
ANTHONY HUNTER

PARACONSISTENT LOGICS

1 INTRODUCTION

In practical reasoning, it is common to have “too much” informationabout some

situation. In other words, it is common for there to be classically inconsistent

information in a practical reasoning database [Besnard et al., 1995]. The diver-

sity of logics proposed for aspects of practical reasoning indicates the complex-

ity of this form of reasoning. However, central to practical reasoning seems to

be the need to reason with inconsistent information without the logic being triv-

ialized [Gabbay and Hunter, 1991; Finkelstein et al., 1994]. This is the need to

derive reasonable inferences without deriving the trivial inferences that follow

the ex falso quodlibet proof rule that holds in classical logic.

� ; :� [Ex falso quodlibet]

�

So for example, from a database f�;:�; �! �; �g, reasonable inferences

might include �, :�, � ! �, and � by reflexivity, � by modus ponens, � ^ �

by and introduction,:� ! :� and so on. In contrast, trivial inferences might

include , ^ :�, etc, by ex falso quodlibet.

Solutions to the problem of inconsistent data include database revision and

paraconsistent logics. The first approach effectively removes data from the

database to produce a new consistent database. In contrast, the second approach

leaves the database inconsistent, but prohibits the logics from deriving trivial

inferences. Unfortunately, the first approach means we may loose useful infor-

mation — we may be forced to make a premature selection of our new database,

or we may not even be able to make a selection. We consider here the advan-

tages and disadvantages of the paraconsistent approach.

The primary objective of this chapter is to present a range of paraconsistent

logics that give sensible inferences from inconsistent information. We consider

(1) Weakly-negative logics which use the full classical language, but a subset

of the classical proof theory; (2) Four-valued logics which uses a subset of the

classsical language and a subset of the classical proof theory, together with an

intuitive four-valued semantics; (3) Quasi-classical logic which uses the full

classical language, though data and queries are effectively rewritten by the logic

14 ANTHONY HUNTER

to a conjunctive normal form and reasoning is essentially that of clause finding;

and (4) Argumentative logics which reason with consistent subsets of classical

formulae.

These options behave in quite different ways with data. None can be re-

garded as perfect for handling inconsistent information in general. Rather, they

provide a spectrum of approaches. However, in all the approaches we cover, we

aim to stay close to classical reasoning, since classical logic has many appealing

features for knowledge representation and reasoning.

2 CLASSICAL REASONING

In this section, we consider classical reasoning in more detail by presenting

some basic definitions that are needed for developing paraconsistent logics.

2.1 Language and proof theory

DEFINITION 1 Let L be the set of classical propositional formulae formed

from a set of atoms and the ^;_;! and : connectives. A database� is some

subset of L.

DEFINITION 2 For each atom � 2 L, � is a literal and :� is a literal. For

�

1

_ ::_�

n

2 L, �
1

_ ::_�

n

is a clause iff each of �
1

; ::; �

n

is a literal. For

�

1

^ ::^ �

n

2 L, �
1

^ ::^�

n

is in a conjunctive normal form (CNF) iff each

of �
1

; ::; �

n

is a clause.

DEFINITION 3 For �
1

^ :: ^ �

n

2 L, and � 2 L, �
1

^ :: ^ �

n

is in a con-

junctive normal form (CNF) of � iff�
1

; ::; �

n

is classically equivalent to �, and

�

1

; ::; �

n

is in a CNF.

For any � 2 L, a CNF of � can be produced by the application of distribu-

tivity, double negation elimination, and de Morgan laws.

DEFINITION 4 The relation ` is classical consequence, defined in the stan-

dard way over L. For a database�, Cn(�) is the set f�j� ` �g.

2.2 Properties of consequence relations

The following standard properties of consequence relations have been adapted

from those given by Gabbay [Gabbay, 1985] and Gärdenfors and Makinson
[Gärdenfors and Makinson, 1993].

PARACONSISTENT LOGICS 15

DEFINITION 5 Let `
x

be some consequence relation, where `
x

� }(L)�L.

We introduce the following properties:

� `

x

� if � ` � (Supraclassicality)

� [f�g `

x

� (Reflexivity)

� [f�g `

x

 if � [f�g `

x

and ` �$ � (Left logical equivalence)

� `

x

� if � `

x

� and ` � ! � (Right weakening)

� `

x

� ^ � if � `

x

� and � `

x

� (And)

� [f�g `

x

� if � 6`

x

:� and � `

x

� (Rational monotonicity)

� [f�g `

x

� if � `

x

� and � `

x

� (Cautious monotonicity)

� [f�g `

x

� if � `

x

� (Monotonicity)

� `

x

� if � `

x

� and � [f�g `

x

� (Cut)

� ` ? if � `

x

? (Consistency preservation)

� `

x

�! � if � [f�g `

x

� (Conditionalization)

� [f�g `

x

� if � `

x

�! � (Deduction)

� [f� _ �g `

x

 if � [f�g `

x

and � [f�g `

x

 (Or)

These properties have been proposed as desirable conditionsof a consequence

relation. In particular, identifying the properties that fail indicates the deviation

from classical logic.

2.3 Notions of trivialization

In the following, we define the notion of a clause being trivial with respect to

a set of formulae, and the notion of a clause being pure with respect to a set of

formulae.

DEFINITION 6 Let `
x

be a consequence relation, where`
x

is defined by some

proof rules. Hence, `
x

� }(L) � L. The relation `
x

is trivializable iff for all

�, �, f�;:�g `
x

�.

We now require the following function Atoms(�) which gives the set of

atoms used in the set of formulae in �.

16 ANTHONY HUNTER

DEFINITION 7 Let � 2 }(L), and �, �,
1

^ ::^

n

, �
1

_ :: _ �

n

2 L,

Atoms(� [f�g) = Atoms(f�g) [Atoms(�)

Atoms(;) = ;

Atoms(f�g) = Atoms(fg) where is the CNF of �

Atoms(f

1

^ :: ^

n

g) = Atoms(f

1

g) [::[Atoms(f

n

g)

Atoms(f�

1

_ :: _ �

n

g) = Atoms(f�

1

g) [::[Atoms(f�

n

g)

Atoms(f:�g) = Atoms(f�g)

Atoms(f�g) = f�g if � is an atom

PROPOSITION 8 Let � � L, and let Cx(�) denote the consequence closure

of � by `
x

, ie Cx(�) = f� j � `

x

�g. For any � � L, where � ` ?, the

consequence relation `
x

is trivial iff Cx(�) = L.

A paraconsistent logic has a non-trivializable consequence relation. How-

ever, since the notion of trivial is quite general, we have introduced the defini-

tion of pure. This captures a notion of relevancy between premises and conse-

quences.

DEFINITION 9 A clause� 2 L is pure with respect to� 2 }(L) iffAtoms(�)

\ Atoms(f�g) 6= ;. A consequence relation `
x

is pure iff for all � 2 L;� 2

}(L); � is pure with repect to �.

PROPOSITION 10 If a consequence relation `

x

is pure, then `

x

is non-

trivializable. However, the converse does not necessarily hold.

Clearly, the classical consequence relation, `, is trivializable and not pure.

2.4 Sectioning the database

One of the most obvious strategies for handling inconsistency in a database is to

reason with consistent subsets of the database. Closely related to this approach

is to remove information from the database that is causing an inconsistency.

Here, we explore some of the issues relating these approaches in the context

of classical proof theory.

PARACONSISTENT LOGICS 17

DEFINITION 11 Let � be a database. Then:

CON(�) = f� � �j� 6` ?g

INC(�) = f� � �j� ` ?g

MC(�) = f� 2 CON(�)j8� 2 CON(�)� 6� �g

MI(�) = f� 2 INC(�)j8� 2 INC(�)� 6� �g

FREE(�) =

T

MC(�)

Hence MC(�) is the set of maximally consistent subsets of�; MI(�) is the

set of minimally inconsistent subsets of �; and FREE(�) is the set of informa-

tion that all maximally consistent subsets of � have in common.

PROPOSITION 12 ([Elvang-Goransson and Hunter, 1995]) Let � be a

database.
\

MC(�) = ��

[

MI(�)

We can consider a maximally consistent subset of a database as capturing a

“plausible” or “coherent” view on the database. For this reason, the set MC(�)

is important in many of the definitions presented in the next section. Further-

more, we consider FREE(�), which is equal to
T

MC(�), as capturing all the

“uncontroversial” information in �. In contrast, we consider the set
S

MI(�)

as capturing all the “problematical” data �.

EXAMPLE 13 Let � = f�;:�; �! �;:� ! �; g. This gives two maxi-

mally consistent subsets, �
1

= f�; �! �;:� ! �; g, and �
2

= f:�; �!

�;:�! �; g. From this
T

MC(�)=f�! �;:�! �; g, and a minimally

inconsistent subset 	 = f�;:�g.

PROPOSITION 14 ([Elvang-Goransson and Hunter, 1995]). Let � be a

database and � 2 L, and let max be an operator picking�-maximal elements

from a set of sets.

MC(� [f�g) = f� 2 MC(�)j� ` :�g [

f� [f�gj� 2 maxf	 2 CON(�)j	 6` :�gg

We now use this proposition to show that MC(�[f�g) can be constructed

directly from MC(�).

EXAMPLE 15 Let � = f�; ^ (�_:�);:^ (:�_:�)g. Then MC(�) =

ff�; ^ (� _ :�)g; f�;: ^ (:� ^ :�)gg. And MC(� [f�g) = ff�; ^

(� _ :�); �g; f�;: ^ (:�_ :�)g; f: ^ (:� _ :�); �gg.

18 ANTHONY HUNTER

PROPOSITION 16 ([Elvang-Goransson and Hunter, 1995]). Let � be a

database and � 2 L.

FREE(� [f�g) � FREE(�) [f�g

This result has ramifications for deriving inferences from FREE(�), since

the choice of updating (in the form of eitherFREE(�[f�g) orFREE(�)[f�g)

can affect the reasoning.

Reasoning with consistent subsets of the database contrasts significantlywith

weakly-negative logics, four-valued logic, and quasi-classical logic. However,

it forms the basis of argumentative logics.

3 WEAKLY-NEGATIVE LOGICS

To avoid trivialization, weakly-negative logics compromise on classical proof

theory. They allow, for example, normal notions of conjunction, such as �^ �

gives �, but they are substantially weaker in terms of negation.

There are a number of ways in which this can be achieved. One way is to

weaken classical logic so that ex falso quodlibet and reductio ad absurdum do

not hold. This gives a paraconsistent logic calledC
!

logic proposed by da Costa
[da Costa, 1974].

3.1 Proof theory for C
!

Below we give a presentation ofC
!

. All the schema in the logicC
!

are schema

in classical logic.

DEFINITION 17 The logic C
!

is defined by the following axiom schema to-

gether with the modus ponens proof rule.

�! (� ! �)

(�! �) ! ((�! (� !))! (�!))

� ^ � ! �

� ^ � ! �

�! (� ! � ^ �)

�! � _ �

� ! � _ �

(�!) ! ((� !) ! (� _ � !))

� _ :�

::�! �

PARACONSISTENT LOGICS 19

This proof theory gives the C
!

consequence relation.

EXAMPLE 18 To illustrate the use of C
!

, consider the following example. In

this example, there is a symmetry about whether or not � is a �. In other words,

there is an argument that � is a �, and an argument that � is :�.

�! (� ^)

 ! �

� ! :�

�

Using the proof theory we can derive inferences including �; � and . We

can also derive both � and :�.

In C
!

, rules such as modus tollens and disjunctive syllogism fail.

�! �;:� [Modus tollens]

:�

� _ �;:� [Disjunctive syllogism]

�

Many useful equivalences fail also such as the following,

:� _ � 6� �! �

::� 6� �

In this sense weakly-negative logics are sub-systems of classical logic. In

particular compromising on negation means that many classical inference steps

involving negation fail in weakly-negative logics. But to illustrate the sensitiv-

ity of this compromise, consider the following example of reasoning which is

not valid in C
!

.

EXAMPLE 19 From the schema,

�! (� ! �)

we can derive in C
!

an axiom

�! (:� ! �)

20 ANTHONY HUNTER

Now assume contraposition, which does not hold in C
!

,

(:� ! �)! (:�! �)

By transitivity, this would give

�! (:�! �)

which is a form of ex falso quodlibet. Hence, contraposition cannot be a part of

C

!

.

However, the removal of certain classical inference rules means that the

propositional connectives in the language do not behave in a classical fashion.

In the case of C
!

the classical “sense” of negation – and as a result also the

interdefinability of the classical connectives – has been traded in exchange for

non-trivialisation. One manifestation of this, according to Besnard [1991], is

the following.

EXAMPLE 20 In C
!

, disjunctive syllogism, ((� _ �) ^ :�) ! �, does not

hold, whereas modus ponens, (�^(�! �))! �, does hold. So, for example,

� does not follow from the database: f(� _ �);:�g, whereas � does follow

from the database: f(:� ! �);:�g.

There are many similar examples that could be considered confusing and

counter-intuitive from a practical reasoning perspective.

PROPOSITION 21 ([Hunter, 1996b]). The following properties succeed for

the C
!

consequence relation: Reflexivity, And, Monotonicity, Cut, Deduction,

Conditionalization, Consistency preservation, and Or.

PROPOSITION 22 ([Hunter, 1996b]). The followingproperties fail for theC
!

consequence relation: Supraclassicality,Left logical equivalence, and Right

weakening.

PROPOSITION 23 ([da Costa, 1974; Hunter, 1996b]). The C
!

consequence

relation is not pure and not trivializable.

An alternative presentation of C
!

is given by a weaker-than-classical set of

classical deduction proof rules [Raggio, 1978].

PARACONSISTENT LOGICS 21

3.2 A semantic tableau proceedure for C
!

We now consider a proof proceedure for C
!

by Carnielli et al. [1991; 1992].

The method is derived from the

semantic tableau proof procedure for classical logic.

DEFINITION 24 The formula:(�^:�) is not valid in general, but if it does

hold for a formula �, it is a well-behaved formula, and is denoted ��.

DEFINITION 25 Each formula � is labelled with either a + symbol or a �

symbol and we call + : � and � : � signed formulae.

Intuitively,+ : �, and� : �, can be interpreted as � being true, and � being

false, respectively. Any set of sets of signed formulae is called a form.

DEFINITION 26 Let � and � be two formulae, and let � be other formulae

and/or other forms. Below are a set of production rules that can be used to

reduce a set of formulae into either a new set of formulae, or set of sets of for-

mulae.

f�;+ : (� ^ �)g => f�;+ : �;+ : �g

f�;� : (� _ �)g => f�;� : �;� : �g

f�;� : (�! �)g => f�;+ : �;� : �g

f�;+ : (::�)g => f�;+ : �g

f�;� : (:�)g => f�;+ : �g

f�;� : (::�)g => f�;� : �g

f�;� : (� � �)

�

g => f�;� : (�

�

� �

�

)g;where � 2 f^;_;!g

f�;� : (� ^ �)g => ff�;� : �g; f�;� : �gg

f�;+ : (� _ �)g => ff�;+ : �g; f�;+ : �gg

f�;+ : (�! �)g => ff�;� : �g; f�;+ : �gg

f�;+ : (:�)g => ff�;� : �g; f�;� : �

�

gg

Given a form C, we denote by R(C) the result of applying one of the rules to

the form. A tableau is a sequence of formsC
1

; ::; C

n

, such thatC
i+1

= R(C

i

).

22 ANTHONY HUNTER

In order to test if a formulae can be inferred from a set of formulae, we label it

with the� symbol, add it to the data, and construct a tableau. The formula can

be inferred if the tableau is closed. A tableau is closed if every set of formulae

of its form is closed, and a set of formulae is closed if there is a formula � for

which + : � and � : � belong to that set.

EXAMPLE 27 Consider the following formulae,

�! (� ^)

� ! �

 ! :�

�

Running the tableau rules for this set, the resulting open tableau is the pro-

posed solution to the problem introduced by the inconsistency. Here we con-

sider only the two main forms of which one is closed and the other is not closed.

The rest of the closed forms will be omitted.

C

0

= f+ : (�! (� ^));+ : (� ! �);

+ : (! :�);+ : �g

C

1

= C

0

[f+ : (� ^)g

C

2

= C

1

[f+ : �;+ : g

C

3

= C

2

[f+ : �;+ : (:�)g

C

4

= fC

3

[f� : �g; C3[f� : �

�

gg

The set C
3

[f� : �g is closed and the set C3 [f� : �

�

g is not closed.

This means that we can restrict our considerations to the following set of signed

elementary expressions of the open set f� : �

�, + : �, + : �, + : , + : �g.

This set gives us a solution to the problem in the sense that we consider �, �,

, and � as holding, but that � is controversial. This example shows how even

though the database is inconsistent, the technique allows us to identify � and:�

as being central to this inconsistency problem.

PARACONSISTENT LOGICS 23

A by-product of the proof method is that, as with the classical semantic

tableau method, this proof method indicates an interesting semantic character-

ization of the weakly negative logic.

3.3 Applicability of weakly-negative logic

The logic C
!

is only one of a number of interesting weakly-negative logics.

Further proof rules can be added to C
!

to give a stronger, and yet still non-

trivializable, logic. For example, PIs logic by Batens [1980] and V I logic by

Arruda [1977]. Other weakly-negative logics can be defined by alternative, but

similar weakenings, such as for relevant logics by Anderson and Belnap [1975].

Weakly-negative logics are useful for rule-based reasoning with information

since the logic supports modus ponens. They can be used to give guidance on

the inconsistency and facilitate actions that should be taken on the database.

Furthermore, they can be used without recourse to consistency checks. Finally,

paraconsistent logics can be used as a formal basis for truth maintenance [Mar-

tins and Shapiro, 1988].

4 FOUR-VALUED LOGIC

The four-valued logic of Belnap [1977] provides an interesting alternative to

the weakly-negative logics in that it has an illuminating and intuitive semantic

characterization to complement its proof theory.

DEFINITION 28 The language for four-valued logic is a subset of classical

logic. Let P be the usual set of formulae of classical logic that is formed using

the connectives :;^ and _. Then the set of formulae of the language, denoted

Q, is P [f�! � j �; � 2 Pg, and hence implication is not nestable.

DEFINITION 29 A formula in the language can be one of “true”, “false”,

“both” or “neither”, which we denote by the symbols T, F, B, and N, respec-

tively.

EXAMPLE 30 For the database f�;:�; �g, an acceptable assignment of truth

values is such that � is B, :� is B, � is T, and is N.

Intuitively we can view this form of assignment in terms of an “Approxima-

tion” lattice (see Figure 1). As more “information” is obtained about a formula,

the truth-value“increases”. In other words, if we know nothingabout a formula,

it is N . Then as we gain some information it becomes either T or F . Finally,

if we gain too much information it becomes B.

24 ANTHONY HUNTER

�

�

�

��

�

�

�

��

@

@

@

@I

@

@

@

@I

N

T F

B

Figure 1. The “Approximation” lattice

4.1 Semantics for four-valued logic

DEFINITION 31 For the semantics, we assume a distributive lattice, the “Log-

ical” lattice (see Figure 2). We also assume an involution operator � satisfying

the conditions (1) � = �

��, and (2) if � � � then �� � �

�, where � is the

ordering relation for the lattice.

DEFINITION 32 The semantic assignment functionobserves monotonicityand

complementation, in the logical lattice, so x^y is the meet of fx; yg and x_y is

the join of fx; yg, giving the following truth tables (Tables 1 – 3) for the :;^;_

connectives. Let �; � be formulae. The inference � from � is valid iff � � �,

where � is the ordering relation for the logical lattice. Let �! � signify that

the inference from � to � is valid in our four values, ie. that � entails �.

There is no � 2 Q such that the semantic assignment function always as-

signs the value T . However, there are formulae that never take the value F , for

example �_:�. Though the set of formulae that never take the value F is not

closed under conjunction. For example, consider (� _ :�) ^ (� _ :�) when

� is N and � is B.

PARACONSISTENT LOGICS 25

� N F T B

:� N T F B

Table 1. Truth table for negation

^ N F T B

N N F N F

F F F F F

T N F T B

B F F B B

Table 2. Truth table for conjunction

_ N F T B

N N N T T

F N F T B

T T T T T

B T B T B

Table 3. Truth table for disjunction

26 ANTHONY HUNTER

�

�

�

��

�

�

�

��

@

@

@

@I

@

@

@

@I

F

N B

T

Figure 2. The “Logical” lattice

4.2 Proof theory for four-valued logic

To complement the semantics, the following is a definition for the FV conse-

quence relation for the proof theory for four-valued logic.

DEFINITION 33 Let �; �; 2 L. The followingare the proof rules for the FV

consequence relation.

�

1

^ :::^ �

m

! �

1

_ :::_ �

n

provided some �
i

is some �
j

(� _ �) ! iff �! and � !

�! (� ^) iff �! � and �!

�! � iff :� ! :�

�! � and � ! implies �!

�! � iff �$ (� ^ �) iff � $ (� _ �)

In addition, the following extends the defintion of the FV consequence rela-

tion. Let � $ � signify that � and � are semantically equivalent, and can be

intersubstituted in any context.

PARACONSISTENT LOGICS 27

� _ � $ � _ �

� ^ � $ � ^ �

� _ (� _)$ (� _ �) _

(� ^ �) ^ $ � ^ (� ^)

� ^ (� _) $ (� ^ �) _ (� ^)

� _ (� ^) $ (� _ �) ^ (� _)

::�$ �

:(� ^ �)$:� _ :�

:(� _ �)$:� ^ :�

Also,

�$ � and � $ implies �$:

EXAMPLE 34 To illustrate the use of the FV consequence relation consider

the following example. As with the use of C
!

, there is an argument for � and

an argument for :�.

�! (� ^)

 ! �

� ! :�

�

From�! (�^), we get�! � and�! . From�! � and � ! :�, we

get � ! :�. From � ! and ! �, we get � ! �. Hence, � is equivalent

to � ^ � and �^ :�.

However, the FV consequence relation deviates from the C
!

consequence

relation in that we cannot detach � from � nor :� from �. This is in part due to

FV incorporating neither modus ponens nor and elimination.

PROPOSITION 35 ([Hunter, 1996b]). The following properties succeed for

the FV consequence relation: Reflexivity, Consistency Preservation, Mono-

tonicity, and Cut.

PROPOSITION 36 ([Hunter, 1996b]). The followingproperties fail for the FV

consequence relation: And, Supraclassicality, Or, Left Logical Equivalence,

Deduction, Conditionalization, and Right Weakening.

28 ANTHONY HUNTER

PROPOSITION 37 ([Belnap, 1977; Hunter, 1996b]). The FV consequence re-

lation is not pure and not trivializable.

PROPOSITION 38 ([Hunter, 1996b]). For � 2 }(Q), let C!(�) denote the

set of consequences from � by the C
!

consequence relation, and let CFV(�)

denote the set of consequences from � by the FV consequence relation. For

this C!(�) 6� CFV(�), and CFV(�) 6� C!(�)

4.3 Applicability of four-valued logic

Four-valued logic provides a natural and intuitivealternative to weakly-negative

logics. The semantic characterization based on the approximation lattice and

logical lattice could be applicable for reasoning with facts. In particular, the

logic seems useful for aggregating conflicting information. However, there are

problems with reasoning with rules, particularly with respect to the lack of

modus ponens. As with weakly-negative logics, the FV consequence relation

can be used without recourse to consistency checks.

5 QUASI-CLASSICAL LOGIC

As we have seen with weakly-negative logics and with four-valued logics, the

weakening of the proof theory means that the connectives do not behave in a

classical fashion. To address this, an alternative called quasi-classical logic has

been proposed by Besnard and Hunter [Besnard and Hunter, 1995]. In this,

queries are rewritten in conjunctive normal form, and the proof theory is re-

stricted to that of finding clauses that follow from the data.

5.1 Proof theory for QC logic

In the following, we present the QC proof rules, which are a subset of the clas-

sical proof rules, and we define the notion of a QC proof, which is a restricted

version of a classical proof.

PARACONSISTENT LOGICS 29

DEFINITION 39 Assume that ^ is a commutative and associative operator,

and _ is a commutative and associative operator.

� ^ �

�

[Conjunct elimination]

� _ � _ �

� _ �

[Disjunct contraction]

� _ �

::�_ �

[Negation introduction]

::�_ �

� _ �

[Negation elimination]

�

::�

::�

�_

� _ � :� _

� _

� :�_

[Resolution]

� _ (� !)

� _ :� _

� _ :(� !)

� _ (� ^ :

[Arrow elimination]

� !

:� _

:(� !)

� ^ :

� _ (� ^)

(� _ �) ^ (� _)

(� ^ �)_)� ^)

� ^ (� _)

[Distribution]

:(� ^ �) _

:�_ :� _

:(�_ �) _

(:�^ :�) _

[de Morgan laws]

:(� ^ �)

:�_ :�

:(� _ �)

:� ^ :�

�

� _ �

[Disjunct introduction—only

used as a last step in a proof]

30 ANTHONY HUNTER

DEFINITION 40 T is a proof-tree iff T is a tree where (1) each node is an el-

ement of L; (2) for the trees with more than one node, the root is derived by

application of any QC proof rule, where the premises for the proof rule are the

parents of the root; (3) the leaves are the assumptions for the root; and (4) any

node, that is not a leaf or root, is derived by the application of any QC proof

rule - except the disjunct introduction rule - and the premises for the proof rule

are the parents of the node.

DEFINITION 41 Let � 2 }(L). For a clause �, there is a QC proof of � from

� iff there is a QC proof tree, where each leaf is an element of �, and the root

is �.

DEFINITION 42 Let � 2 }(L), and � 2 L. We define the QC consequence

relation, denoted `
Q

, as follows:

� `

Q

� iff for each �
i

(1 � i � n) there is a QC proof of �
i

from �

where �
1

^ ::^ �

n

is a CNF of �.

EXAMPLE 43 For � = f�_ �; �_:�;:�^ �g, consequences of � include

�_ �, �_:�, �, :�, and �, but do not include :�, , _�, or : ^:�. For

� = f� _ (� ^);:�g, consequences of � include � _ �, � _ , �, and :�.

PROPOSITION 44 ([Besnard and Hunter, 1995; Hunter, 1996a]). The follow-

ing properties succeed for the QC consequence relation: Reflexivity, Consis-

tency preservation, and Monotonicity.

PROPOSITION 45 ([Besnard and Hunter, 1995; Hunter, 1996a]). The follow-

ing properties fail for the QC consequence relation: Cut, Right weakening, Left

logical equivalence, and Supraclassicality.

PROPOSITION 46 ([Besnard and Hunter, 1995; Hunter, 1996a]). The QC con-

sequence relation is pure, and hence not trivializable.

PROPOSITION 47 ([Besnard and Hunter, 1995; Hunter, 1996a]). For � = ;,

there are no � 2 L such that � `

Q

�.

The QC consequence relation offers many more non-tautological inferences

from data than either the weakly-negative or four-valued logics. For example,

via disjunctive syllogism, QC logic gives � from f:�; �_�g, whereas neither

the weakly-negative logic C
!

nor the four-valued logic gives �.

PARACONSISTENT LOGICS 31

PROPOSITION 48 ([Hunter, 1996b]). For � 2 }(L), let C!(�) denote the

set of C
!

consequences from �, and let CQ(�) denote the set of QC conse-

quences from �. For this CQ(�) 6� C!(�) and C!(�) 6� CQ(�) hold.

This proposition follows from the classical tautologies from the empty set

not being derivable in QC logic. However, if we exclude consideration of these

tautologies, then we see that QC logic is stronger than C
!

.

PROPOSITION 49 ([Hunter, 1996b]). For � 2 }(Q), let CFV(�) denote

the set of FV consequences from �, and let CQ(�) denote the set of QC con-

sequences from �. For this CQ(�) 6� CFV(�) and CFV(�) 6� CQ(�) hold.

5.2 Semantics for QC logic

There is a semantic counterpart to the QC proof theory [Hunter, 1996a]. To

simplify the discussion for this chapter, we restrict the coverage to just clauses

— i.e. disjunctions�
1

_ ::_ �

n

, where f�
1

; ::; �

n

g is a set of literals.

DEFINITION 50 Let S be some set. Let O be a set of objects defined as fol-

lows, where +� is a positive object, and�� is a negative object.

O = f+� j � 2 Sg [f�� j � 2 Sg

We call any X 2 }(O) a model.

We can consider the following meaning for positive and negative objects be-

ing in or out of some model X,

� +� 2 X means � is “satisfiable” in the model

� �� 2 X means :� is “satisfiable” in the model

� +� 62 X means � is not “satisfiable” in the model

� �� 62 X means :� is not “satisfiable” in the model

This semantics can also be regarded as giving four truth values, called “Both”,

“True”, “False”, “Neither”. For a literal �, and its complement ��,

� � is “Both” if � is satisfiable and �� is satisfiable

� � is “True” if � is satisfiable and �� is not satisfiable

32 ANTHONY HUNTER

� � is “False” if � is not satisfiable and �� is satisfiable

� � is “Neither” if � is not satisfiable and �� is not satisfiable

This intuitioncoincides with that of four-valued logic. However, we will not

follow the four-valued lattice-theoretic interpretation of the connectives, and

instead provide a significantly different semantics.

DEFINITION 51 Let j=
s

be a satisfiability relation, where X 2 }(O), and �,

�

1

,..,�
n

are literals. Let �
i

be a literal in the set of literals f�
1

; ::; �

n

g, and let

� be the disjunction formed from the set of literals f�
1

; ::; �

n

g � f�

i

g.

X j=

s

� if +� 2 X

X j=

s

:� if �� 2 X

X j=

s

�

1

_ ::_ �

n

iff ((X j=

s

�

1

or .. or X j=

s

�

n

)

and (if X j=

s

:�

i

thenX j=

s

�)

Satisfaction for disjunction therefore incorporates a link between the satis-

faction of the complement of a disjunct and the satisfaction of the corresponding

resolvant.

DEFINITION 52 We extend the notion of satisfaction to that of weak

satisfaction, denoted as j=
w

, as follows, where X 2 }(O) and � and � are

clauses.

X j=

w

� if X j=

s

�

X j=

w

� _ � if X j=

s

�

DEFINITION 53 Let j=
Q

be an entailment relation defined as follows, where

f�

1

; ::�

n

g is a set of clauses and � is a clause.

f�

1

; ::; �

n

g j=

Q

�

iff for all models X if X j=

s

�

1

and ::: and X j=

s

�

n

then X j=

w

�

EXAMPLE 54 Let � = f�g, and let X1 = f+�g and X2 = f+�;��g. Now

X1 j=

s

�, andX2 j=
s

�, whereas X1 j=
s

�_�, andX2 6j=
s

�_�. However,

X1 j=

w

� _ �, and X2 j=
w

� _ �, and indeed � j=

Q

� _ �. As another

example, let� = f�_�;:�g. For all models X, ifX j=

s

�_�, andX j=

s

:�,

then X j=

s

�. Hence, � j=

Q

� _ �, � j=

Q

:�, and � j=

Q

�.

PARACONSISTENT LOGICS 33

PROPOSITION 55 For all � 2 L, fg 6j=
Q

�.

EXAMPLE 56 Consider � _ :�. Here models that satisfy fg include those,

for example X, where +� 62 X and �� 62 X, and so X 6j=

Q

� andX 6j=

Q

:�

hold. Hence, it is not the case that for all models X that satisfies the empty set,

X also satisfies � _ :�.

PROPOSITION 57 For a language restricted to clauses, the `
Q

relation is

sound and complete with respect to the j=
Q

relation.

The semantics and correctness result for the full QC language is in [Hunter,

1996a].

5.3 Applicability of quasi-classical logic

Developing a non-trivializable, or paraconsistent logic, necessitates some com-

promise, or weakening, of classical logic. The compromises imposed to give

QC logic seem to be more appropriate than other paraconsistent logics for ap-

plications in computing. QC logic provides a means to obtain all the non-trivial

resolvants from a set of formulae, without the problem of trivial clauses also fol-

lowing. Though the constraints on QC logic result in tautologies from an empty

set of assumptions being non-derivable, this is not usually a problem for appli-

cations.

QC logic exhibits the nice feature that no attention need to be paid to a special

form that premises should have. This is in contrast with other paraconsistent

logics where two formulae identical by definition of a connective in classical

logic may not yield the same set of conclusions. An example given earlier in

this paper is f(:�! �);:�g yielding the conclusion �, whereas f�_�;:�g

does not. QC logic is much better behaved in this respect, as illustrated by the

the fact that more non-trivial classical conclusions are captured by QC-logic.

QC logic is also more appropriate than various approaches to reasoning from

consistent subsets of inconsistent sets of formulae (for a review, see [Benferhat,

Dubois and Prade, 1993]). In particular, QC logic does not suffer from the lim-

itation due to spliting sets of formulae into compatible subsets: QC logic can

make use of the contents of the formulas without being constrained by a con-

sistency check. Moreover, it is obviously an advantage of QC logic to dispense

with the costly consistency checks that are needed in all approaches to reason-

ing from consistent subsets.

34 ANTHONY HUNTER

6 ARGUMENT SYSTEMS

In Section 2.4, we reviewed the strategy of handling inconsistency by reason-

ing with consistent subsets of the database. The problem for such an approach is

that inferences that follow from consistent subsets of an inconsistent database

are only weakly justified in general. To handle this problem the notion of an

argument from a database, and a notion of acceptability of an argument have

been developed by Elvang and Hunter [1995]. An argument is a subset of the

database, together with an inference from that subset. Using the notion of ac-

ceptability, the set of all arguments can be partitioned into sets of (arguments

of) different degrees of acceptability. This can then be used to define a class of

consequence relations.

DEFINITION 58 Let � be a database. An argument from � is a pair, (�; �),

such that � � � and � ` �. An argument is consistent, if � is consistent. We

denote the set of arguments from � as An(�), where An(�) = f(�; �)j� �

� ^� ` �g. � is an argument set of � iff � � An(�).

DEFINITION 59 Let � be a database. Let (�; �) and (�;) be any argu-

ments constructed from �. If ` � $: , then (�; �) is a rebutting defeater

of (�;). If 2 � and ` �$:, then (�; �) is an undercutting defeater of

(�;).

Rebutting defeat, as defined here, is a symmetrical relation. One way of

changing this is by use of priorities, such as in epistemic entrenchment
[Gärdenfors, 1988] or as in specificity [Poole, 1985].

For a database �, an argumentative structure is any set of subsets ofAn(�).

The intention behind the definition for an argumentative structure is that differ-

ent subsets ofAn(�) have different degrees of acceptability. Below, we present

one particular argumentative structure A�, and then explain how the definition

captures notions of acceptability.

DEFINITION 60 The followingsets constitute the argumentative structure A�,

where � is a database.

AT(�) = f(;; �)j; ` �g

AF(�) = f(�; �)j� � FREE(�) ^� ` �g

AB(�) = f(�; �)j� 2 CON(�) ^� ` � ^

(8� 2 MC(�); 2 �� `)g

ARU(�) = f(�; �)j� 2 CON(�) ^� ` � ^

(8� 2 MC(�)� 6` :�) ^

(8� 2 MC(�); 2 �� 6` :)g

PARACONSISTENT LOGICS 35

AU(�) = f(�; �)j� 2 CON(�) ^� ` � ^

(8� 2 MC(�); 2 �� 6` :)g

A8(�) = f(�; �)j� 2 CON(�) ^� ` � ^

(8� 2 MC(�)� ` �)g

AR(�) = f(�; �)j� 2 CON(�) ^� ` � ^

(8� 2 MC(�)� 6` :�)g

A9(�) = f(�; �)j� 2 CON(�) ^� ` �g

The naming conventions for the argument sets are motivated as follows. T

is for the tautological arguments—i.e. those that follow from the empty set of

premises. F is for the free arguments—(due to Benferhat et al. [1993])—which

are the arguments that follow from the data that is free of inconsistencies. B is

for the backed arguments - i.e. those for which all the premises follow from

all the maximally consistent subsets of the data. RU is for the arguments that

are not subject to either rebutting or undercutting. U is for the arguments that

are not subject to undercutting. 8 is for the universal arguments—(essentially

due to Manor and Rescher [1970]), where it was called inevitable arguments)—

which are the arguments that follow from all maximally consistent subsets of

the data. R is for the arguments that are not subject to rebutting. 9 is for exis-

tential arguments—(essentially due to Manor and Rescher [1970])—which are

the arguments with consistent premises.

The definitions for A9, AF, AT should be clear. We therefore focus on the

remainder. AR allows an argument (�; �) only if there is no maximally consis-

tent subset that gives :�. AU allows an argument (�; �) only if for all items

in�, there is no maximally consistent subset that gives : . ARU combines the

conditions of the AR and AU. Notice that AR and A8 have very similar defini-

tions, with the only difference being “� 6` :�” in AR versus “� ` �” in A8. A

similar remark applies toAU and AB. Therefore A8 and AB are strengthenings

of AR and AU, respectively (i.e. “6` :�” replaced with “` �”).

EXAMPLE 61 We give an example of a database, and some of the items in

each argument set. Take � = f�;:�g. Then (f�;:�g; �^ :�) 2 An(�),

(f�g; �) 2 A9(�), (f�g; �_ �) 2 AR(�), if � 6` �, (fg; �_:�) 2 A8(�).

Furthermore, A8(�) = AF(�) = AB(�) = ARU(�) = AU(�) = AT(�).

EXAMPLE 62 As another example, consider � = f:�^ �; �^ �g. Then for

� = f� ^ �g, (�; �) 2 A9(�), (�; �) 2 AR(�), and (�; �) 2 A8(�). But

there is no � � � such that (�; �) 2 AU(�), (�; �) 2 ARU(�), (�; �) 2

AB(�), or (�; �) 2 AF(�).

36 ANTHONY HUNTER

AT(�)

j

AF(�) = AB(�) = ARU(�) = AU(�)

j

A8(�)

j

AR(�)

j

A9(�)

j

An(�)

Figure 3. Partial order on A� induced by�

PROPOSITION 63 ([Elvang-Goransson and Hunter, 1995]).

AT(�) � AF(�) = AB(�) = ARU(�) =

AU(�) � A8(�) � AR(�) � A9(�) � An(�)

We summarize this result by the diagram in Figure 3. The main features to

notice are that A� is a linear structure, and that there is an equivalence of AF,

AB, ARU, and AU.

6.1 Argumentative logics induced by A�

Each argument set in A� induces a consequence relation. In the following we

let “x” syntactically denote an arbitrary member of the suffixes: “T, F, B, RU,

U, 8, R, 9, n”.

DEFINITION 64 A consequence closure for each argumentative structure is

denoted Cx, where x 2 fT;F;B;RU;U;8;R; 9;ng, and defined as follows,

Cx(�) = f�j9� � �(�; �) 2 Ax(�)g:

A consequence relation, denoted `
x

, can then be generated from the conse-

quence closure as expected.

� `

x

� iff � 2 Cx(�):

Clearly, `
n

is classical entailment, but we continue to omit the subscript.

PARACONSISTENT LOGICS 37

PROPOSITION 65 ([Elvang-Goransson and Hunter, 1995]).

CT(�) � CF(�) = CB(�) = CRU(�) =

CU(�) � C8(�) � CR(�) � C9(�) � Cn(�):

In Figure 4, we summarize properties of the argumentative consequence rela-

tions [Elvang-Goransson and Hunter, 1995]. The weaker conditions on C9 and

CR allow some of the classical axioms on the consequence relations to holdsuch

as left logical equivalence and right weakening, but that others such as cut, the

and property, and the or property fail. In contrast for the more restricted defini-

tions forC8,CU, CRU,CB andCF, monotonicity fails, but cut and the and prop-

erty are preserved. A number of properties succeed for all these consequence

relations such as left logical equivalence, right weakening, and conditionaliza-

tion, whereas some properties fail for all (except the Cn-consequence relation)

such as supraclassicality and deduction.

Note how even though a property may fail for a consequence relation, further

restrictions on the acceptability of arguments may cause the property to hold.

For example, the properties of and, cautious monotony, and cut fail for CR, but

succeed for C8. For the or property, increasing the restrictions on acceptability

causes failure for C9 and CR, success for C8, and then failure for CU.

The argumentative logics are, in a key sense, far more restricted than the

other paraconsistent logics considered in this chapter: If a pair of formulae are

mutually inconsistent, then none of these argumentative logics will derive any

consequences from the conjunction of the two formulae. This is not the case

with any of the weakly-negative, four-valued or quasi-classical logics. How-

ever, the following results show that argumentative logics offer useful alterna-

tives to the other paraconsistent logics that we have considered.

PROPOSITION 66 ([Hunter, 1996b]). For all x 2 T, F, B, RU, U, 8, R, 9,

the consequence relation `
x

is not pure and not trivializable.

PROPOSITION 67 ([Hunter, 1996b]). For � 2 }(L), let C!(�) denote the

set of C
!

consequences from �, and let Cx(�) denote the set of consequences

from� by a `
x

consequence relation. For thisCx(�) 6� C!(�) and C!(�) 6�

Cx(�) hold.

PROPOSITION 68 ([Hunter, 1996b]). For � 2 }(Q), let CFV(�) denote

the set of FV consequences from �, and let Cx(�) denote the set of conse-

quences from � by a x consequence relation. For this Cx(�) 6� CFV(�) and

CFV(�) 6� Cx(�) hold.

38 ANTHONY HUNTER

Properties Cn C9 CR C8 CU CT

Supraclassicality � � � � � �

Reflexivity � � � � � �

Left logical equivalence � � � � � �

Right weakening � � � � � �

And � � � � � �

Rational monotony � � � � � �

Cautious monotony � � � � � �

Monotonicity � � � � � �

Cut � � � � � �

Consistency preservation � � � � � �

Conditionalization � � � � � �

Deduction � � � � � �

Or � � � � � �

Figure 4. Summary of properties. Symbols: �, for success and �, for failure

PROPOSITION 69 ([Hunter, 1996b]). For � 2 }(L), let CQ(�) denote the

set of QC consequences from �, and let Cx(�) denote the set of consequences

from � by a x consequence relation. For this Cx(�) 6� CQ(�) and CQ(�) 6�

Cx(�) hold.

The proposition above follows from the classical tautologies from the emp-

tyset not being derivable in QC logic. However, if we exclude consideration of

these tautologies, then we see that QC logic is stronger than C9 consequence

relation.

6.2 Applicability of argumentative logics

The concept of an argumentative structure, with the two notions of argument

and acceptability, are a convenient framework for developing practical reason-

ing tools. Although, they are based on simple definitions of arguments and ac-

ceptability, the concepts carry many possibilities for further refinement. It re-

mains to be seen whether there is a general taxonomy of argumentative struc-

tures, such as suggested by Pinkas and Loui [1992], and universal properties of

the logics that they induce.

PARACONSISTENT LOGICS 39

There are also a number of other argument-based systems that have been pro-

posed, including by Vreeswijk [1991], Prakken [1993], and Simari and Loui
[1992]. These differ from argumentative logics in that they focus on defeasi-

ble reasoning: They incorporate defeasible, or default, connectives into their

languages, together with associated machinery.

Another approach to acceptability of arguments is by Dung [1993]. This

approach assumes a set of arguments, and a binary “attacks” relation between

pairs of subsets of arguments. A hierarchy of arguments is then defined in terms

of the relative attacks “for” and “against” each argument in each subset of ar-

guments. In this way, for example, the plausibility of an argument could be de-

fended by another argument in its subset.

7 DISCUSSION

Paraconsistent logics allow useful conclusions from data. They are robust, in

the sense that the conclusions are “sensible” with respect to the data. There

is no obligation to resolve the inconsistency, the logics functions satisfactorily

irrespective of the inconsistency remaining. The logics can give guidance on

the source of the inconsistency, up to the deductive power of the paraconsistent

logic.

Unfortunately paraconsistent logics only localize inconsistency. They don’t

offer strategies for acting on inconsistency. In contrast, many approaches force

consistency without consideration of the environment in which the data is used.

Truth maintenance systems (de Kleer [1986], Doyle [1979]), and belief revision

theory (Gardenfors [1988]) ensure consistency by rejecting formulae upon find-

ing inconsistency. Similarly, Fagin et al [1983] propose amending the database

when finding inconsistency during updating. Even more restrictive is the use

of integrity constraints in databases, which prohibit inconsistent data even en-

tering the database.

Yet intellectual activities usually involve reasoning with different perspec-

tives. For example, consider negotiation, learning, or merging multiple opin-

ions. For these, maintaining absolute consistency is not always possible. Of-

ten it is not even desirable since this can unnecessarily constrain the intellec-

tual activity, and can lead to the loss of important information. Indeed since the

real-world forces us to work with inconsistencies, we should formalize some

of the usually informal or extra-logical ways of responding to them. This is not

necessarily done by eradicating inconsistencies, but rather by supplying log-

ical rules specifying how we should act on them [Gabbay and Hunter, 1991;

40 ANTHONY HUNTER

Gabbay and Hunter, 1993a].

In this chapter, we have restricted consideration to a classical language with

no extra connectives or other notation. However, there have been a variety of

interesting proposals for reasoning with inconsistent information that do extend

the language. These include extending the language with labels and markers,

priorities, default and defeasible connectives, and modal operators. We leave a

more detailed discussion of usage of defeasible, default, and modal operators

to chapters X, Y and Z respectively in this volume, and consider the remainder

in the following.

In practical reasoning, object-level formulae can represent many kinds of

useful information. However, it is possible to augment the syntactic informa-

tion by semantic or meta-level information as proposed by Gabbay in Labelled

Deductive Systems [Gabbay, 1993]. For a formula �, this augmentation can

allow the clear expression of extra information such as:

� fuzzy reliability of �

� origin of �

� priority of �

� time when � holds

� possible world where � holds

� a proof of � - in for example truth maintenance systems

The extra information contained in this kind of augmentation is then used

by the logic to affect the outcome of the reasoning. We can represent the extra

information for a formula � by some label i, and then represent this as i : �,

where the label is always juxtaposed to the formula.

Using labelling we generalize our notionof a database. If a formula i : � is in

a database �, then we do not necessarily assume that � is “true”. The meaning

assigned to � is in part dependent on the label. So for example, i could mean

that � was “true” yesterday, but not necessarily today, or i could mean that �

is “true” if there is no formula k : � such that is k more preferred to i. In this

way, we actually only reason with the subset of our data that is actually “true”.

Such languages, for example Gabbay and Hunter [1993b], involve uniquely

labelling the data, and amending the proof rules to propagate the labels: The

consequent of each proof rule has a label that is a function of the labels of the

premises. In this way, any inferences from the logic are labelled with informa-

tion about the data and proof rules used to derive them. This means we can track

PARACONSISTENT LOGICS 41

information used in reasoning and hence analyse inconsistencies as they arise.

We can identify likely sources of the problem, and use this to suggest appropri-

ate actions [Hunter and Nuseibeh, 1995].

There are a number of attempts to accommodate inconsistent data in a data-

base by labelling. We can view ideas of truth maintenance in this way [Fehrer,

1993]. Also, Balzer [Balzer, 1991] suggests “guards” on inconsistent data to

minimize the negative ramifications, and then to warn the user of the inconsis-

tency, and in Naqvi and Rossi [1990] inconsistent data is allowed to enter the

database, but the time that the data is entered is recorded, and newer the data

takes precedence over the older data when resolving inconsistencies.

Finally, priorities have been used in a number of ways in the management

of inconsistency (for example see [Benferhat, Dubois and Prade, 1995]), and

in the closely related problem of non-monotonic reasoning. This includes the

use of specificity [Poole, 1985], ordered theory presentations [Ryan, 1992], and

prioritized syntax-based entailment [Benferhat et al., 1993].

Acknowledgements

This work has been partly supported by the ESPRIT BRA DRUMS2 project and

by the EPSRC VOILA project. Thanks are due to Salem Benferhat and Torsten

Schaub for reading an earlier draft of this chapter.

University College, London.

REFERENCES

[Anderson and Belnap, 1975] A. Anderson and N. Belnap. Entailment: The Logic of Relevance
and Necessity. Princeton University Press, 1975.

[Arruda, 1977] A. Arruda. On the imaginary logic of NA Vasilev. In A Arruda, N Da Costa,

and R Chuaqui, editors, Non-classical logics, model theory and computability. North Holland,
1977.

[Balzer, 1991] R. Balzer. Tolerating inconsistency. In proceedingsof the 13th International Con-

ference on Software Engineering, pages 158–165. IEEE Press, 1991.

[Batens, 1980] D. Batens. Paraconsistent extensional propositional logics. Logique et Analyse,
90–91:195–234, 1980.

[Benferhat et al., 1993] S. Benferhat, C. Cayrol, D. Dubois, J. Lang and H. Prade. Inconsistency
management and prioritized syntax-based entailment. In Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1993.

[Besnard et al., 1995] Ph. Besnard, L. Farinas del Cerro, D. Gabbay and A. Hunter. Logical han-
dling of default and inconsistent information. In Ph Smets and A Motro, editors, Uncertainty
management in information systems. Kluwer, 1995.

42 ANTHONY HUNTER

[Benferhat, Dubois and Prade, 1993] S. Benferhat, D. Dubois and H. Prade. Argumentative infer-
ence in uncertain and inconsistent knowledge bases. In Proceedings of Uncertainty in Artificial

Intelligence, pages 1449–1445. Morgan Kaufmann, 1993.

[Benferhat, Dubois and Prade, 1995] S. Benferhat, D. Dubois and H. Prade. A logical approach
to reasoning under inconsistency in stratified knowledge bases. In Symbolic and Quantitative
Approaches to Reasoning and Uncertainty, volume 956 of Lecture Notes in Computer Science,

pages 36–43. Springer, 1995.

[Belnap, 1977] N. Belnap. A useful four-valued logic. In G. Epstein, editor, Modern Uses of
Multiple-valued Logic, pages 8–37. Reidel, 1977.

[Besnard, 1991] Ph. Besnard. Paraconsistent logic approach to knowledge representation. In

M. de Glas and D. Gabbay, editors, Proceedingsof the First World Conference on Fundamentals
of Artificial Intelligence. Angkor, 1991.

[Besnard and Hunter, 1995] Ph. Besnard and A. Hunter. Quasi-classical logic: Non-trivializable
classical reasoning from inconsistent information. In C. Froidevaux and J. Kohlas, editors,

Symbolic and Quantitative Approaches to Uncertainty, Lecture Notes in Computer Science.
Springer, 1995.

[Carnielli et al., 1991] W. Carnielli, L. Farinas del Cerro and M. Lima-Marques. Contextual nega-

tion and reasoning with contradiction. In Proceedingsof the Eleventh International Conference
on Artificial Intelligence. Morgan Kaufmann, 1991.

[Carnielli and Lima-Marques, 1992] W. Carnielli and M. Lima-Marques. Reasoning under incon-
sistent knowledge. Journal of Applied Non-Classical Logics, 2:49–79, 1992.

[da Costa, 1974] N. C. da Costa. On the theory of inconsistent formal systems. Notre Dame Jour-

nal of Formal Logic, 15:497–510, 1974.

[Doyle, 1979] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.

[Dung, 1993] P. Dung. The acceptability of arguments and its fundamental role in non-monotonic
reasoning and logic programming. In Proceedings of the Thirteenth International Joint Con-

ference on Artificial Intelligence, pages 852–857, 1993.

[Elvang-Goransson and Hunter, 1995] M. Elvang-Goransson and A. Hunter. Argumentative log-
ics: Reasoning from classically inconsistent information. Data and Knowledge Engineering,
16, 1995.

[Fehrer, 1993] D. Fehrer. A unifying framework for reason maintenance. In M. Clarke, R. Kruse,
and S. Moral, editors, Symbolic and Qualitative Approaches to Reasoning and Uncertainty
(ECSQARU‘93), volume 747 of Lecture Notes in Computer Science, pages 113–120. Springer,

1993.

[Finkelstein et al., 1994] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer and B. Nuseibeh. In-
consistency handling in multi-perspective specifications. Transactions on Software Engineer-
ing, 20(8):569–578, 1994.

[Fagin, Ullman and Vardi, 1983] R. Fagin, J. Ullman and M. Vardi. On the semantics of updates

in databases. In Proceedings of the Second Annual Association of Computing Machinery Sym-
posium on Principles of Database Systems. ACM Press, 1983.

[Gabbay, 1985] D. Gabbay. Theoretical foundations of non-monotonic reasoning in expert sys-

tems. In K. Apt, editor, Logics and Models of Concurrent Systems. Springer, 1985.

[Gabbay, 1993] D. Gabbay. Labelled deductive systems: A position paper. In J. Oikkonnen and
J. Vaananen, editors, Proceedings of the Logic Colloquium‘90, volume 2 of Lecture Notes on
Logic. Springer, 1993.

[Gärdenfors, 1988] P. Gärdenfors. Knowledge in Flux. MIT Press, 1988.

[Gabbay and Hunter, 1991] D. Gabbay and A. Hunter. Making inconsistency respectable 1: A
position paper. In Ph. Jorrand and J. Keleman, editors, Fundamentals of Artificial Intelligence
Research, volume 535 of Lecture Notes in Artificial Intelligence. Springer, 1991.

PARACONSISTENT LOGICS 43

[Gabbay and Hunter, 1993a] D. Gabbay and A. Hunter. Making inconsistency respectable 2:
Meta-level handling of inconsistent data. In M. Clarke, R. Kruse and S. Moral, editors, Sym-

bolic and Qualitative Approaches to Reasoning and Uncertainty (ECSQARU‘93), volume 747
of Lecture Notes in Computer Science, pages 129–136. Springer, 1993.

[Gabbay and Hunter, 1993b] D. Gabbay and A. Hunter. Restricted access logics for inconsis-

tent information. In M. Clarke, R. Kruse and S. Moral, editors, Symbolic and Qualitative Ap-
proaches to Reasoning and Uncertainty (ECSQARU‘93), volume 747 of Lecture Notes in Com-
puter Science, pages 137–144. Springer, 1993.

[Gärdenfors and Makinson, 1993] P. Gärdenfors and D. Makinson. Non-monotonic inference
based on expectations. Artificial Intelligence, 65:197–246, 1993.

[Hunter and Nuseibeh, 1995] A. Hunter and B. Nuseibeh. Managing inconsistent specifications:
Reasoning, analysis, and action. Technical report, Department of Computing, Imperial College,
London, 1995.

[Hunter, 1996a] A. Hunter. Reasoning with inconsistent information using quasi-classical logic.
Technical report, Department of Computing, Imperial College, London, 1996.

[Hunter, 1996b] A. Hunter. Some results on paraconsistent logics. Technical report, Department

of Computing, Imperial College, London, 1996.
[De Kleer, 1986] J. De Kleer. An assumption-based TMS. Artificial Intelligence, 28:127–162,

1986.
[Manor and Rescher, 1970] R. Manor and N. Rescher. On inferences from inconsistent informa-

tion. Theory and Decision, 1:179–219, 1970.
[Martins and Shapiro, 1988] J. Martins and S. Shapiro. A model of belief revision. Artificial In-

telligence, 35:25–79, 1988.
[Naqvi and Rossi, 1990] S. Naqvi and F. Rossi. Reasoning in inconsistent databases. In Logic

Programming: Proceedings of the North American Conference. MIT Press, 1990.
[Pinkas and Loui, 1992] G. Pinkas and R. Loui. Reasoning from inconsistency: A taxonomy of

principles for resolving conflict. In Principles of Knowledge Representation and Reasoning:

Proceedings of the Third International Conference. Morgan Kaufmann, 1992.
[Poole, 1985] D. Poole. A logical framework for default reasoning. Artificial Intelligence, 36:27–

47, 1985.
[Prakken, 1993] H. Prakken. An argumentation framework in default logic. Annals of Mathemat-

ics and Artificial Intelligence, 9, 1993.
[Raggio, 1978] A. Raggio. A proof-theoretic analysis of da Costa‘s C

!

. In A. Arrunda, N. C.

da Costa and R. Chuaqui, editors, Mathematical Logic: Proceedingsof the First Brazilian Con-
ference. Marcel Defalnes, 1978.

[Ryan, 1992] M. Ryan. Representing defaults as sentences with reduced priority. In Principles of
Knowledge Representation and Reasoning: Proceedingsof the Third InternationalConference.
Morgan Kaufmann, 1992.

[Simari and Loui, 1992] G. Simari and R. Loui. A mathematical treatment of defeasible reasoning
and its implementation. Artificial Intelligence, 53:125–157, 1992.

[Vreeswijk, 1991] G. Vreeswijk. Abstract argumentation systems. In M. de Glas and D. Gabbay,

editors, Proceedings of the First World Conference on Fundamentals of Artificial Intelligence.
Angkor, 1991.

