TheoryInc(∆2,L2) holds, nor is it necessarily the case thatTheoryInc(∆2,L2) � TheoryInc(∆1,L1)
holds.

Example 20. Consider

L1 = 〈{P (1)}, {a}〉 ∆1 = {P (a)}
L2 = 〈{P (1)}, {a}〉 ∆2 = {P (a),¬P (a)}
L3 = 〈{P (1), Q(1)}, {a}〉 ∆3 = {P (a),¬P (a), Q(a)}

In this case
TheoryInc(∆1,L1) ≺ TheoryInc(∆2,L2)
TheoryInc(∆3,L3) ≺ TheoryInc(∆2,L2)

TheTheoryInc function is syntax independent.

Definition 19. For ∆,∆′ ∈ ℘(L), ∆ is QC-equivalent to∆′ iff

∀M(M is a QC model of∆ iff M is a QC model of∆′)

Proposition 5. Let ∆1 and∆2 be sets of formulae in the languageL. If ∆1 is QC-equivalent to∆2 then
TheoryInc(∆1,L) = TheoryInc(∆2,L).

We now define the intrinsic inconsistency of a theory∆ by choosing forL exactly the predicate and
constant symbols in∆.

Definition 20. For a given theory∆, letL be the language that contains exactly the predicate and constant
symbols of∆. We define theintrinsic inconsistency of∆ asTheoryInc(∆) = TheoryInc(∆,L).

So the measure of intrinsic inconsistency of a theoryTheoryInc(∆) delineates the degree of the theory in
its own terms, whereas the extrinsic inconsistency of a theoryTheoryInc(∆,L) delineates the degree of the
theory with respect to the languageL. The following example shows how these different views can diverge.

Example 21. LetL = 〈{P (1), Q(1)}, {}〉.

∆1 = {∀x (P (x) ∧ ¬P (x)),∀x (Q(x) ∧ ¬Q(x))}
∆2 = {∀x (P (x) ∧ ¬P (x))}

HereTheoryInc(∆1) = TheoryInc(∆2) = 〈1, 1, . . .〉 butTheoryInc(∆2,L) ≺ TheoryInc(∆1,L) because
the addition ofQ to the language reduces the inconsistency of∆2.

We are now ready to compare the inconsistency of theories.
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Definition 21. We say that∆1 has smaller than or equal inconsistency as∆2, denoted∆1 ≤inc ∆2, iff
TheoryInc(∆1) � TheoryInc(∆2) holds.

Clearly, all consistent theories2 have an inconsistency of the form〈∗, . . . , ∗, 0, . . . , 0〉, with the number of
∗s depending on the number of constants in the language. Hence, from our definition, their inconsistency
is the same. Also every inconsistent theory has greater inconsistency than any consistent theory.

We now illustrate the comparison of various inconsistent theories by focusing on the workings of the
quantifiers of first-order logic.

Example 22. LetL = 〈{P (2)}, {}〉 andD = {a, b, c}.

1. ∆1 = {∀x∀y(P (x, y) ∧ ¬P (x, y))} has one preferred QC model which is represented byM1 =
{P (a, a),¬P (a, a), . . . , P (c, c),¬P (c, c)}, soModelInc(M1,L, D) = 9

9 = 1. M1 is totally incon-
sistent.

2. ∆2 = {∃x∃y(P (x, y)∧¬P (x, y))} has 9 preferred QC models. One of them isM21 = {P (a, b),¬P (a, b)},
soModelInc(M21,L, D) = 1

9 .

3. ∆3 = {∀x∃y(P (x, y) ∧ ¬P (x, y))} has 9 preferred QC models. One isM31 = {P (a, a),
¬P (a, a), P (b, c),¬P (b, c), P (c, a),¬P (c, a)}, soModelInc(M31,L, D) = 3

9 = 1
3 .

4. ∆4 = {∃x∀y(P (x, y) ∧ ¬P (x, y))} has 9 preferred QC models. One isM41 = {P (b, a),
¬P (b, a), P (b, b),¬P (b, b), P (b, c),¬P (b, c)}, soModelInc(M41,L, D) = 3

9 = 1
3 .

The theories above have no constants, hence the smallest domain has one element. As a result, we obtain
the following

TheoryInc(∆1) = 〈1, 1, . . .〉
TheoryInc(∆2) = 〈1, 1

4 ,
1
9 , . . .〉 where each ratio is1

n2

TheoryInc(∆3) = 〈1, 1
2 ,

1
3 , . . .〉 where each ratio is1n

TheoryInc(∆4) = 〈1, 1
2 ,

1
3 , . . .〉 where each ratio is1n

SoTheoryInc(∆2) <inc TheoryInc(∆3) =inc TheoryInc(∆4) <inc TheoryInc(∆1). In fact, ∆1 is as
inconsistent as any theory can be.

We now show how to get some sequences forTheoryInc(∆).

Proposition 6. For any fractionr
s (r ≤ s) there is a theory∆ such thatTheoryInc(∆) = 〈 r

s ,
r
2s ,

r
3s , . . .〉

Proof. Let ∆ = {∀x (P1(x) ∧ . . . ∧ Ps(x)),¬P1(a), . . . ,¬Pr(a)}.

Both the intrinsic and extrinsic measures of inconsistency have a variety of potential applications. In Section
6, we consider analysing sources of information as a precursor to selecting sources for merging. To support
this application area, we introduce the notion of quasi-equality in the next section.

2These consistent theories exclude theories with equality wheret1 = t2 holds in a model ifft1 andt2 denote the same object. In
Section 5, we return to issues of capturing a form of equality in QC logic.
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5 Reasoning with quasi-equality

Reasoning with equality is a problematical and important issue in handling inconsistent first-order infor-
mation. In this section, we show how we can capture a form of equality, called quasi-equality, in first-order
QC logic, and then show how we can analyse inconsistencies in reasoning with equality.

In classical logic with equality, for ground termst1 and t2, t1 equalst2 is denotedt1 = t2, and it has
the following semantics:t1 = t2 is true in an interpretation ifft1 and t2 denote the same individual in
the interpretation. In contrast, in QC logic we have assumed (in Section 2) that each constant symbol is
interpreted by being mapped to itself in the domain. This means that even if two constant symbols are
synonyms for the same thing in the real world, the constant symbols are not mapped to the same object
in the model. So to capture a form of equality in QC logic, we use the notion of a quasi-equality relation,
denoted', holding in the context of some knowledge∆: So “a is equal to b”, denoteda ' b, in the context
of ∆ iff a ' b ∈ M for all M ∈ QC(L,∆, D). Hence, we treat the quasi-equality predicate as any other
predicate inL. To support this, we still maintain the assumption (in Section 2) that the set of constant
symbols in the languageL is a subset of the domainD.

For convenience we writet1 6' t2 instead of¬(t1 ' t2).

Example 23. For ∆ = {a ' b, b 6' c}, we have{a, b, c} ⊆ D.

However to get the behaviour normally associated with equality, we need to add extra axioms to a knowl-
edgebase: the reflexivity axiom, the symmetry axiom, and the transitivity axiom. It also includes a unique
names axiom that states that each constant symbol is assumed to be unique in a knowledgebase [Rei78].
Our definition for quasi-equality is similar to the idea of indiscernibility in classical logic.

Definition 22. For L = 〈{P1(k1), . . . , Pz(kz),' (2)}, {c1, .., cn}〉, the set ofquasi-equality axioms,
denoted∆qe, is defined as follows, where we assume that for1 ≤ m ≤ z, Pm does not denote'.

• Reflexivity axiom
∀x (x ' x)

• Symmetry axiom
∀x, y ((x 6' y) ∨ (y ' x))

• Transitivity axiom
∀x, y, z ((x 6' y) ∨ (y 6' z) ∨ (x ' z))

• Unique names axiom ∧
ci,cj∈{c1,..,cn} such thatci 6=cj

ci 6' cj

• Substitution axiom

∀x1, . . . , xn, y1, . . . , yn(¬Pm(x1, ..., xn) ∨ x1 6' y1 ∨ ... ∨ xn 6' yn ∨ Pm(y1, ..., yn))

Example 24. LetL = 〈{P (2),'(2)}, {a, b, c}〉. The unique names axiom forL is

(a 6' b) ∧ (a 6' c) ∧ (b 6' a) ∧ (b 6' c) ∧ (c 6' a) ∧ (c 6' b)

Suppose∆1 = {a ' b, b ' c)}. There is one preferred QC model of∆1 ∪∆qe which is below.

{a ' a, a ' b, a 6' b, a ' c, a 6' c, b ' a, b 6' a, b ' b,
b ' c, b 6' c, c ' a, c 6' a, c ' b, c 6' b, c ' c}

Next let∆2 = {P (a, c),¬P (b, b), a ' b}. The one preferred model of∆2 ∪∆qe is as follows:

{P (a, c), P (b, c),¬P (a, a),¬P (a, b),¬P (b, a),¬P (b, b)
a ' a, a ' b, a 6' b, a 6' c, b ' a, b 6' a, b ' b, b 6' c, c 6' a, c 6' b, c ' c}
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In some domains we know for sure what is equal and not equal. So in some domains we may want some-
thing closer to equality as in classical logic. We could extend QC logic to incorporate a “built-in” predicate
capturing “real” equality, denoted=, in such a way that no QC model is allowed to have botha = b and
a 6= b for anya or b. If we deal with integers we know that5 = 5 and would not accept5 = 6 or 5 6= 5.
This is similar to what happens if we have other built-in predicates such as “less than”. We know that5 < 6
and would not allow6 < 5. Adopting such built-in predicates requires some alterations to the definitions
in Section 2. We do not provide the revised definitions in this paper, but give a simple example below to
show the difference between using equality and quasi-equality in an integrity constraint.

Example 25. LetL = 〈{P (3)}, {a, b, c}〉,D = {a, b, c}, and

∆1 = {∀x∀y∀z∀u∀v(¬P (x, y, z) ∨ ¬P (x, u, v) ∨ y = u), P (a, b, c), P (a, c, c)}

The universal statement represents the functional dependency of the second attribute ofP on the first
attribute. So any two tuples inP that have the same first value must have second values that are equal.
Because of our earlier statement that inconsistencies are not allowed for equalities,∆1 has no models.
Next, let

∆2 = {∀x∀y∀z∀u∀v(¬P (x, y, z) ∨ ¬P (x, u, v) ∨ y ' u), P (a, b, c), P (a, c, c)}

In contrast to∆1, ∆2 has models such as the one below:

{P (a, b, c), P (a, b, b), P (a, c, b), P (a, c, c),¬P (a, a, a),¬P (a, a, b),¬P (a, a, c)
¬P (a, b, a),¬P (a, b, b),¬P (a, b, c),¬P (a, c, a),¬P (a, c, b),¬P (a, c, c)
a ' a, a 6' a, a 6' b, a 6' c, b 6' a, b ' b, b 6' b, b ' c, b 6' c, c 6' a, c ' b, c 6' b, c ' c, c 6' c}

So with the “real” equality predicate, we may represent information involving equality that we may not
tolerate as inconsistent, or we can assume will not be inconsistent. This has various advantages including
the fact that it can be used to provide constraints on the size and composition of the domain. It can also be
used to specify a uniqueness quantifier∃x! so that for example∃x!P (x) means that there is exactly one
element in the domain that has the propertyP . This can be defined in first-order classical logic as follows.

∃x!P (x) ≡def ∃x∀y(x = y ↔ P (x))

There are disadvantages to treating equality as “real” equality. Because we can express statements about the
number of elements in a model in first-order logic with real equality, the inconsistency sequences become
more complicated and may have a more complex pattern of asterisks as the number of elements in any
model can be limited. Perhaps more significantly, some of the key results regarding QC logic would be
compromised. For example, as we shown in the example above, some theories have no models at all.

6 Analysing sources of information

Using information from heterogeneous sources is an increasingly important topic in computing. This in-
cludes information integration (e.g. [SL90, Hal01]), knowledgebase merging (e.g [BKMS92, KP98]), and
query answering in inconsistent databases (e.g. [BC03]). The central problem in using such information is
the preponderance of inconsistencies.

Most proposals for using such information offer techniques for addressing the inconsistencies that may
arise, but none consider analysing the information before using a technique. Yet analysing information first
means that we can be selective in the information we use. As a simple example, if a knowledgebase∆ is
such thatTheoryInc(∆) = 〈1, 1, . . .〉, we may be reluctant to use it if we have other knowledgebases that
are significantly less inconsistent.
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Definition 23. Let ∆db be a set of ground predicates inL denoting a database, let∆ic be any set of
formulae inL denoting a set of integrity constraints, and let∆qe be the set of quasi-equality axioms.

∆db is consistent w.r.t.∆ic iff ∆db ∪∆ic ∪∆qe is consistent

If a database is inconsistent with a set of integrity constraints, then we want to measure the degree of incon-
sistency. Furthermore, we want to measure both the intrinsic inconsistency and the extrinsic inconsistency.
The intrinsic inconsistency can be viewed as the inconsistency of a source in terms of its own language and
that of its integrity constraints. The extrinsic inconsistency can be viewed as the inconsistency of a source
in terms of the language of all the sources and all the integrity constraints.

In the following examples, we illustrate some of the useful insights that intrinsic and extrinsic measures of
inconsistency can provide in analysing sources of information.

Example 26. LetL = 〈P, C〉 whereP = {Married(2)} andC is the following set.

{AnnJones,AlanJones,MarySmith, FredSmith, PeterChan, SueChan}

Using this language we can obtain a couple of simple databases that we can use to show how violations of
an integrity constraint may be analysed.

∆ic = {∀x∀y (¬Married(x, y) ∨Married(y, x))}

We consider the following two databases.

∆db
1 = {Married(AnnJones,AlanJones),¬Married(AlanJones,AnnJones)}

∆db
2 = {Married(MarySmith, FredSmith),¬Married(MarySmith, FredSmith),

Married(PeterChan, SueChan)}

Using these, we consider the following two theories

∆1 = ∆ic ∪∆db
1

∆2 = ∆ic ∪∆db
2

For these we get the following valuations for theTheoryInc functions.

TheoryInc(∆1) = 〈∗, 2
4 ,

2
9 ,

2
16 , . . .〉

TheoryInc(∆2) = 〈∗, ∗, ∗, 2
16 ,

2
64 , . . .〉

By inspection of the sequences obtained by theTheoryInc function, we see that maximum inconsistency
ratio for ∆1 is 2/4, whereas for∆2 it is 2/16, which reflects that more of∆1 is involved in an incon-
sistency than∆2. Then by comparing the sequences using the� relation, we see the theories are equally
inconsistent. In other words, as more of the domain is taken into account, we see that at each cardinality
of the domain, the inconsistency ratio is the same.

Example 27. Let L = 〈P, C〉 whereP = {Employee(1), Supervisor(2), Department(2), Role(3)}
andC = {AnnJones, FredSmith,MikeBollo}. Using this language we can obtain a simple database
that we can use to show how the language can affect the analysis of violations of an integrity constraint.

∆ic = {∀x∃y (¬Employee(x) ∨ Supervisor(y, x))}

We consider the following database.

∆db = {Employee(FredSmith),¬Supervisor(AnnJones, FredSmith),
¬Supervisor(FredSmith, FredSmith),
¬Supervisor(MikeBollo, FredSmith)}
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Using these, we consider the following theory

∆ = ∆ic ∪∆db

For these we get the following valuations for theTheoryInc functions.

TheoryInc(∆,L) = 〈∗, ∗, 2
48 ,

2
100 ,

2
180 , . . .〉

TheoryInc(∆) = 〈∗, ∗, 2
12 ,

2
20 ,

2
30 , . . .〉

By inspection of the sequences obtained by theTheoryInc functions, we see that as the domain increases,
the inconsistency ratio rapidly diminishes. This is markedly so when we take the language into account.
This indicates that if∆ is a true reflection of all the inconsistencies in the data in this language, then the
proportion of data that is affected is small.

We now consider a more complex example in more detail.We will use quasi-equality for these examples.

Example 28. LetL = 〈{P (2), Q(2),'(2)}, {a, b, c, d}〉. Below we give a set of integrity constraints and
three sets of data.

∆ic
1 = {∀x∀y (¬P (x, y) ∨ ¬P (x, z) ∨ y ' z)}

∆ic
2 = {¬P (a, b) ∨ ¬P (c, d)}

∆ic
3 = {∀x∀y∀z (¬P (x, y) ∨ ¬Q(x, z) ∨ y ' z)}

∆db
1 = {P (a, b), P (a, c)}

∆db
2 = {P (c, d),¬P (c, d)}

∆db
3 = {Q(a, b), Q(a, c), P (a, c)}

We consider the following theories

∆1 = ∆ic
1 ∪∆db

1 ∪∆qe

∆2 = ∆ic
2 ∪∆db

2 ∪∆qe

∆3 = ∆ic
3 ∪∆db

3 ∪∆qe

∆12 = ∆ic
1 ∪∆ic

2 ∪∆db
1 ∪∆db

2 ∪∆qe

∆13 = ∆ic
1 ∪∆ic

3 ∪∆db
1 ∪∆db

3 ∪∆qe

∆23 = ∆ic
2 ∪∆ic

3 ∪∆db
2 ∪∆db

3 ∪∆qe

∆123 = ∆ic
1 ∪∆ic

2 ∪∆ic
3 ∪∆db

1 ∪∆db
2 ∪∆db

3 ∪∆qe

In this example the number of inconsistent atoms does not change as the size of the domain changes. Hence
the numerators of the fractions do not change, only the denominators change as larger domains have more
atoms. First we list for each theory the atoms in the conflictbase; the number of these will be the number
in the numerator of the fractions.

∀M ∈ MQC(∆1) Conflictbase(M) =
{P (a, b), P (a, c), a ' a, b ' b, c ' c, b ' c, c ' b}

∀M ∈ MQC(∆2) Conflictbase(M) =
{P (c, d), c ' c, d ' d}

∀M ∈ MQC(∆3) Conflictbase(M) =
{P (a, c), Q(a, b), Q(a, c), a ' a, b ' b, c ' c, b ' c, c ' b}

∀M ∈ MQC(∆12) Conflictbase(M) =
{P (a, b), P (a, c), P (c, d), a ' a, b ' b, c ' c, d ' d, b ' c, c ' b}

∀M ∈ MQC(∆13) Conflictbase(M) =
{P (a, b), P (a, c), Q(a, b), Q(a, c), a ' a, b ' b, c ' c, b ' c, c ' b}

∀M ∈ MQC(∆23) Conflictbase(M) =
{P (a, c), P (c, d), Q(a, b), Q(a, c), a ' a, b ' b, c ' c, d ' d, b ' c, c ' b}

∀M ∈ MQC(∆123) Conflictbase(M) =
{P (a, b), P (a, c), P (c, d), Q(a, b), Q(a, c), a ' a, b ' b, c ' c, d ' d, b ' c, c ' b}
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Hence we get the following evaluations of extrinsic inconsistency. The fractions are not simplified. The nu-
merator is the cardinality of the conflictbase for the models considered and denominator is the cardinality
of the set of ground atoms for the language and domain considered.

TheoryInc(∆1,L) = 〈∗, ∗, ∗, 7
48 ,

7
75 , . . .〉

TheoryInc(∆2,L) = 〈∗, ∗, ∗, 3
48 ,

3
75 , . . .〉

TheoryInc(∆3,L) = 〈∗, ∗, ∗, 8
48 ,

8
75 , . . .〉

TheoryInc(∆12,L) = 〈∗, ∗, ∗, 9
48 ,

9
75 , . . .〉

TheoryInc(∆13,L) = 〈∗, ∗, ∗, 9
48 ,

9
75 , . . .〉

TheoryInc(∆23,L) = 〈∗, ∗, ∗, 10
48 ,

10
75 , . . .〉

TheoryInc(∆123,L) = 〈∗, ∗, ∗, 11
48 ,

11
75 , . . .〉

From the measure of extrinsic inconsistency, source∆2 is clearly the least inconsistent. If we want to take
pairs of sources then∆2 ∪∆3, is slightly more inconsistent than∆1 ∪∆2 and∆1 ∪∆3.

We also get the following evaluations of intrinsic inconsistency. Again the fractions are not simplified.

TheoryInc(∆1) = 〈∗, ∗, 7
18 ,

7
32 ,

7
50 , . . .〉

TheoryInc(∆2) = 〈∗, ∗, ∗, 3
32 ,

3
50 , . . .〉

TheoryInc(∆3) = 〈∗, ∗, 8
27 ,

8
48 ,

8
75 , . . .〉

TheoryInc(∆12) = 〈∗, ∗, ∗, 9
32 ,

9
50 , . . .〉

TheoryInc(∆13) = 〈∗, ∗, 9
27 ,

9
48 ,

9
75 , . . .〉

TheoryInc(∆23) = 〈∗, ∗, ∗, 10
48 ,

10
75 , . . .〉

TheoryInc(∆123) = 〈∗, ∗, ∗, 11
48 ,

11
75 , . . .〉

With intrinsic inconsistency,∆2 is still the least inconsistent source, but the difference between∆2 and
∆3 is less pronounced. Also, among pairs of sources∆12 and∆13 are no longer tied and∆13 is the least
inconsistent. The reason for the changes is that the language of∆1 and ∆2 is more restricted than the
language of∆3.

We now consider an example of comparing two sources of first-order knowledge each of which is incon-
sistent with a set of beliefs, and the task is to select the source that is least inconsistent with the beliefs.

Example 29. Let a set of beliefs be represented by the set∆ as follows

∆ = {∀x∀y α(x, y),∀x∀y¬β(x, y),∀x∀yγ(x, y)}

LetΓ1 andΓ2 be two sources of information defined as follows.

Γ1 = {∀x∃y(α(x, y) → β(x, y))}
Γ2 = {∀x∀y(α(x, y) ∧ γ(x, y) → β(x, y))}

Now we consider the following theories.

∆1 = Γ1 ∪∆
∆2 = Γ2 ∪∆

For these theories, we get the following evaluations of intrinsic inconsistency.

TheoryInc(∆1) = 〈 2
3 ,

4
12 ,

6
27 ,

8
48 , . . .〉

TheoryInc(∆2) = 〈 3
3 ,

12
12 ,

27
27 ,

48
48 , . . .〉

From these evaluations of intrinsic inconsistency, we see that∆1 is the less inconsistent source, and by this
criterion, it should be the selected source.

From these examples, we see that both the measure of intrinsic inconsistency and the measure of extrinsic
inconsistency provide the basis of objective criteria for evaluating the quality of sources of information,
and that this can then be used to improve the quality of merged information.
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7 Discussion

In this paper, we have presented a first-order version of QC measurement of inconsistency. This version,
together with the proposal for quasi-equality offers a useful approach to analysing inconsistent information
in knowledgebases.

Whilst a number of approaches to handling inconsistent information touch on the issue of measurement
of inconsistency, the topic is underdeveloped. Information theory can be used to measure the information
content of sets of inconsistent formulae [Loz94]. This increases with additions of consistent information
and decreases with additions of inconsistent information. However, it does not provide a direct measure
of inconsistency since for example, the value for{α} is the same as for{α,¬α, β}. Another approach to
handling inconsistent information is that of possibility theory [DLP94]. Let(φ, α) be a weighted formula
whereφ is a classical formula andα ∈ [0, 1]. A possibilistic knowledgebaseB is a set of weighted formu-
lae. Anα-cut of a possibilistic knowledgebase, denotedB≥α, is {(ψ, β) ∈ B | β ≥ α}. The inconsistency
degree ofB, denotedInc(B), is the maximum value ofα such that theα-cut is inconsistent. However, this
approach does not discriminate between different inconsistencies. For this, there is a need for an underlying
paraconsistent logic such as QC logic.

An alternative approach to quantifying degrees of information and contradiction in propositional logic is
based on a framework of “epistemic actions” [KLM03]. The degree of information in a knowledgebase is
based on the number (or the cost) of actions needed to identify the truth value of each atomic proposition:
the lower the cost, the more information is contained in the base. The degree of contradiction in a knowl-
edgebase is based on the number (or the cost) of actions needed to render the knowledgebase classically
consistent. Both measurements are dependent on the language, logic, and tests used. This is a very general
framework for propositional logic. Our work goes beyond theirs by providing a comprehensive analysis of
intrinsic and extrinsic inconsistency in the predicate case.

In this paper, we have shown how the QC measurement of inconsistency may be useful in analysing viola-
tions of integrity constraints, and in comparing sources of information prior to merging. Another potentially
important application is in supporting negotiation. Consider a negotiation between two agents. Each agent
represents their position by a set of first-order formulae and the union of these positions is inconsistent. The
aim of negotiation is for the agents to shift their respective positions to ones where the union is consistent.
Normally this involves a number of cycles of compromises by the agents. Each compromise is effectively
revising a position to a logically weaker position. So agent 1 may make a compromise, resulting in a low-
ering in the degree of inconsistency. Then agent 2 may make a compromise, resulting in a further lowering
in the degree of inconsistency. This should continue until sufficient compromises have been made to give
a consistent union. Our theoretical framework can be used to ensure that the degree of inconsistency is
lowered in each cycle, and more importantly to ensure that the compromises are equitable. In other words,
using instrinsic and extrinsic measures of inconsistency, we can ensure that if agent 1 reduces inconsistency
by a certain degree, then agent 2 should also reduce inconsistency by the same degree. This commensurate
compromising can be enforced at each cycle, or enforced over all the cycles. Furthermore, we can set a
threshold for what is a minimum degree of compromise per cycle to ensure that the total number of cycles
is minimized.
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