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Abstract

The language for describing inconsistency is underdeveloped.
If a knowledgebase (a set of formulae) is inconsistent, we
need more illuminating ways to say how inconsistent it is,
or to say whether one knowledgebase is “more inconsistent”
than another. To address this, we provide a general characteri-
zation of inconsistency, based on quasi-classical logic (a form
of paraconsistent logic with a more expressive semantics than
Belnap’s four-valued logic, and unlike other paraconsistent
logics, allows the connectives to appear to behave as classi-
cal connectives). We analyse inconsistent knowledge by con-
sidering the conflicts arising in the minimal quasi-classical
models for that knowledge. This is used for a measure of co-
herence for each knowledgebase, and for a preference order-
ing, called the compromise relation, over knowledgebases. In
this paper, we formalize this framework, and consider appli-
cations in managing heterogeneous sources of knowledge.

Introduction

Comparing heterogeneous sources often involves comparing
conflicts. Suppose we are dealing with a group of clinicians
advising on some patient, a group of witnesses of some in-
cident, or a set of newspaper reports covering some event.
These are all situations where we expect some degree of in-
consistency in the information. Suppose that the informa-
tion by each source i is represented by the set Φi. Each
source may provide information that conflicts with the do-
main knowledge Ψ. Let us represent Φi ∪ Ψ by ∆i for each
source i. Now, we may want to know whether one source
is more inconsistent than another — so whether ∆i is more
inconsistent that ∆j — and in particular determine which is
the least inconsistent of the sources and so identify a mini-
mal ∆i in this inconsistency ordering. We may then view
this minimal knowledgebase as the least problematical or
most reliable source of information.

Current techniques for measuring the degree of inconsis-
tency in a set of formulae are underdeveloped. Some ap-
proaches touch on the topic. In diagnostic systems, there are
proposals that offer preferences for certain kinds of consis-
tent subsets of inconsistent information (Kleer & Williams
1987; Reiter 1987); in proposals for belief revision, epis-
temic entrenchment is an ordering over formulae which re-
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flects the preference for which formulae to give up in case
of inconsistency (Gardenfors 1988); in proposals for draw-
ing inferences from inconsistent information there is a pref-
erence for inferences from some consistent subsets (e.g.
(Brewka 1989; Benferhat, Dubois, & Prade 1993)); in pro-
posals for approximating entailment, two sequences of en-
tailment relation are defined (the first is sound but not com-
plete, and the second is complete but not sound) which con-
verge to classical entailment (Schaerf & Cadoli 1995); and
in proposals for partial consistency checking, checking is
terminated after the search space exceeds a threshold which
gives a measure of partial consistency of the data. However,
none of these proposals provide a direct definition for degree
of inconsistency.

In belief revision theory, and the related field of knowl-
edgebase merging, there are some proposals that do provide
some description of the degree of inconsistency of a set of
formulae. For example, the Dalal distance (Dalal 1988), es-
sentially the Hamming distance between two propositional
interpretations, can be used to give a profile of an incon-
sistent knowledgebase. Let dalal(w,w′) denote the Dalal
distance from w to w′, let [α] denote the set of classical
models of α, and let d(w,α) be the w′ ∈ [α] such that
dalal(w,w′) is minimized. Now suppose we have a knowl-
edgebase {α1, .., αn} where each αi is consistent but the
knowledgebase may be inconsistent. We can then obtain a
value of d(w,αi) for each world w and each formula αi in
the knowledgebase. Unfortunately, this does not provide a
very succinct way of describing the degree of inconsistency
in a given set of formulae, and it is not clear how we could
compare sets of formulae using this approach. Furthermore,
operators for aggregating these distances, such as the ma-
jority operator (Lin & Mendelzon 1998), egalitarist opera-
tor (Revesz 1997), or the leximax operator (Konieczny &
Pino Perez 1998), do not seem to be appropriate summaries
of the degree of inconsistency in the original knowledge-
base since they seek to find the most appropriate model for
particular kinds of compromise of the original knowledge.
Related techniques for knowledgebase revision are similarly
inappropriate.

Another approach to handling inconsistent information is
that of possibility theory (Dubois, Lang, & Prade 1994). Let
(φ, α) be a weighted formula where φ is a classical formula
and α ∈ [0, 1]. A possibilistic knowledgebase B is a set of



weighted formulae. An α-cut of a possibilistic knowledge-
base, denoted B≥α, is {(ψ, β) ∈ B | β ≥ α}. The in-
consistency degree of B, denoted Inc(B), is the maximum
value of α such that the α-cut is inconsistent. As presented,
the problem with this measure is that it assumes weighted
formulae. In other words, we need some form of preference
ordering in addition to the set of classical formulae in the
knowledgebase. The knowledgebase can be used to induce
such an ordering as suggested in (Benferhat et al. 2000),
where an ordering over inferentially weaker forms of the
original formulae are generated. Again this does not offer
a direct lucid view on the inconsistency in the original set of
formulae.

Measuring the “amount of information” is related to the
idea of measuring inconsistency. Information theory can be
used to measure the information content of sets of inconsis-
tent formulae. Applying Shannon’s measure of information,
Lozinskii proposes that the information in a set of proposi-
tional formulae Γ, that has been composed from n differ-
ent atom symbols, is the logarithm of the number of mod-
els (2n) divided by the number of models for the maximum
consistent subsets of Γ (Lozinskii 1994). This information
theoretic measure increases with additions of consistent in-
formation and decreases with additions of inconsistent in-
formation. However, as highlighted by Wong and Besnard,
the measure by Lozinskii is syntax sensitive and it is sen-
sitive to the presence of tautologies in Γ. To address this,
they suggest the use of a normal form for the formulae in Γ
that is obtained by rewriting Γ into conjunctive normal form,
and then applying disjunction elimination and resolution ex-
haustively (Wong & Besnard 2001). However, this approach
does not provide a direct measure of inconsistency since for
example, the value for {α} is the same as for {α,¬α, β}.

In this paper, we want to reflect each inconsistent set of
formulae in a model, and then measure the inconsistency
in the model. Obviously, this is not possible in classical
logic, or indeed many non-classical logics, because there
is no model of an inconsistent set of formulae. We there-
fore turn to quasi-classical logic, a form of paraconsistent
logic, to model inconsistent sets of formulae. There are other
paraconsistent logics that we could consider, for example
Belnap’s four-valued logic (Belnap 1977), or Levesque’s 3-
interpretations (Levesque 1984), or Grant’s generalizations
of classical satisfaction (Grant 1978), but these, as we will il-
lustrate, involve the consideration of too many models. This
increases the number of models that need to be analysed and
it underspecifies the nature of the conflicts.

In this paper, we review the aspects of QC logic that we
will require for the rest of the paper, we argue why QC
models are more appropriate than those obtained from other
paraconsistent logics, we define a new framework for mea-
suring inconsistencies in models, and we extend this seman-
tic framework to preference relations over sets of formulae.

Review of QC Logic

We review the propositional version of quasi-classical logic
(QC Logic) (Besnard & Hunter 1995; Hunter 2000).

Definition 1 The language of first-order QC logic is that

of classical propositional logic. We let L denote a set of
formulae formed in the usual way from a set of atom symbols
A, and the connectives {¬,∨,∧,→}. If Γ ∈ ℘(L), then
Atoms(Γ) returns the set of atom symbols used in Γ.

Definition 2 Let α be an atom, and let ∼ be a complemen-
tation operation such that ∼α is ¬α and ∼ (¬α) is α. The
∼ operator is not part of the object language, but it makes
some definitions clearer.

Definition 3 Let α1 ∨ .. ∨ αn be a clause that includes a
literal disjunct αi and n > 1. The focus of α1 ∨ .. ∨ αn

by αi, denoted ⊗(α1 ∨ .. ∨ αn, αi), is defined as the clause
obtained by removing αi from α1 ∨ .. ∨ αn.

Example 1 Let α∨β ∨ γ be a clause where α, β, and γ are
literals. Hence, ⊗(α ∨ β ∨ γ, β) = α ∨ γ.

We now consider the essential idea behind QC logic. We
describe it using the resolution proof rule. Resolution can
be applied to clauses to generate further clauses called re-
solvents. For example, by resolution β ∨ γ is a resolvent of
α ∨ β and ¬α ∨ γ. Given a set of clauses as assumptions,
each clause in the assumptions can be regarded as a belief,
and each resolvent can be regarded as a belief. So resolution
can be regarded as a process of focusing beliefs.

A useful property of resolution is that α is a resolvent only
if all the literals used in α are literals used in the set of as-
sumptions (assuming no introduction proof rules are used).
This means that any resolvent, and hence any belief deriv-
able from the assumptions, is a non-trivial inference from
the assumptions. This holds even if the set of assumptions
is classically inconsistent. As a result, resolution can consti-
tute the basis of useful paraconsistent reasoning.

QC logic is motivated by the need to handle beliefs rather
than the need to address issues of verisimilitude for given
propositions. It is intended to be a logic of beliefs in the
“real world” rather than a logic of truths in the “real world”.
Models are based on a form of Herbrand interpretation.

Definition 4 Let A be a set of atoms. Let O be the set of
objects defined as follows, where +α is a positive object,
and −α is a negative object.

O = {+α | α ∈ A} ∪ {−α | α ∈ A}

We call anyX ∈ ℘(O) a QC model. SoX can contain both
+α and −α for some atom α.

For each atom α ∈ L, and each X ∈ ℘(O), +α ∈ X
means that in X there is a reason for the belief α and that
in X there is a reason against the belief ¬α. Similarly,
−α ∈ X means that in X there is a reason against the
belief α and that in X there is a reason for the belief ¬α.

Definition 5 Let |=s be a satisfiability relation called
strong satisfaction. For a model X, we define |=s as fol-
lows, where α1, ..., αn are literals in L, n > 1, and α is a
literal in L.

X |=s α iff there is a reason for the belief α in X

X |=s α1 ∨ ... ∨ αn

iff [X |=s α1 or ... or X |=s αn]
and ∀i s.t. 1 ≤ i ≤ n

[X |=s∼αi implies X |=s ⊗(α1 ∨ ... ∨ αn, αi)]



For α, β, γ ∈ L, we extend the definition as follows,

X |=s α ∧ β iff X |=s α and X |=s β
X |=s ¬¬α ∨ γ iff X |=s α ∨ γ
X |=s ¬(α ∧ β) ∨ γ iff X |=s ¬α ∨ ¬β ∨ γ
X |=s ¬(α ∨ β) ∨ γ iff X |=s (¬α ∧ ¬β) ∨ γ
X |=s α ∨ (β ∧ γ) iff X |=s (α ∨ β) ∧ (α ∨ γ)
X |=s α ∧ (β ∨ γ) iff X |=s (α ∧ β) ∨ (α ∧ γ)
X |=s (α→ β) ∨ γ iff X |=s ¬α ∨ β ∨ γ
X |=s ¬(α→ β) ∨ γ iff X |=s (α ∧ ¬β) ∨ γ

Definition 6 For X ∈ ℘(O) and ∆ ∈ ℘(L), let X |=s ∆
denote that X |=s α holds for every α in ∆. Let QC(∆) =
{X ∈ ℘(O) | X |=s ∆} be the set of QC models for ∆.

A key feature of the QC semantics is that there is a model
for any formula, and for any set of formulae.

Example 2 Let ∆ = {¬α ∨ ¬β ∨ γ,¬α ∨ γ,¬γ}, where
α, β, γ ∈ A, and let X = {−α,−β,−γ}. So X |=s ¬α,
X |=s ¬β and X |=s ¬γ. Also, X |=s∼ γ. Hence, X |=s

¬α ∨ γ, and X |=s ¬α ∨ ¬β, and so, X |=s ¬α ∨ ¬β ∨ γ.
Hence every formula in ∆ is strongly satisfiable in X .

The following result from (Hunter 2000) provides a
slightly different view on the semantics of disjunction.

Proposition 1 Let X ∈ ℘(O), and α1, .., αn be literals
in L. We have X |=s α1 ∨ .. ∨ αn iff (1) for some
αi ∈ {α1, .., αn}, X |=s αi and X 6|=s∼αi or (2) for all
αi ∈ {α1, .., αn}, X |=s αi and X |=s∼αi.

Strong satisfaction is used to define a notion of entailment
for QC logic. There is also a natural deduction proof the-
ory for propositional QC logic (Hunter 2000) and a seman-
tic tableau version for first-order QC logic (Hunter 2001).
Entailment for QC logic for propositional CNF formulae
is coNP-complete, and via a linear time transformation
these formulae can be handled using classical logic theorem
provers (Marquis & Porquet 2001).

Why measure inconsistency with QC models?

The definitions for QC models and for strong satisfaction
provide us with the basic concepts for measuring inconsis-
tency. QC logic exhibits the nice feature that no attention
needs to be paid to a special form that the formulae in a set
of premises should have. This is in contrast with other para-
consistent logics where two formulae identical by definition
of a connective in classical logic may not yield the same set
of conclusions. For example, in QC logic, β is entailed by
both {(¬α→ β),¬α} and {α∨β,¬α} and γ is entailed by
{γ ∧ ¬γ} and {γ,¬γ}. QC logic is much better behaved in
this respect than other paraconsistent logics such as Cω (da
Costa 1974), and consistency-based logics such as (Benfer-
hat, Dubois, & Prade 1993). Furthermore, the semantics of
QC logic directly models inconsistent sets of formulae.

Whilst four-valued logic (Belnap 1977) also directly mod-
els inconsistent sets of formulae, QC logic is stronger in
the sense that the number of non-tautological inferences ob-
tained from a set of formulae is never less than with four-
valued logic, and often it is greater. Consider the example
{α ∨ β,¬α} from which the inference β can be obtained

with QC logic but not with four-valued logic. This stronger
notion of inference and entailment is reflected in the models
and so more closely reflects the non-trivial aspects of classi-
cal reasoning.

Another way of viewing the weakness of Belnap’s four-
valued logic is that there are too many four-valued mod-
els in many situations. Consider for example {α ∨ β,¬α}.
We have one minimal QC model {−α,+β}, but with four-
valued logic there are a number of models that satisfy this
set. QC logic has a reduced number of models because of
the constraint in the definition of strong satisfaction for dis-
junction that ensures that if the complement of a disjunct
holds in the model, then the resolvent should also hold in the
model. This strong constraint means that various other pro-
posals for many-valued logic will tend to have more models
for any given knowledgebase than QC logic.

Another approach that we should consider here is that
of 3-interpretation by (Levesque 1984), and a similar pro-
posal by (Grant 1978). A 3-interpretation is a truth assign-
ment into {true,false} that does not map both a literal and
its complement into false. This is extended to clauses so
that a 3-interpretation satisfies a clause if and only if it sat-
isfies some of the literals in the clause. As with Belnap’s
four-valued logic, there are too many models. First con-
sider {α,¬α ∨ ¬β, β}. This has three 3-interpretations: (1)
α,¬α, β are true and ¬β is false; (2) α, β,¬β are true and
¬α is false; and (3) α,¬α, β,¬β are true. In contrast, there
is just one minimal QC model {+α,−α,+β,−β}, and we
argue that this QC model better describes the conflicts in the
set of formulae. Now consider {α,¬α∨¬β}. This has three
3-interpretations: (1) α,¬α,¬β are true; (2) α,¬β are true
and ¬α is false; and (3) α,¬α are true and ¬β is false. In
contrast, there is just one minimal QC model {+α,−β}.

Minimal QC models

For measuring inconsistency, we use minimal QC models.

Definition 7 Let ∆ ∈ ℘(L). Let MQC(∆) ⊆ QC(∆) be the
set of minimal QC models for ∆, defined as follows:

MQC(∆) = {X ∈ QC(∆) | if Y ⊂ X, then Y 6∈ QC(∆)}

Example 3 Consider the following sets of formulae.

MQC({α ∧ ¬α, α ∨ β,¬α ∨ γ})
= {{+α,−α,+β,+γ}}

MQC({¬α ∧ α, β ∨ γ})
= {{+α,−α,+β}, {+α,−α,+γ}}

MQC({α ∨ β,¬α ∨ γ})
= {{+β,+γ}, {+α,+γ}, {−α,+β}}

Proposition 2 Let Atoms(∆) = n. If X ∈ MQC(∆), then
|X| ≤ 2n. Also, if |X| = 2n, and X ∈ MQC(∆), then
MQC(∆) = {X}.

Increasing the number of inconsistencies in a knowledge-
base tends to decrease the number of minimal QC models.

Definition 8 Let ∆ ∈ ℘(L), and Incon(∆) = {Γ ⊆ ∆ | Γ ⊢
⊥} where ⊢ is classical consequence. The set of minimal
inconsistent subsets of ∆, denoted MI(∆), is defined as,

MI(∆) = {Φ ∈ Incon(∆) | ∀Ψ ∈ Incon(∆) Ψ 6⊂ Φ}



The following shows a simple relationship between the
minimal QC models for a knowledgebase and those for the
minimal inconsistent subsets of it.

Proposition 3 Let ∆ ∈ ℘(L). Let Γ ∈ MI(∆). If X ∈
MQC(∆), then ∃Y ∈ MQC(Γ) such that Y ⊆ X . However
if Y ∈ MQC(Γ), then it is not necessarily the case that
∃X ∈ MQC(∆) such that Y ⊆ X .

Finding minimal QC models is more expensive than find-
ing just QC models. For any set of formulae ∆, let X =
{+α | α ∈ Atoms(∆)} ∪ {−α | α ∈ Atoms(∆)}. So X
is a QC model that satisfies ∆, and it can be found in time
that is a linear function of the size of the formulae, though
X is not necessarily a minimal QC model. If |X| = n, then
there are 2n QC models that can be formed from X by tak-
ing subsets of X . This includes all minimal QC models of
∆.

Proposition 4 Determining whether X ∈ MQC(∆) holds
is a coNP-complete problem when all α ∈ ∆ are CNF.

This result is based on the linear time transformation by
(Marquis & Porquet 2001) that can be used to turn a QC sat-
isfaction problem into a classical satisfaction problem, and
on the coNP-complete property of checking whether a given
classical interpretation is a minimal model of a given for-
mula (Cadoli 1992).

Measuring coherence of QC models

We now consider a measure of inconsistency called coher-
ence. The opinionbase of a QC model X is the set of atomic
beliefs (atoms) for which there are reasons for or against in
X , and the conflictbase ofX is the set of atomic beliefs with
reasons for and against in X .

Definition 9 Let X ∈ ℘(O).

Conflictbase(X) = {α | +α ∈ X and − α ∈ X}
Opinionbase(X) = {α | +α ∈ X or − α ∈ X}

If Opinionbase(X) = ∅, then X has no arguments
for/against any beliefs, and hence X has no opinions. If
Opinionbase(X) = A, then X is totally opinionated. If
Conflictbase(X) = ∅, then X is a conflictfree QC model. If
Opinionbase(X) = A, and Conflictbase(X) = ∅, then we
describe X as omniscient.

In finding the minimal QC models for a set of formulae,
minimization of the size of each model forces minimization
of the conflictbase of each model. As a result of this min-
imization, there is a unique conflictbase that is common to
all the minimal QC models for each set of formulae, though
there is not necessarily a unique opinionbase.

Proposition 5 Let ∆ ∈ ℘(L). If X,Y ∈ MQC(∆),
then (1) Conflictbase(X) = Conflictbase(Y ) and (2) either
Opinionbase(X) = Opinionbase(Y ) or Opinionbase(X) is
not a subset of Opinionbase(Y ).

This result is based on Proposition 1, and on the fol-
lowing observation, where ∆ is a set of clauses: For all
X ∈ MQC(∆), +α ∈ X and −α ∈ X iff there is a
φ ∈ ∪MI(∆) such that α is a disjunct in φ and there is a
ψ ∈ ∪MI(∆) such that ¬α is a disjunct in ψ.

Increasing the size of the conflictbase, with respect to the
size of the opinionbase, decreases the degree of coherence,
as defined below.

Definition 10 The Coherence function from ℘(O) into
[0, 1], is defined below when X is non-empty, and
Coherence(∅) = 1.

Coherence(X) = 1 −
|Conflictbase(X)|

|Opinionbase(X)|

If Coherence(X) = 1, then X is a totally coherent, and if
Coherence(X) = 0, then X is totally incoherent, otherwise,
X is partially coherent/incoherent.

Example 4 LetX ∈ MQC({¬α∧α, β∧¬β, γ∧¬γ}), Y ∈
MQC({α,¬α ∨ ¬β, β, γ}), and Z ∈ MQC({¬α, β,¬γ ∧
γ}). So Coherence(X) = 0, Coherence(Y ) = 1/3, and
Coherence(Z) = 2/3.

Different minimal QC models for the same knowledge-
base are not necessarily equally coherent.

Example 5 Let ∆ = {α,¬α, β ∨ γ, β ∨ δ}, and let
X = {+α,−α,+β} and Y = {+α,−α,+γ,+δ}. So
MQC(∆) = {X,Y }, and Coherence(X) = 1/2 and
Coherence(Y ) = 2/3.

We extend coherence to knowledgebases as follows.

Definition 11 Let ∆ ∈ ℘(L). Assign Coherence(∆) the
maximum value in {Coherence(X) | X ∈ MQC(∆)}

Example 6 Let ∆ = {α ∧ ¬α, β ∧ ¬β, α ∨ β ∨ (γ ∧ δ)}
and ∆′ = {α ∧ ¬α, α ∨ β}. Here Coherence(∆) =
Coherence(∆′) = 1/2.

Example 7 Let ∆ = {φ ∧ ¬φ, α ∨ (β ∧ γ ∧ δ)} and
∆′ = {φ ∧ ¬φ, (α ∧ β) ∨ (γ ∧ δ)}. Also let X1 =
{+φ,−φ,+α}, X2 = {+φ,−φ,+β,+γ,+δ}, Y1 =
{+φ,−φ,+α,+β}, and Y2 = {+φ,−φ,+γ,+δ}. So,
MQC(∆) = {X1,X2} and MQC(∆′) = {Y1, Y2}.
Also, Coherence(X1) = 1/2, Coherence(X2) = 3/4,
Coherence(Y1) = 2/3, and Coherence(Y2) = 2/3. So
Coherence(∆) > Coherence(∆′).

The coherence function is not a monotonic function, as
illustrated by the following example.

Example 8 Let ∆ = {α} and ∆′ = {α,¬α, β}. So
∆ ⊂ ∆′, and Coherence(∆) > Coherence(∆′). Now let
∆′′ = {α,¬α}. So ∆ ⊂ ∆′′ ⊂ ∆′, and Coherence(∆′′) <
Coherence(∆′).

The coherence function does not discriminate on the num-
ber or intersection of the minimal inconsistent subsets of a
knowledgebase as illustrated by the following example.

Example 9 Let ∆ = {α ∧ ¬α, β ∧ ¬β} and ∆′ = {α ∧
β,¬α ∧ ¬β}. Here ∆ has two disjoint minimal inconsis-
tent subsets whereas ∆′ has one. Yet Coherence(∆) =
Coherence(∆′) = 0.

Example 10 Let ∆ = {α∧¬α} and ∆′ = {β ∧¬β}. Here
Coherence(∆) = Coherence(∆′) even though ∆ and ∆′ are
quite distinct as indicated by Atoms(∆) ∩ Atoms(∆′) = ∅.

In the next section, we present an alternative to the co-
herence function for comparing knowledgebases. We aim
to differentiate between knowledgebases such as ∆ and ∆′

given in Example 10.



Compromising on inconsistency

In the following, we define the compromise relation to prefer
knowledgebases with models with a greater opinionbase and
a smaller conflictbase.

Definition 12 Let ∆,∆′ ∈ ℘(L). The compromise rela-
tion, denoted �, is defined as follows:

∆ � ∆′ iff ∀X ∈ MQC(∆) and ∃Y ∈ MQC(∆′)
such that Conflictbase(X) ⊆ Conflictbase(Y )
and Opinionbase(Y ) ⊆ Opinionbase(X)

We read ∆ � ∆′ as ∆ is a preferred compromise to ∆′.
Let ∆ ≺ ∆′ denote ∆ � ∆′ and ∆′ 6� ∆. Also let ∆ ≃ ∆′

denote ∆ � ∆′ and ∆′ � ∆.

Example 11 If ∆ = {α∧β∧γ}, and ∆′ = {α∧¬α, β∨γ},
then ∆ ≺ ∆′, since the following hold,

MQC(∆) = {{+α,+β,+γ}}
MQC(∆′) = {{+α,−α,+β}, {+α,−α,+γ}}

Example 12 If ∆ = {α ∧ ¬α ∧ β} and ∆′ = {β}, then
∆ 6� ∆′, and ∆′ 6� ∆, since MQC(∆) = {{+α,−α,+β}}
and MQC(∆′) = {{+β}}. Though Coherence(∆) <
Coherence(∆′).

Example 13 If ∆ = {α ∨ β} and ∆′ = {α ∨ γ}, then ∆ 6�
∆′, and ∆′ 6� ∆, since MQC(∆) = {{+α}, {+β}} and
MQC(∆′) = {{+α}, {+γ}}. Though Coherence(∆) =
Coherence(∆′).

We now motivate the compromise relation. For check-
ing whether ∆ � ∆′ holds, we want to compare the min-
imal QC models of ∆ with the minimal QC models of ∆′.
First, we want each minimal QC model of ∆ to have a con-
flictbase that is a subset of the conflictbase of each minimal
QC model of ∆′. We get this via Proposition 6. Second,
we want for each minimal QC model X of ∆, for there
to be a minimal QC model Y of ∆′ such that the opin-
ionbase of Y is a subset of the opinionbase of X . This is
to ensure that ∆ is not less conflicting than ∆′ because ∆
has less information in it. The reason we use the condition
Opinionbase(Y ) ⊆ Opinionbase(X) rather than Y ⊆ X
is that if Y is more conflicting than X , then this will be re-
flected in the membership of Y but not in the membership of
Opinionbase(Y ). The reason we only seek one minimal QC
model of ∆′ for the comparison with all the minimal QC
models of ∆ is so that we can handle disjunction in ∆′ as
illustrated by Example 11. And according to Proposition 7,
this is sufficient to ensure that there is no minimal QC model
of ∆′ that has a greater opinionbase than any minimal QC
model of ∆.

Proposition 6 If ∆ � ∆′, then ∀X ∈ MQC(∆), ∀Y ∈
MQC(∆′), Conflictbase(X) ⊆ Conflictbase(Y ).

Proposition 7 If ∆ � ∆′, then it is not the case that ∃X ∈
MQC(∆), ∃Y ∈ MQC(∆′), such that Opinionbase(X) ⊂
Opinionbase(Y ).

Useful properties of the compromise relation include: (1)
It is a pre-order relation; (2) It captures aspects of coher-
ence (Propositions 8 and 9); and (3) It is syntax independent
(Proposition 10).

Proposition 8 If ∆ � ∆′, then ∀X ∈ MQC(∆) ∃Y ∈
MQC(∆′) such that Coherence(X) ≥ Coherence(Y ).

Proposition 9 If ∆ � ∆′, and ∆ = ∪MI(∆), and
∆′ = ∪MI(∆′), and ∆ ∪ ∆′ is a set of clauses, then
Coherence(∆) ≥ Coherence(∆′).

However, in general ∆ � ∆′ does not imply
Coherence(∆) ≥ Coherence(∆′). The converse does not
hold either. This is illustrated by the following examples.

Example 14 Let ∆ = {α, δ∧¬δ} and ∆′ = {α∨(β∧γ), δ∧
¬δ}. So ∆ � ∆′ and Coherence(∆) < Coherence(∆′).

Example 15 Let ∆ = {α, β ∧ ¬β} and ∆′ = {α, γ ∧ ¬γ}.
So Coherence(∆) ≥ Coherence(∆′). However, ∆ 6� ∆′

and ∆′ 6� ∆.

We see that increasing the number of conjuncts in a for-
mula tends to increase the size of the minimal QC models
for that formula, whereas increasing the number of disjuncts
in a formula tends to increase the number of the minimal QC
models for that formula. We illustrate this in the following
example, and see the effect on the compromise relation.

Example 16 If ∆ = {α ∧ β} and ∆′ = {α} and ∆′′ =
{α ∨ β}, then ∆ ≺ ∆′, and ∆′ ≺ ∆′′, since MQC(∆) =
{{+α,+β}}, MQC(∆′) = {{+α}}, and MQC(∆′′) =
{{+α}, {+β}}.

If ∆ and ∆′ are consistent sets of formulae, and ∆ ≃ ∆′,
then ∆ and ∆′ are not necessarily classically equivalent, as
illustrated by the following example.

Example 17 Let ∆ = {¬α} and ∆′ = {α}. So ∆ 6⊢ ⊥,
and ∆′ 6⊢ ⊥ and ∆ ≃ ∆′.

The behaviour of the compromise relation illustrated
above is the result of the opinionbase comparison within the
compromise relation not differentiating between formulae
and their complements. However, the compromise relation
is syntax independent, which we formalize as follows.

Definition 13 For ∆,∆′ ∈ ℘(L), ∆ is semantically equiv-
alent to ∆′ iff ∀X ∈ ℘(O)(X |=s ∆ iff X |=s ∆′). Let
SemanticEqual be a function that gives the set of semanti-
cally equivalent knowledgebases for a knowledgebase.

Example 18 Let ∆ = {α,¬α}. So {α ∧ ¬α} ∈
SemanticEqual(∆). Now let ∆′ = {α,¬α ∨ ¬β, β}. So
{α∧¬α, β∧¬β} ∈ SemanticEqual(∆′) and {α,¬α∨ (β∧
¬β)} ∈ SemanticEqual(∆′).

Proposition 10 Let ∆ ∈ ℘(L). If ∆′′ ∈
SemanticEqual(∆), then ∆ ≃ ∆′′.

Hence, � is syntax independent. As a result, if ∆ � ∆′

and ∆′′ ∈ SemanticEqual(∆), then ∆′′ � ∆′. And if ∆ �
∆′ and ∆′′ ∈ SemanticEqual(∆′), then ∆ � ∆′′.

Example 19 Since {α,¬α, β} � {α,¬α, β,¬β} holds, we
can derive that {α ∧ ¬α ∧ β} � {α,¬α, β,¬β} holds.

However, this syntax independence means that the com-
promise relation does not reflect the membership and cardi-
nalities of the inconsistent subsets as illustrated by the fol-
lowing examples.



Example 20 Let ∆ = {β} and ∆′ = {α,¬α, β}. So
MI(∆) = ∅ and MI(∆′) = {{α,¬α}}, but ∆ 6� ∆′ and
∆′ 6� ∆.

Example 21 Let ∆ = {α,¬α∨¬β, β} and ∆′ = {¬α, α∨
β,¬β}. So MI(∆) = {∆}, and MI(∆′) = {∆′}, and ∆ ≃
∆′, but MI(∆) 6⊆ MI(∆′) and MI(∆′) 6⊆ MI(∆).

In general, the compromise relation is not monotonic so
for instance, ∆ � ∆′ does not imply (1) ∆ ∪ Γ � ∆′, (2)
∆ � ∆′ ∪ Γ, or (3) ∆ ∪ Γ � ∆′ ∪ Γ. This is illustrated by
the following example.

Example 22 (1) Let ∆1 = {α, β}, ∆′
1

= {α}, and Γ1 =
{¬α}. So ∆1 � ∆′

1
but ∆1 ∪ Γ1 6� ∆′

1
. (2) Let ∆2 = {α},

∆′
2

= {α}, and Γ2 = {β}. So ∆2 � ∆′
2

but ∆2 6� ∆′
2
∪Γ2.

(3) Let ∆3 = {α ∧ β}, ∆′
3

= {α ∨ β}, and Γ3 = {¬α}. So
∆3 � ∆′

3
but ∆3 ∪ Γ3 6� ∆′

3
∪ Γ3.

However, if have an update Γ, where Atoms(∆) ∩
Atoms(Γ) = ∅ and Atoms(∆′) ∩ Atoms(Γ) = ∅, then
∆ � ∆′ implies ∆ ∪ Γ � ∆′ ∪ Γ.

Analysing heterogeneous sources

Returning to the problem of comparing sources, discussed in
the introduction, we briefly consider two types of analysis.

Definition 14 Let Φi,Φj ,Ψ ∈ ℘(L). A qualified compro-
mise relation �Ψ is defined as follows, where Φi and Φj

are sources and Ψ is background knowledge.

Φi �Ψ Φj iff Φi ∪ Ψ � Φj ∪ Ψ

Example 23 Let Φ1 = {¬α,¬β,¬γ ∨ δ}, Φ2 =
{¬α,¬β, δ,¬γ}, and Ψ = {α ∨ β,¬δ ∨ γ}. So Φ1 �Ψ Φ2.

When using a qualified compromise relation, there may
be an assumption that the background knowledge is correct,
and we rank sources by their conflicts with the background
knowledge.

Another type of analysis assumes that the sources are all
individually consistent with the background knowledge, but
combinations of sources are inconsistent. The � or �Ψ re-
lations may then be used over all possible unions of sources.
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