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A context-dependent algorithm for merging
uncertain information in possibility theory

Anthony Hunter and Weiru Liu

Abstract— The need to merge multiple sources of uncertain
information is an important issue in many application areas,
especially when there is potential for contradictions between
sources. Possibility theory offers a flexible framework to rep-
resent, and reason with, uncertain information, and there is
a range of merging operators, such as the conjunctive and
disjunctive operators, for combining information. However, with
the proposals to date, the context of the information to be merged
is largely ignored during the process of selecting which merging
operators to use. To address this shortcoming, in this paper,
we propose an adaptive merging algorithm which selects largely
partially maximal consistent subsets (LPMCSs) of sources, that
can be merged through relaxation of the conjunctive operator, by
assessing the coherence of the information in each subset. In this
way, a fusion process can integrate both conjunctive and disjunc-
tive operators in a more flexible manner and thereby be more
context dependent. A comparison with related merging methods
shows how our algorithm can produce a more consensual result.

Index Terms— Information fusion, context-dependent merging,
possibility theory, measures of inconsistency and coherence.

I. INTRODUCTION

Merging multiple sources of uncertain information is an
important issue in many areas, such as, sensor data fusion, ex-
pert opinion pooling, image data fusion, and multiple classifier
results combination (e.g., see a collection of papers on appli-
cations in [4]). Different uncertainty modelling theories deploy
different combination mechanisms. For example, Dempster’s
combination rule is used in the Dempster-Shafer theory of
evidence, Bayesian’s rule is used in probability theory, and
disjunctive or conjunctive (or more generally, T-norm and T-
conorm) merging rules (operators) are applied in possibility
theory. All these rules have certain constraints associated with
them. For instance, a conjunctive merging rule is commonly
applied to a set of sources which are all reliable and totally
agree with each other, otherwise, a disjunctive rule is supposed
to be more appropriate. This clear-cut principle for selecting
which rule to use was proved to be inadequate for many
situations where sources may partially agree with each other
and only some sources are reliable. Using a disjunctive rule in
these situations often leads to conclusions that are too ignorant
to retain much useful information. Attempts have been made
to integrate both the conjunctive and disjunctive operators into
a single merging procedure to create adaptive rules (e.g. [11],
[12], [14], [19]).
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In [11] an adaptive rule was proposed to merge two sources
utilizing both conjunctive and disjunctive operators and the
degree of agreement among the two sources. Although this
rule is one step forward in terms of adaptation, it suffers from
two major drawbacks. First, because the rule is not associative,
its extension to more than two sources is not obvious. Second,
even if it is possible to extend the rule to deal with more than
two sources, the rule cannot distinguish a subset of sources
where the sources in the subset are totally consistent with each
other, whilst all the sources together are conflicting. Therefore,
the merge result of these rules cannot truly reflect the nature
of information from multiple sources.

In [14], another proposal of adaptation was suggested in
which it was assumed that there were j reliable sources among
n given sources. Since it was not known which j sources were
reliable, all the subsets with cardinality j were considered and
sources in each of these subsets were merged conjunctively.
The merged results were further merged disjunctively. A
method to decide the value of j was given in [12], where
j was chosen as the cardinality of the largest subset such
that the possibility distribution obtained after conjunctively
merging the information in the subset was normal. Although
this proposal is better than that in [11] in terms of reflecting
the context of information by selecting subsets of sources,
it also suffers from a number of drawbacks. Notably, once
value j is decided, all the subsets having j as the cardinality
are selected for separate conjunctive merges. Most of the
selected subsets will contain conflicting information and it
does not seem so rational to merge these subsets at all after it
is known which subset contains consistent information. Also,
merging all these subsets is clearly not feasible when j is large.
Another problem with this method is its inability to deal with
disjoint consistent subsets of different sizes. For instance, if
two consistent subsets among n (n > 5) are S1 = {s1, s2, s3}
and S2 = {s4, s5}, then subset S2 will not be considered since
its cardinality is smaller than that of S1, and value j will be
at least equal to |S1| in this case. Therefore, this rule is not
entirely context-dependent either.

In this paper, we further investigate how we can make
the merging more context-dependent. We take the merging
as a process of finding largely partially maximal consistent
subsets (LPMCSs) (a concept that we will define later in the
paper). We merge information in each LPMCS conjunctively
(through relaxation) first and then merge the merged results
disjunctively. Although this idea shares some of the spirit of
the method in [14], it differs fundamentally from the approach
in [14] as to how the subsets should be formed. Our algorithm
automatically generates these non-fixed sized subsets instead
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of fixed sized subsets. Furthermore, it does not require that the
conjunctively merged possibility distribution from a LPMCS to
be normal. Instead, the definition of relaxation of conjunctive
merge (proposed in this paper) is used to assess whether the
information in a LPMCS is consistent to at least a certain
degree. If so, information in the subset should be merged
conjunctively.

More specifically, this paper has the following main contri-
butions to facilitate a context-dependent adaptive merging.

• First, the quality of information provided by each source
is assessed and all the sources are ranked. This will enable
a potential LPMCS to be created around a source with
high quality instead of a source with poor quality. It
will also enable the rejection of poor quality sources if
necessary.

• Second, the definition of relaxation of the conjunctive
rule is proposed which allows the conjunctive merge of
sources even though the merged possibility distribution
is not normal. This definition assesses both the quality of
the conjunctively merged result and the information loss
if these sources were merged disjunctively in order to see
whether the relaxation is feasible.

• Third, a distance relation is defined which can quanti-
tatively compare the consistency of sources in relation
to a reference source. Based on this distance relation,
a preferable sequence of sources for merging is created
with a given reference source. The relaxation of the
disjunctive rule is then applied to the sequence to find
the break point such that only the sources before this
point can be merged with relaxation. As a consequence,
sources before the break point form a largely partially
maximal consistent subset (LPMCS).

• Fourth, the merged results from different LPMCSs are
merged disjunctively.

• In addition, we have proved that the computational com-
plexity of the algorithm is O(n2) where n is the number
of sources to be merged.

These contributions lead to the design of an adaptive algorithm
that dynamically partitions a set of sources based on their
context and their consistency with other sources to create
LPMCSs. We believe that this algorithm is more context-
dependent and can deal with multiple sources involving con-
flict more adequately than the current approaches available.

This paper is organized as follows. In Section II, we review
the basics of possibility theory and introduce the modelling of
uncertain information in possibility theory. We also examine
problems associated with merging methods that use only
a single operator. In Section III, we first introduce both
nonspecificity measures and coherence intervals for assessing
respectively the quality of consistent and inconsistent possi-
bilistic information and for ranking multiple sources. We then
investigate the properties of merged information, including
information loss during a disjunctive merge. Definition of re-
laxation of conjunctive rule is introduced to merge information
in a given LPMCS. In Section IV, we study the distance
between pieces of possibilistic uncertain information and the
formation of LPMCSs. In Section V, an adaptive merging

algorithm is designed to find all the LPMCSs and to merge
the information in each of these subsets with the relaxation
of conjunctive rule. Examples are deployed to illustrate the
adaptive behavior of the algorithm. A comprehensive compar-
ison with related adaptive merging approaches are investigated
in Section VI and some existing approaches to integrating
reliability in merging are reviewed in Section VII. Finally,
we summarize the paper in Section VIII.

II. PRELIMINARIES

A. Possibility theory

Let Ω be a frame of discernment consisting of a set
of possible solutions. A possibility measure and a necessity
measure, denoted as Π and N respectively, are functions from
℘(Ω) to [0, 1] such that given any two subsets A and B of
℘(Ω), Π(A ∪ B) = max(Π(A),Π(B)), N(A) = 1 − Π(Ā),
where Ā is the complementary set of A. Also, Π(Ω) = 1. The
possibility measure of a subset estimates to what extent the
true event is believed to be in the subset and its necessity
measure evaluates the degree of necessity that the subset
is true. Semantically, a fundamental function in possibility
theory is a possibility distribution π : Ω → [0, 1]. π is
said to be normal iff ∃ω0 ∈ Ω such that π(ω0) = 1. A
possibility measure Π can be derived from a π as Π(A) =
max({π(ω)|ω ∈ A}). Both functions Π and N are monotonic
since Π(A) ≤ Π(B) and N(A) ≤ N(B) are true whenever
A ⊆ B holds.

Usually, given a set of weighted subsets (Ai, αi) (may
not be all the subsets) of Ω, there is a family of possibility
distributions associated with it. Weight αi is interpreted as the
lower bound of a necessity measure on Ai. Therefore, for any
possibility distribution πi that is compatible with this set of
weighted subsets, Nπi(Ai) ≥ αi must hold where Nπi is the
necessity measure associated with πi.

A common method to select one of the compatible possibil-
ity distributions is the minimum specificity principle ([2], [9])
which has been widely used in many papers for deriving the
least specific possibility distribution that is compatible with
(Ai, αi). This distribution is unique and can be obtained by
the following equation.

π(ω) =

 min{1− αi|(Ai, αi) s.t. ω 6∈ Ai}
= 1−max{αi|(Ai, αi) s.t. ω 6∈ Ai}

1 otherwise
(1)

Let K be the knowledge specifying how some weights
are assigned to some subsets of Ω and let the possibility
distribution π associated with K be the one obtained through
minimum specificity principle in Eq (1). The degree of incon-
sistency of K denoted as Inc(K) (or simply Inc(π)) is defined
as

Inc(K) = 1−max{π(ωi)|ωi ∈ Ω}

When Inc(K) = 0, π is normal, otherwise, π is not normal.
For any other possibility distribution πi that is compatible

with K, we have Inc(πi) ≥ Inc(π) because π is the least
specific possibility distribution. That is the degree of inconsis-
tency of any other compatible possibility distribution is at least
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to the degree of inconsistency of the least specific possibility
distribution we use.

The two basic merging modes in possibility theory are the
conjunctive, e.g, min, and the disjunctive modes, e.g., max.
When merging n possibility distributions (π1, .., πn) on Ω with
these two specific operators, we have ∀ω ∈ Ω,

πcm(ω) = miniπi(ω), πdm(ω) = maxiπi(ω). (2)

When using the min operator, the most specific source
determines the merged possibility distribution, whilst when
using the max operator, the least specific source determines
πdm. When a conjunctive merged result is not normal, the
disjunctive rule is often recommended to be used. Although
there are several merging operators in both the conjunctive and
disjunctive modes, in the following, we only consider these
two specific merging operators, so the conjunctive operator (or
rule, or merge) means using operator min and the disjunctive
operator (or rule, or merge) means using operator max.

B. Modelling uncertain information in possibility theory

We discuss uncertain information and the merging of un-
certain information in the context of sets in the framework of
possibility theory. Assume for each question of interest, there
is a collection (called a frame of discernment) of mutually
exclusive and exhaustive solutions to the question, then a
source can provide information on any subset of the frame. It
is usually not possible for a source to specify a degree of belief
on every subset. Instead, only some subsets are assigned with
degrees of beliefs, either due to partially available knowledge
or only some subsets are of interest to the problem concerned.
In terms of possibility theory, a degree of belief is interpreted
as the lower bound of the degree of necessity of the subset
involved.

Let Ω be a frame of discernment consisting of a set
of possible solutions. A possibilistic information base (PIB)
provided by a source (or by an agent’s beliefs) is denoted as
K and is in the form of a set of weighted subsets

K = {(Ai, κi)}, i = 1, .., n

where κi is interpreted as the lower bound of the necessity
degree on subset Ai indicating the belief (from the source) as
to what degree the true event (or solution) is in Ai. Given
a PIB K, the least specific possibility distribution can be
recovered from K using Eq (1). Modelling possibilistic un-
certain information in this way is analogous with notations in
possibilistic knowledge bases using possibilistic logic (e.g.,[2],
[3]), where uncertain knowledge is represented as a set of
weighted formulae, {(φi, αi), i = 1, . . . , n}. A formula φi

is thought to be equivalent to a subset Ai if φi is defined as
φi = ∨ψj where ψj stands for “ωj is true” where ωj ∈ Ai.

Although a possibilistic knowledge base can have both
(φ, α) and (φ, β) where α > β and possibilistic formula
(φ, α) subsumes formula (φ, β), we restrict our discussion to
the case where for each subset in a given PIB, there is only
one necessity degree assigned to it. When there are multiple
degrees of necessity assigned to the same subset, we only keep
the largest value without losing any information.

Example 1 Let Ω = {ω1, ω2, .., ω5} and two PIBs be

K1 = {({ω1, ω2}, 0.2), ({ω3, ω4}, 0.3), ({ω5}, 0.3)}
K2 = {({ω1, ω2}, 0.2), ({ω2, ω3}, 0.3), ({ω4, ω5}, 0.3)}

Using Eq (1), the possibility distributions for K1 and K2 are

πK1(ωi) = πK2(ωi) = 0.7, i = 1, ..5

which are the same. �
When PIBs are represented as collections of weighted

subsets, merging information from a pair of sources can be
carried out by the following definition.

Definition 1 Let two PIBs be

K1 = {(A1
1, κ

1
1), .., (A

1
p, κ

1
p)}

K2 = {(A2
1, κ

2
1), .., (A

2
q, κ

2
q)}

and let π1 and π2 be the corresponding possibility distributions
obtained from Eq (1) for K1 and K2 respectively. Then the
conjunctively merged information Kcm using min is

Kcm = {(A1, κ1), .., (Am, κm)}
such that

Ai ∈ {A1
1, .., A

1
p} ∪ {A2

1, .., A
2
q} (3)

κi = 1−max(πcm(ω)|ω 6∈ Ai) (4)

where

πcm(ω) = min(π1(ω), π2(ω))
The disjunctively merged information Kdm using max is

Kdm = {(A1, κ1), .., (An, κn)}
such that

Ai ∈ {A1
1, .., A

1
p} ∪ {A2

1, .., A
2
q}

∪{A1
i ∪A2

j i = 1, .., p, j = 1, .., q}
(5)

κi = 1−max(πdm(ω)|ω 6∈ Ai) (6)

where
πdm(ω) = max(π1(ω), π2(ω))

It is easy to see that both merging procedures are associative
and commutative, therefore, each of them can be applied
recursively to a set of PIBs. Also in this definition, we assume
that an agent is only interested in subsets that are either given
in an original PIB or the unions of subsets in PIBs during
merging. Therefore, we do not need to exhaustively calculate
necessity degrees for all the possible subsets of a frame, though
this can be done easily. This will reduce the computation cost
considerably. Furthermore, this merging principle is consistent
with the policy in merging possibilistic knowledge bases
syntactically where only the formulas given in the original
knowledge bases are actually involved in merging (e.g., [2]).

Definition 2 Let K1 and K2 be two PIBs and let K12 be
the conjunctively merged PIB. K1 and K2 are said to be
(a) totally consistent if Inc(K12) = 0;
(b) partially consistent if 0 < Inc(K12) < 1;
(c) totally inconsistent if Inc(K12) = 1.
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C. Problems of merging with single operators

To highlight the problem of merging all the information
using a single merging rule, we study the following two
examples.

Example 2 Consider a set of four PIBs below with Ω =
{ω1, .., ω5}.

K1
1 = {({ω1, ω2}, 0.4), ({ω2, ω3, ω4}, 0.5), ({ω2}, 0.4)}

K1
2 = {({ω1, ω2}, 0.3), ({ω1, ω2, ω3}, 0.5), ({ω1, ω4}, 0.4)}

K1
3 = {({ω1, ω3}, 0.4), ({ω2, ω3, ω4}, 0.5), ({ω3}, 0.4)}

K1
4 = {({ω2, ω4}, 0.3), ({ω1, ω3, ω4}, 0.5), ({ω1, ω4}, 0.4)}

Let π1
1 , π

1
2 , π

1
3 and π1

4 be the corresponding possibility
distributions of these PIBs as detailed in Table 1.

TABLE I
FOUR POSSIBILITY DISTRIBUTIONS FOR THE FOUR PIBS.

PIB π ω1 ω2 ω3 ω4 ω5

K1
1 π1

1 0.5 1.0 0.6 0.6 0.5
K1

2 π1
2 1.0 0.6 0.6 0.5 0.5

K1
3 π1

3 0.5 0.6 1.0 0.6 0.5
K1

4 π1
4 0.7 0.5 0.6 1.0 0.5

Since the conjunctively merged result shows that π1
cm(ωi) <

1.0 for all ωi ∈ Ω, it indicates these four sources cannot be
merged using the conjunctive rule. When combined with the
disjunctive operator, the merged possibility distribution is

π1
dm(ωi) = 1, i = 1, 2, 3, 4, π1

dm(ω5) = 0.5

which suggests that excessive use of the disjunctive rule can
result in a merged possibility distribution with little informa-
tion retained. Therefore, neither of the merges with a single
rule is adequate. �

Example 3 Consider another set of four PIBs with Ω =
{ω1, .., ω5}. Their corresponding possibility distributions are
given in Table II.

K2
1 = {({ω2, ω3, ω4}, 0.5), ({ω2}, 0.4)}

K2
2 = {({ω1}, 0.3), ({ω1, ω3}, 0.5), ({ω1, ω4}, 0.4)}

K2
3 = {({ω2, ω3}, 0.4), ({ω2, ω3, ω4}, 0.5)}

K2
4 = {({ω1, ω2}, 0.3), ({ω1, ω3, ω4}, 0.5), ({ω1, ω4}, 0.4)}

TABLE II
FOUR POSSIBILITY DISTRIBUTIONS FOR THE FOUR PIBS IN EXAMPLE 3.

PIB π ω1 ω2 ω3 ω4 ω5

K2
1 π2

1 0.5 1.0 0.6 0.6 0.5
K2

2 π2
2 1.0 0.5 0.6 0.5 0.5

K2
3 π2

3 0.5 1.0 1.0 0.6 0.5
K2

4 π2
4 1.0 0.5 0.6 0.7 0.5

Similar to Example 2 that the only merging rule applicable
to these PIBs would be the disjunctive one. However, it differs
from Example 2 in that two pairs of PIBs in the example,
(K2

1 ,K
2
3 ) and (K2

2 ,K
2
4 ) can be merged conjunctively, since

the two PIBs in each pair are totally consistent. �

Merging all the four sources in the disjunctive mode ignores
the fact that some subsets of sources are totally consistent,
although the whole collection of all the sources is partially
consistent. This situation cannot be reflected in a merge that
uses only a single operator. Therefore, a selective use of the
conjunctive rule may still be necessary, especially when some
subsets are totally consistent. As a consequence, developing
methods for measuring the quality of merged results of se-
lected subsets are crucial.

III. QUALITY MEASURES OF ORIGINAL AND MERGED
UNCERTAIN INFORMATION

In this section, we investigate how to measure the quality
of uncertain information from a single source and the quality
of merged results.

A. Quality measure of individual uncertain information

There are a number of dimensions that we can look into
when assessing the quality of information from a source, each
of which is suitable for certain situations. For information
that is consistent, we use the traditional information theory
based method to examine its nonspecificity; for information
that is inconsistent, we examine its degree of inconsistency.
When information from two sources have the same degree of
inconsistency, we need to measure their coherence intervals
[18] to assess which source is more coherent. Based on
all these measures, we are able to rank a set of sources
according to their quality. We look at each of these measures
in turn below first before examining the quality of merged
information.

1) Measures of nonspecificity: When a piece of information
is uncertain, e.g., when the information cannot precisely reveal
what the true value (of a question) is, numerous methods
have been proposed to quantify how uncertain this information
actually is. The first of all would be Hartley’s approach [16]
where the uncertainty is measured by I(A) = log2|A|. Here
A ⊆ Ω, A 6= ∅ represents the smallest subset of Ω (a frame)
that it is certain that the true value (state) is in A. For a
probability distribution p on Ω, the Shannon entropy [21]
defined below is commonly applied.

S(p) = −Σω∈Ωp(ω)log2p(ω)

This method was extended in [17] to measure the uncertainty
in information in possibility theory, called nonspecificity.
Given a possibility measure π on Ω with π(ω1) = 1 ≥
π(ω2) ≥ .. ≥ π(ωn) = 0, the measure of nonspecificity of
π is

H(π) = Σn−1
j=1 (π(ωj)− π(ωj+1))log2j

When a π is precise, i.e., when there is only one ωi ∈ Ω where
π(ωi) = 1 and π(ωj) = 0, i 6= j, then H(π) = 0. When a π
is uniform, i.e., when ∀ω ∈ Ω, π(ω) = 1, then H(π) = log2n.
This represents total ignorance.

The measure of nonspecificity defined above is usually used
when the possibility measure is normal.

Note that the above definition is valid only when
minω∈Ωπ(ω) = 0. When this condition does not hold, we
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need to add an extra element ω′ into Ω and let π(ω′) = 0
in order to use the equation. It should also be noted that
H(π) = 0 whenever π(ω1) = l and π(ωi) = 0 for any
ωi 6= ω1, regardless the actual value of l. This raises a
question as whether π1(ω1) = 1 should be treated the same
as π2(ω1) = 0.8 (or any other values, such as 0.2), because
we have H(π1) = H(π2) = 0. We argue on the one hand
that if for a given π, π(ω1) is very small, e.g., 0.2, then
it is unlikely that π(ωi) = 0 holds for all the other ωi, so
most of the time, π(ω1) cannot be too small. On the other
hand, if π(ω1) is the only non-zero value and it is reasonably
large, then this possibility distribution is specific enough, since
degrees of possibility can be viewed as relative measures after
all. Therefore, a possibility distribution π with π(ω1) = 0.8
(and π(ωi) = 0 for ωi 6= ω1) can be regarded as carrying
the same information as a possibility distribution π′(ω1) = 1
(with π′(ωi) = 0 for ωi 6= ω1).

2) Inconsistency degree and coherence interval: An incon-
sistency degree can tell to what extend a PIB is internally
consistent. In Example 1, the degrees of inconsistencies of
the two PIBs are the same, 1 − maxω∈Ω{π1(ω)} = 0.3 and
1 − maxω∈Ω{π2(ω)} = 0.3. Therefore, it is not possible to
tell the difference of the quality of these two sources based
on this value. However, if we examine the information more
closely, we will find that there is a significant overlap among
the subsets A2

j in K2, while any two subsets from K1 are
disjoint. Obviously the quality of K2 is better than that of K1,
since the latter is more conflicting internally. This observation
leads to the study of coherence intervals of subsets within a
single piece of information [18], which extends the work in
[8].

Definition 3 [18] Let K be a PIB and let

OpinionBase(K) = {(Ai, κi)|
such that (Ai, κi) is a weighted subset of K }

ConflictBase(K) = {(Ai, κi) ∈ OpinionBase(K)|
∃(Aj , κj) ∈ OpinionBase(K), s.t Ai ∩Aj = ∅}

UpperConflictBase(K) = {(Ai, κi) ∈ OpinionBase(K)|
∀(Aj , κj) ∈ OpinionBase(K),

if Ai 6= Aj then Ai ∩Aj = ∅}
Then the lower bound of the degree of coherence of K,
denoted as Coherence(K), and the upper bound of the degree
of coherence of K, denoted as UpperCoherence(K), are
defined as follows where A(S) = Σ(Ai,κi)∈S κi

Coherence(K) = 1− A(ConflictBase(K))
A(OpinionBase(K))

UpperCoherence(K) = 1− A(UpperConflictBase(K))
A(OpinionBase(K))

Interval [Coherence(K),UpperCoherence(K)] defines the
range of coherence measure of K with some special properties,
such as, [1, 1] means K is totally coherent, while [0, 0] means
K is totally incoherent [18]. When the possibility distribution
derived from a source is normal, the associated coherence
interval is [1, 1]. However, a [1, 1] coherence interval does not
guarantee that the underlying possibility distribution is normal.

Definition 4 [18] Let ≤lex be a binary relation on the
following set where 1 > α > 0 and 1 > β > 0,

{[1, 1], [α, 1], [0, 1], [0, β], [0, 0]}

such that [0, 0] ≤lex [0, β]; [0, β] ≤lex [0, 1]; [0, 1] ≤lex [α, 1];
[α, 1] ≤lex [1, 1]; [α1, 1] ≤lex [α2, 1] if α1 ≤ α2; and [0, β1] ≤
[0, β2] if β1 ≤ β2. ≤lex is a lex ordering and its associated
strict ordering is defined by [α1, α2] <lex [β1, β2] such that
[α1, α2] ≤lex [β1, β2] but [β1, β2] 6≤lex [α1, α2].

Let K1 and K2 be the PIBs in Example 1 respectively, their
coherence intervals are IK1 = [0, 0] and IK2 = [0, 5/8] and
IK1 <lex IK2 . This means that the quality of K2 is better than
that of K1 which is consistent with our analysis above.

3) Ranking information sources: The quality of information
provided by a source can be measured in several aspects, as
we have discussed above. In general, when the information is
consistent, it is possible to measure its nonspecificity; when it
is inconsistent, it is meaningful to measure its inconsistency
degree and its coherence interval. Given K1 and K2 with the
same degree of inconsistency, their coherence intervals can
further differentiate a better quality information source from
a poor one. Equipped with these measures, we can rank a
collection of PIBs.

Definition 5 Let K1 and K2 be two PIBs. The quality of
K1 is said to be better than that of K2, denoted as K2 ≺ K1

iff one of the following conditions holds.
(a) K1 and K2 are consistent and H(πK1) < H(πK2);
(b) Inc(K1) < Inc(K2);
(c) Inc(K1) = Inc(K2) and IK2 <lex IK1 , where IK1 and

IK2 are the coherence intervals for K1 and K2.
In addition, notation K1 ∼ K2 means their qualities are not

distinguishable; and notation K2 � K1 means the quality of
K1 is better than or equal to that of K2.

Clearly, relation � is transitive, but not associative. If Ki �
Kj ,Kj � Kt, then Ki � Kt.

This definition ranks consistent information ahead of in-
consistent information and a highly specific consistent infor-
mation is better than a less specific consistent information.
Furthermore, information with a lower degree of inconsistency
is better than information with a higher one. When two pieces
of information have the same degree of inconsistency, their
coherence intervals are used to identify which information is
better.

Example 4 The PIBs in Example 2 can be ordered as
K1

1 ∼ K1
2 ,K

1
2 ∼ K1

3 , and K1
4 ≺ K1

3

since H(π1
1) = H(π1

2) = H(π1
3) = 0.1log23 + 0.5log25

and H(π1
4) = 0.1log22 + 0.1log23 + 0.5log25, which gives

H(π1
i ) < H(π1

4) for i = 1, 2, 3. Therefore, K1
4 is of poor

quality than others. �

B. Quality measure of merged information

1) Properties of merged information: Since operators min
and max are both associative and commutative, the merging
procedure defined in Definition 1 can be applied to a set
of PIBs recursively until all the information is combined,
provided that there is no normalization involved in the merge.
This process should achieve the same result as that from
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merging all the information in a single step using Eq (2). To
quantitatively measure the effects of both types of merging,
we have the following propositions.

Proposition 1: Let Ki, i = 1, ..., n be n PIBs and let
(Aj

i , κ
j
i ) be a weighted subset in Ki, then (Aj

i , κ) is a weighted
subset in the conjunctively merged Kcm such that κj

i ≤ κ.
Proof Let πi and πcm be the possibility distributions asso-

ciated with Ki and Kcm respectively. Then

κj
i = 1−Πi(Ā

j
i ) = 1−max(πi(ωl)|ωl ∈ Āj

i )
κ = 1−Πcm(Āj

i ) = 1−max(πcm(ωl)|ωl ∈ Āj
i )

Since πcm(ωl) ≤ πi(ωl) for ωl ∈ Āj
i (remember πcm(ωl) =

min(πt(ωl))), max(πi(ωl)) ≥ max(πcm(ωl)). Therefore, 1 −
max(πi(ωl)|ωl ∈ Āj

i ) ≤ 1−max(πcm(ωl)|ωl ∈ Āj
i ), and as a

consequence, κj
i ≤ κ. �

Proposition 2: Let Ki, i = 1, ..., n be n PIBs and let
subset A be a weighted subset in l different PIBs with (A, κl

i)
appearing in Ki. Then (A, κ) is a weighted subset in the
conjunctively merged Kcm such that κ ≥ max{κl

i|(A, κl
i) ∈

Ki}.
Proposition 2 can be proved similarly as for Proposition 1.
Proposition 3: Let Ki, i = 1, ..., n be n PIBs and let subset

A be a weighted subset appearing in l different PIBs with
(A, κl

i) appearing in Ki. If (A, κ) is a weighted subset in the
disjunctively merged Kdm, then κ ≤ min(κl

i|(A, κl
i) ∈ Ki).

Proof Let πs and πdm be the possibility distributions associ-
ated with Ki and Kdm respectively. Let (A, κl

s) be a weighted
subset in Ks (one of the l PIBs having A as a weighted subset)
and assume (A, κ) appears in the merged Kdm, then

κl
s = 1−Πi(Ā) = 1−max(πs(ωl)|ωl ∈ Ā)
κ = 1−Πdm(Ā) = 1−max(πdm(ωl)|ωl ∈ Ā)

Since πdm(ωj) ≥ πs(ωj) for ωj ∈ Ā (remember πdm(ωj) =
maxt(πt(ωj))), we have maxj(πdm(ωj)) ≥ maxj(πs(ωj)).
Therefore, 1−max(πs(ωj)|ωj ∈ Ā) ≥ 1−max(πdm(ωj)|ωj ∈
Ā), and as a consequence, κl

s ≥ κ. That is κ ≤ κl
s.

Similarly, when (A, κl
t) is a weighted subset in Kt and

(A, κ) is a weighted subset in Kdm, we also have κ ≤ κl
t.

Therefore, κ ≤ min(κl
i|(A, κl

i) ∈ Ki). �
These propositions reveal that any weighted subset in an

original source will not disappear during the conjunctive
merge. Furthermore, if a subset appears in more than one
source (with different weights), the conjunctively merged
weight associated with the subset is not less than the original
weights. On the other hand, any weighted subset, (Ai, κi), that
appears in Ki will be deleted from the merged K if (Ai, κ)
has κ = 0.0 after merging. Since the disjunctive merge can
result in some subsets having 0.0 degree of necessity, not all
the subsets that appear in the original sources will be in the
merged result. This leads to the loss of some of the original
information.

2) Information loss in disjunctive merge: With each more
step of disjunctive merge, the measure of nonspecificity of
the merged result gets bigger and the merged information
gets more imprecise. That is, max(H(π1),H(π2)) ≤ H(πdm)
holds in general, where π1 and π2 are two normal possibility
distributions from two sources and πdm is the disjunctively
merged possibility distribution. To measure how much of the

original uncertain information has been lost during merging,
we give the following definition.

Definition 6 Let Ki, i = 1, ..., n be n PIBs. Let Si =
{Ai|(Ai, κj) ∈ Ki} be the collection of subsets appearing
in Ki, and let Sdm = {A|(A, κ) ∈ Kdm} be the collection of
subsets appearing in the disjunctively merged Kdm. Informa-
tion loss in relation to (Ai, κi) is defined as Ai 6∈ Sdm. The
degree of information loss of the disjunctive merge is defined
as

InfoLoss(K) = 1− |Sdm ∩ (∪iSi)|
| ∪i Si|

(7)

In Example 2, after disjunctively merging all the four PIBs
in the first set, the degree of information loss is 1.0. That is,
none of the original subsets was kept.

3) Relaxation of the conjunctive rule: When the informa-
tion loss is too significant to apply the disjunctive rule, the
conjunctively rule has to be applied in some way. We propose
the following definition to suggest which rule should be
applied based on the assessment of conjunctive and disjunctive
merges of a set of PIBs.

Definition 7 Let K1,K2, ..,Kn be n PIBs and let Kcm

and Kdm be the conjunctively and disjunctively merged PIBs
respectively. Then these PIBs
(a) should be merged conjunctively when Inc(Kcm) = 0;
(b) are advised to be merged conjunctively when

(i) 0 < Inc(Kcm) ≤ ε0;
(ii) IKcm

= [α, 1] such that α ≥ ε1;
(iii) InfoLoss(Kdm) ≥ ε2;

(c) are advised to be merged disjunctively, otherwise.
ε0, ε1 and ε2 are three pre-defined thresholds such that ε0 is
the degree of inconsistency tolerance, ε1 measures the least
level of coherence the merged result should achieve, and ε2 is
the threshold for the degree of information loss.

The application of the conjunctive rule in situation (b) above
is called the relaxation of the conjunctive rule, or simply called
relaxation in the rest of the paper.

In general, the closer ε1 is to 1.0, the more coherent the
PIBs are, however, the closer ε2 is to 1.0, the more severe
the information loss is. Some applications may tolerate a high
degree of inconsistency but require a higher coherence interval
then other applications. Therefore, these thresholds should be
tuned according to specific applications.

The relaxation of the conjunctive rule deals with those
situations where although the conjunctively merged result of
a set of PIBs is not normal, nevertheless, its inconsistent
degree is low, it is highly coherent, and if these PIBs are
merged disjunctively its information loss is too significant.
Possibilistic information bases (PIBs) that can be merged with
the relaxation of the conjunctive rule are said to be largely
partially consistent.

Example 5 Let two more sets of PIBs, which are numbered
as the 3rd and the 4th sets, be given as below

K3
1 = {({ω1, ω3}, 0.4), ({ω2, ω3, ω4}, 0.5), ({ω2, ω3}, 0.4)}

K3
2 = {({ω1, ω2}, 0.3), ({ω1, ω2, ω3}, 0.5), ({ω1, ω4}, 0.4)}

K3
3 = {({ω1, ω2, ω3}, 0.4), ({ω1, ω2, ω4}, 0.4), ({ω2, ω3}, 0.4)}

K3
4 = {({ω1, ω2}, 0.3), ({ω1, ω3, ω4}, 0.5), ({ω1, ω4}, 0.4)}
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and

K4
1 = {({ω1, ω2}, 0.4), ({ω2}, 0.4)}

K4
2 = {({ω1, ω2}, 0.4), ({ω1}, 0.4), ({ω1, ω4}, 0.4)}

K4
3 = {({ω1, ω3}, 0.4), ({ω2, ω3, ω4}, 0.5), ({ω3}, 0.4)}

K4
4 = {({ω2, ω4}, 0.4), ({ω4}, 0.4), ({ω1, ω4}, 0.5)}

TABLE III
POSSIBILITY DISTRIBUTIONS FOR THE 3RD AND 4TH SETS OF PIBS

set PIB π ω1 ω2 ω3 ω4 ω5

3 K3
1 π3

1 0.5 0.6 1.0 0.6 0.5
K3

2 π3
2 1.0 0.6 0.6 0.5 0.5

K3
3 π3

3 0.6 1.0 0.6 0.6 0.6
K3

4 π3
4 1.0 0.5 0.6 0.7 0.5

4 K4
1 π4

1 0.6 1.0 0.6 0.6 0.6
K4

2 π4
2 1.0 0.6 0.6 0.6 0.6

K4
3 π4

3 0.5 0.6 1.0 0.6 0.5
K4

4 π4
4 0.6 0.5 0.5 1.0 0.5

If we set ε0 = ε1 = 0.5, ε2 = 0.8, based on Definition
7, the PIBs in the 3rd set can be merged with relaxation,
since the final coherence interval is [0.702, 1.0], the degree
of inconsistency is 0.5 and the degree of information loss is
0.875. The PIBs in the 4th set can only be merged with the
disjunctive rule, since conjunctively merging any pair of the
PIB in the set will produce a rather lower coherence interval.

Now, let us re-examine the two sets of PIBs in Examples 2
and 3. The degree of information loss for both sets is 1.0 and
the coherence intervals of the conjunctive merges of two sets
are IK1 = [0.2439, 1.0] and IK2 = [0.4375, 1.0] respectively.
Therefore, these two sets can only be merged with the dis-
junctive rule too, although the information loss is significant.
However, the situation for these two sets is different from that
for the 4th set. In fact, there is at least one subset in both the 1st
and 2nd sets of PIBs that can be merged with relaxation. For
the 1st set of PIBs in Example 2 this subset is {K1

1 ,K
1
2 ,K

1
4},

and for the 2nd set of PIBs in Example 3 this subset can either
be {K2

1 ,K
2
3} or {K2

2 ,K
2
4}. Furthermore, Inc(K2

13) = 0.0.
These simple facts have totally been overlooked when using a
single merging rule and consequently, neither of the two rules
alone is adequate for situations where there are some PIBs
which are largely partially consistent and that can be merged
with relaxation. �

It should be pointed out that when comparing the qualities
of disjunctively and conjunctively merged results of the same
set of PIBs, we cannot apply the criteria stated in Definition
2 for individual PIBs, because the result of the disjunctive
merge is always totally consistent. However, it does not imply
that it is of better quality, due to the information loss during
merging.

IV. GENERATING LARGELY PARTIALLY MAXIMAL
CONSISTENT SUBSETS

To find out which subset of sources can be merged conjunc-
tively (or with relaxation) in order to overcome the problem of
applying only a single merging rule, such as faced by Example

5, we need to assess how similar the information from a pair
of sources is. To do this, we define the following distance
relation.

A. Distance between uncertain information

Definition 8 Let K1, K2 and K3 be three PIBs. Let K12 and
K13 be the conjunctively merged results of K1 and K2, and
K1 and K3 respectively. A binary distance relation between
K2 and K3 with reference K1, denoted as �K1 , is defined as
K2�K1K3 when one of the following conditions holds:
(a) π12 and π13 are normal and H(π12) ≤ H(π13);
(b) Inc(K12) ≤ Inc(K13);
(c) Inc(K12) = Inc(K13) and IK13 ≤lex IK12 .
where π12 and π13 are the possibility distributions of K12 and
K13. When the qualities of K12 and K13 are indistinguishable
(Definition 5), K2 and K3 are said to have the same distance
with respect to K1 and is denoted as K2 ∼K1 K3.
K2�K1K3 indicates that the distance between K1 and K2

is not greater than that between K1 and K3, therefore, K2 is
more consistent with K1 and should be merged with K1 first
before considering K3. K1 is called a reference PIB.

For instance, given the four PIBs in Example 2, the distance
relation with reference K1

1 is

K1
2 �K1

1
K1

4 , K1
4 �K1

1
K1

3 ,

since the coherence intervals of K1
12,K

1
14,K

1
13 are

[0.636, 1.0], [0.50, 1.0] and [0.238, 1.0] respectively, where
K1

ij is the conjunctively merged result of K1
i and K1

j . It
suggests that K1

2 is closer to K1
1 than K1

4 is, and K1
4 is closer

to K1
1 than K1

3 is.
Definition 9 Let K,K1,.., Kn be n + 1 PIBs which have

normal possibility distributions and K be the reference PIB.
The preferred sequence of merging with reference K is defined
as (K,Ki1 , ..,Kij

,Kij+1 , ..,Kin
) such that for any 1 ≤ j <

n, Kij �Kj−1 Kit when j < t ≤ n, where Kj−1 is the
conjunctively merged result of the first j PIBs in the sequence.
When j = 1,K0 = K.

In this way, given a reference PIB, i.e., a source to start
with, it is possible to order remaining PIBs according to their
distances with the merged result of the already selected PIBs.

B. Generating LPMCSs

Definition 10 Let (K,Ki1 , ..,Kij
,Kij+1 , ...,Kin

) be the
preferred sequence of merging with reference K as defined in
Definition 9. Then SK = {K,Ki1 , ..,Kij} is called the largely
partially maximal consistent subset (LPMCSs) with reference
K if the PIBs in SK can be merged with relaxation, but PIBs
in SK ∪ {Kij+1} cannot.

This definition selects the first j PIBs that can be merged
with relaxation. The merged result is within the inconsistency
tolerance degree, has a coherence interval with the lower
bound above the defined threshold. Furthermore, if these PIBs
are merged disjunctively, the degree of information loss is
above the acceptable level.

The choice of a reference PIB can be made based on the
quality assessment of individual PIBs defined in Definition 5.
Usually, we start with a PIB that has a better quality than other
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PIBs, if there are several candidates, we choose the one that
is provided by the most reliable source [12].

C. Effect of reference PIBs

In this subsection we investigate how much influence a
chosen reference PIB has on a LPMCS generated by Definition
10. First we examine the four PIBs in Example 2. Table IV
below summarizes the coherence interval after conjunctively
merging the reference PIB with another PIB.

TABLE IV
COHERENCE INTERVALS OF MERGING A REFERENCE PIB WITH OTHER

PIBS

Ref Coherence Coherence Coherence
PIB with with with
K1 K2, [0.636, 1.0] K3, [0.238, 1.0] K4, [0.500, 1.0]
K2 K1, [0.636, 1.0] K3, [0.538, 1.0] K4, [1.0, 1.0]
K3 K1, [0.238, 1.0] K2, [0.538, 1.0] K4, [0.384, 1.0]
K4 K1, [0.500, 1.0] K2, [1.0, 1.0] K3, [0.384, 1.0]

With information in this table, it is possible to initialize
the preferred sequence of merging for each reference PIB as
detailed in Column 2 in Table V using the distance relation
defined in Definition 8. Then Definition 9 is applied to re-
arrange the PIBs starting from the 3rd PIB in each initial
sequence, and to generate the final preferred sequence of
merging for each reference PIB. The final preferred sequence
for each PIB is listed in Table VI.

TABLE V
THE INITIAL PREFERRED SEQUENCE FOR EACH REFERENCE PIB, AND THE

COHERENCE INTERVALS AT THE 2ND ROUND. “2ND ROUND COHERENCE

OF (1,2,3) (RESP., (1,2,4)) PIBS” MEANS THE COHERENCE INTERVAL

AFTER MERGING THE 1ST, THE 2ND AND THE 3RD (RESP., (1ST, 2ND,
4TH)) PIBS CONJUNCTIVELY IN THE INITIAL SEQUENCE.

Ref Initial preferred 2nd round coherence 2nd round coherence
PIB sequence of (1,2,3) PIBs of (1,2,4) PIBs
K1 K1, K2, K4, K3 [0.580, 1.0] [0.333, 1.0]
K2 K2, K4, K1, K3 [0.580, 1.0] [0.405, 1.0]
K3 K3, K2, K4, K1 [0.405, 1.0] [0.333, 1.0]
K4 K4, K2, K1, K3 [0.580, 1.0] [0.405, 1.0]

TABLE VI
THE FINAL PREFERRED SEQUENCE AND THE MAXIMAL CONSISTENT

SUBSETS WITH REGARD TO EACH REFERENCE PIB.

Ref Final preferred LPMCS Remaining
PIB sequence with Ref PIB PIBs
K1 K1, K2, K4, K3 {K1, K2, K4} K3

K2 K2, K4, K1, K3 {K2, K4, K1} K3

K3 K3, K2, K4, K1 {K3} K1, K2, K3

K4 K4, K2, K1, K3 {K4, K2, K1} K3

Let the thresholds for applying the relaxation of the rule
in Definition 7 be set as ε0 = ε1 = 0.5 (ε1 is the lower
bound of the coherence interval) and ε2 = 0.8 (the degree

of information loss). Then the LPMCS for reference K1 is
{K1,K2,K4}, since this subset has a degree of inconsistency
0.4, a conjunctively merged coherence interval [0.580, 1.0],
and the degree of information loss in the disjunctive merge
1.0. If we chose K2 or K4 as the reference PIB, the LPMCSs
are {K2,K4,K1} and {K4,K2,K1} respectively, which are
all the same as that for K1. Therefore, theoretically, any of
the three can be chosen as a reference PIB to generate this
LPMCS. For reference K3, if we consider {K3,K2} as a
LPMCS, the degree of information loss when disjunctively
merging these two PIBs is greater than the threshold, also,
the lower bound of the coherence interval of merging K2 and
K3 is below the required threshold (0.5), therefore, the only
LPMCS for reference K3 is K3.

For this example, no matter which reference PIB we
start with to generate potential LPMCSs, the only two such
subsets are {K1,K2,K4} and {K3}. Especially for subset
{K1,K2,K4}, choosing either K1, or K2 or K4 has no effect
on the final subset that contains them. However, whether this
specific case is always true remains to be further investigated.

V. A CONTEXT-DEPENDENT ADAPTIVE MERGING
ALGORITHM

A. The algorithm

Given a set of PIBs, there can be multiple LPMCSs that
can be merged with the relaxation of the conjunctive rule.
The following algorithm implements multiple subsets merging
under these circumstances.

Algorithm Merging(λ): λ = {K1, ..., Kn} is a set of sources.

Begin
m = 1;
while |λ| > 0 do

Let Ki be the PIB with the best quality in λ
based on Def 5; (choose the one provided by the most
reliable source if there is more than one candidate PIB)

Let Sm = {Ki, Ki1 , .., Kij} be the LPMCS generated
based on Definition 10 with reference Ki,
then calculate πm(ω) = min{πi(ω), πi1(ω), .., πij (ω)};

Let λ = λ \ Sm, m = m + 1;
End of while
πn(ω) = max{π1(ω), .., πm−1(ω)}.
End

πn is the final result of merging all the PIBs in λ.
Let m be from Merging(λ), when m = 2, πn(ω) =
min{π1(ω), .., πn(ω)}, all the sources in λ are largely partially
maximal consistent because they can all be merged with
a single conjunctive rule (possibly with relaxation). When
m = n + 1, πn(ω) = max{π1(ω), .., πn(ω)}, all the sources
are pairwise highly inconsistent, as they violate at least one
of the conditions of applying the relaxation of the conjunctive
rule.

In the following, we use πAL to denote the final outcome
of our algorithm.

It should be noted that the algorithm is nondeterministic if
we have several choices in the first step, that is, the selection
of reference PKB in the first step can influence subsequent
PLMCSs. When several PIBs have the same best quality here,
we need to make use of the knowledge of reliability of each
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source [12]. In this case, a source with a higher degree of
reliability should be selected. Therefore, given a set of PIBs
and necessary knowledge about the reliability of these sources,
this merging algorithm has a unique output.

B. Computational complexity of the algorithm

Proposition 4 When applying the above algorithm to merge
n PIBs, the computational complexity for performing con-
junctive merges is O(n2) and the computational complexity
for performing the calculation of coherence intervals and non-
specificity together is O(n2) where n = |λ|.

Proof
According to Definition 10, the LPMCS with reference Ki

is in fact the first j elements in the preferred sequence of
merging for reference Ki such that these j PIBs can be merged
with relaxation, but the first j + 1 PIBs cannot.

We start with the full set of PIBs. Let the first chosen
reference PIB be denoted as K1 and the preferred sequence
of merging for K1 be (K1) initially.

To decide the 2nd PIB in the preferred sequence of merging
with K1, it takes n− 1 times of conjunctive merge with each
merge combining K1 with one of the remaining n − 1 PIBs
respectively. Assume the closest PIB to K1 is K2 without
losing generality (Definition 8), the preferred sequence thus is
revised as (K1,K2).

Similarly, it requires n − 2 times of conjunctive merge to
decide the 3rd PIB in the preferred sequence of merging with
regard to the result of merging K1 and K2 (Definition 8).
Let this PIB be named as K3. This process is repeated until
the (i + 1)th PIB has been decided in the sequence which
required n − i times of merge. The latest preferred sequence
is (K1,K2, ...,Ki−1,Ki,Ki+1).

Assume that the first i PIBs in the sequence can be merged
with relaxation, but these i + 1 PIBs together cannot, then
the creation of the preferred sequence for K1 stops here,
because there is no need to order the remaining PIBs into the
preferred sequence any further. Therefore, the first LPMCS is
created with i PIBs. The total number of conjunctive merges
performed so far is

N1 = (n− 1) + (n− 2) + ...+ (n− (i− 1)) + (n− i)

The total number of calculations of coherence intervals and
degrees of non-specificity are the same as above (because we
either calculate the coherence interval if the π concerned is
not normal, or calculate the degree of non-specificity if the π
concerned is normal, but not both).

Analogous to the above steps in creating the first LPMCS,
we can create the next LPMCS after deleting these i PIBs in
the initial set. Let the number of remaining PIBs be n′ = n−i
and let the chosen reference PIB be K ′. When the preferred
sequence of merging with reference K ′ has been created with
j + 1 PIBs such that the first j PIBs can be merged with
relaxation, but all these j + 1 PIBs together cannot, then the
second LPMCS is generated with j PIBs. The total number
of conjunctive merges performed in this around is

N2 = (n′ − 1) + (n′ − 2) + ...+ (n′ − (j − 1)) + (n′ − j)
= (n− i− 1) + (n− i− 2) + ...+ (n− i− j)

Therefore, after the first two LPMCSs are created with i + j
PIBs, the total number of conjunctive merges performed is the
sum of N1 and N2 which is

N3 = (n− 1) + (n− 2) + ...+ (n− (i+ j))

In a similar fashion, it is possible to deal with the remaining
n− (i+ j) PIBs until all the PIBs are in a LPMCS (including
LPMCSs having only one PIB) and the total number of
conjunctive merges performed in all these rounds is

N = (n− 1) + (n− 2) + ...+ (n− l) + ...+ (n− (n+ 2))
= (n−1)n

2 + 1

so is the total number of calculations of coherence intervals
and degrees of non-specificity. Therefore the computational
complexity for both is O(n2). �

C. Merging with the algorithm: an example

Example 6 We now apply the algorithm to the four sets of
PIBs given in Examples 2, 3, and 5 to see the significance of
the algorithm.

Applying Merging(λ) to λ = {K1
1 ,K

1
2 ,K

1
3 ,K

1
4} pro-

duces a subset {K1
1 ,K

1
2 ,K

1
4} which is conjunctively mer-

gable with relaxation, because the coherence interval of the
subset is [0.580, 1], the inconsistency degree is 0.4, and
InfoLoss(K1

124) = 1.0, where K1
124 is the disjunctive merge

result. The final possibility distribution from the algorithm is

π1
AL(ω) = max{min(π1

1(ω), π1
2(ω), π1

4(ω)), π1
3(ω)}

which is normal. This result retains more information than
either the simple conjunctive or disjunctive merge, although
the last step is a disjunctive merge.

Similarly, applying the algorithm to the other three sets of
PIBs, we have

π2
AL(ω) = max{min(π2

1(ω), π2
3(ω)),min(π2

2(ω), π2
4(ω))}

π3
AL(ω) = min{π3

1(ω), π3
2(ω), π3

3(ω), π3
4(ω)}

π4
AL(ω) = max{π4

1(ω), π4
2(ω), π4

3(ω), π4
4(ω)}

�
When the only merging method applicable is disjunctive and

the degree of information loss becomes too significant in the
last step, as for the 4th set of PIBS, some sources may have to
be discarded. The issue on how to reject certain sources will
be one of the future research topics.

VI. COMPARISON WITH RELATED WORK

There have been several adaptive merging rules that either
revise the conjunctive operator with the degree of inconsis-
tency or integrate both conjunctive and disjunctive operators
when merging conflict sources of information. In this section,
we compare the final outcome of our algorithm with some
of the context dependent merging approaches reported in the
literature.
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A. Adaptive merging rule by Dubois and Prade

Dubois and Prade’s adaptive rule. In [11], an adaptive
rule was proposed which integrates both conjunctive and
disjunctive merges

πDP (ω) = max

{
πcm(ω)
hcm

,min(1− hcm, πdm(ω)
}

(8)

where πi, i = 1, .., n are the n original possibility distribu-
tions, πcm and πdm are the conjunctively and disjunctively
merged possibility distributions of these n sources, and hcm =
h(π1, .., πn) = maxω∈Ω{min{π1(ωi), .., πn(ωi)}} obtains the
maximum degree of possibility of the conjunctive merge. In
fact, hcm = 1− Inc(Kcm).

special cases: When h(π1, .., πn) = 1.0, these sources are
totally consistent (see Definition 2). πDP is reduced to πcm,
so is the outcome of our algorithm. Therefore, πDP = πAL,
that is, Dubois and Prade’s adaptive rule and our algorithm
are equivalent.

When h(π1, .., πn) = 0.0, these sources are totally inconsis-
tent (see Definition 2). Equation 8 is reduced to πDP = πdm.
However, πAL is not necessarily reduced to πdm since some
of the original PIBs may still be mergable with relaxation.
Therefore, πAL(ωi) ≤ πdm(ωi) in general. That is, our
algorithm gives a more specific possibility distribution after
merging than that from Equation 8.

General cases: To examine the outcome of both the Rule 8
and our algorithm for randomly created PIBs, we look at the
four sets of PIBs in Examples 2, 3, and 5 again.

The conjunctively merged possibility distributions for the
first three sets are the same and the details of the degrees of
possibility distributions are

πcm(ω1) = 0.5;πcm(ω2) = 0.5;πcm(ω3) = 0.6
πcm(ω4) = 0.5;πcm(ω5) = 0.5;

The fourth set has the conjunctive possibility distribution as

πcm(ω1) = 0.5;πcm(ω2) = 0.5;πcm(ω3) = 0.5
πcm(ω4) = 0.6;πcm(ω5) = 0.5;

As a consequence, the degrees of consistency of the merged
possibility distributions are the same too, which is hcm = 0.6.
The disjunctively merged possibility distributions of the four
sets of PIBS are slightly different with details as shown in
Table VII.

TABLE VII
THE DISJUNCTIVELY MERGED POSSIBILITY DISTRIBUTIONS FOR THE

FOUR SETS OF PIBS IN EXAMPLES 2, 3, AND 5.

set Merged π ω1 ω2 ω3 ω4 ω5

1 π1
dm 1.0 1.0 1.0 1.0 0.5

2 π2
dm 1.0 1.0 1.0 0.7 0.5

3 π3
dm 1.0 1.0 1.0 0.7 0.6

4 π4
dm 1.0 1.0 1.0 1.0 0.6

The adaptive rule in Equation 8 is then applied to these
four sets to obtain the four merged results. These results are
compared with the outcome obtained by our algorithm to the

same four sets of PIBs. Table VIII below summarizes these
merged possibility distributions.

TABLE VIII
THE MERGED RESULTS FROM DUBOIS AND PRADE’S RULE AND OUR

ALGORITHM FOR THE FOUR SETS OF PIBS. THE SUPERSCRIPT ON π IN

THE 2ND COLUMN REFERS TO WHICH SET OF PIBS IS BEING MERGED.

Set Merged ω1 ω2 ω3 ω4 ω5

π

1 π1
DP 0.833 0.833 1.0 0.833 0.833

1 π1
AL 0.5 0.6 1.0 0.6 0.5

2 π2
DP 0.833 0.833 1.0 0.833 0.833

2 π2
AL 1.0 1.0 0.6 0.5 0.5

3 π3
DP 0.833 0.833 1.0 0.833 0.833

3 π3
AL 0.5 0.5 0.6 0.5 0.5

4 π4
DP 0.833 0.833 0.833 1.0 0.833

4 π4
AL 1.0 1.0 1.0 1.0 0.6

Analysis: First of all, the results from applying Eq (8)
on all the four sets of sources are almost identical. In fact,
they have the same degree of nonspecificity. With the merged
results alone, one cannot tell that some of these sets contain
subsets within them that are largely consistent and can be
merged with relaxation. Therefore, although this adaptive rule
integrates both the conjunctive and disjunctive operators and
the degree of consistency, it is not adaptive enough to deal
with subsets with a set of sources and therefore cannot reflect
the differences among different sets of sources.

Second, the results from our algorithm change from set to
set, clearly indicating that these sets of sources are different.
Since we require that all the original sources are normal, an
unnormalized merged possibility distribution, such as π3

AL,
concludes that an unnormalized merged π can only be the
result of merging all the sources conjunctively. Therefore,
these sources are merged with relaxation and they must be
largely partially consistent. On the other hand, if there are
many elements having the maximum degree of possibility
(e.g., 1) after merging, for instance, π4

AL, it strongly hints that
this can be the result of disjunctive merge. Therefore, these
original sources are pair-wise largely inconsistent (otherwise, a
subset may have been merged with relaxation) and one should
treat the merged result with caution. This warning message
cannot be reflected by Eq (8).

Although both the 1st and the 2nd merged possibility
distributions are normal, there are only a small number of
elements with the maximum degree of possibility, so they can
either be the result of conjunctively merging consistent sources
or of performing a disjunctive merge in the final step. The
algorithm is able to tell precisely which operator has been
used in the last step.

Third, for a set of sources which are largely partially
consistent, the merged result from the algorithm is more
specific than that from Eq (8) (this can also be seen from
comparing H(πAL) with H(πDP )), so the former provides a
better final outcome.

One last note about the rule in Eq (8). As pointed out by
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Dubois and Prade that the rule given in Eq (8) is more suitable
for merging two sources, since it only considers two assump-
tions “all sources are right” (corresponding to conjunctive) and
“one source is right” (corresponding to disjunctive). In other
words, it lacks context dependency when merging more than
two sources. Therefore, overall, we believe that our algorithm
offers a more context dependent approach to merging multiple
sources.

B. Subsets merging by Dubois and Prade

The main spirit behind our algorithm is to find LPMCSs
that can be merged with relaxation to reinforce the beliefs
among the sources in each LPMCS. The criteria to find these
LPMCSs is based on the coherence intervals of the merged
results of the PIBs in a subset, the degree of information loss
if merged disjunctively, and the degree of inconsistency. In the
case of our algorithm, these subsets are generated dynamically
with respect to what remains to be merged. Because of this,
the number of LPMCSs generated is determined solely by the
information provided.

This scenario was observed and discussed in [14]. Unlike
our argument which takes a number of factors into account
when deciding LPMCSs, the scenario in [14] assumes that “a
subset J ⊆ K of experts such that |J | = j are assumed reliable
and their opinions (should be merged) conjunctively”. Consid-
ering that it is not known which j experts are reliable, all the
subsets with cardinality j are considered. The intermediate
conjunctively merged results are then merged disjunctively.
Mathematically this scenario is described as

π(j)(ω) = maxJ⊆K,|J|=j{mini∈J(πi(ω)|ω ∈ Ω)}

Obviously, the difficulty with this expression is to decide the
number of reliability experts j. One way to do this is to apply
the following condition [12]. For a subset of experts (sources)
T , let

m = max{|T | | h(T ) = 1}, n = max{|T | | h(T ) > 0}

where h(T ) = hcm, the degree of consistency after merging
information from the sources conjunctively.

These conditions first find the cardinality of the largest
subset in which the sources can be merged conjunctively
(value m) and then find the maximum number of sources
(value n) that after merging these sources, the degree of
consistency is greater than 0.0. Once the cardinality of the
subset is decided, all the subsets with the same cardinality are
merged conjunctively respectively before merging their results
disjunctively. This method, therefore, can select the largest
subset in which the PIBs are totally consistent. It is with this
sense that it is one step closer to context-dependent merging
than the rule in Eq (8).

There are two main drawbacks with this scenario. First, enu-
merating all the subsets with the same size is computationally
expensive and practically unnecessary, since the subset which
can generate the consistent result is known already. Second, if
there are multiple disjoint subsets with different cardinalities,
each of them has a set of PIBs that can be merged with
relaxation, then the subsets with lower cardinalities are all

drowned by the largest subset, since this method only consider
those subsets having the same cardinalities with the largest
one. Therefore, it is not possible to deal with consistent subsets
with different sizes independently.

The major advantage of our algorithm over this subset
merging is that we have multiple LPMCSs for conjunctive
merges (possibly with relaxation). This can be reflected with
the four sets of PIBs used in the previous section. The
comparison of merging them using Dubois and Prade’s subset
method and our algorithm is summarized in Table IX. It
is clear that Dubois and Prade’s method is reduced to the
disjunctive merge situation most of the time unless there exists
at least one subset that can be merged conjunctively. Overall,
their method is less informative than the adaptive rule given
in Eq 8, and both are less informative then the outcome of our
algorithm.

TABLE IX
THE MERGED RESULTS FROM DUBOIS AND PRADE’S SUBSET MERGING

AND OUR ALGORITHM FOR THE FOUR SETS OF PIBS. THE SUPERSCRIPT

ON π IN THE 2ND COLUMN REFERS TO THE SET OF PIBS BEING MERGED.

Set Merged ω1 ω2 ω3 ω4 ω5

π

1 π1
j 1.0 1.0 1.0 1.0 0.5

1 π1
AL 0.5 0.6 1.0 0.6 0.5

2 π2
j 1.0 1.0 0.6 0.6 0.5

2 π2
AL 1.0 1.0 0.6 0.5 0.5

3 π3
j 1.0 1.0 1.0 0.7 0.6

3 π3
AL 0.5 0.5 0.6 0.5 0.5

4 π4
j 1.0 1.0 1.0 1.0 0.6

4 π4
AL 1.0 1.0 1.0 1.0 0.6

C. Other adaptive rules

There are a few more adaptive rules which are mainly
evolved from revising the conjunctive merge, in contrast to the
mixture of both conjunctive and disjunctive merges discussed
above. These rules are

πA1(ω) = max

{
πcm(ω)
hcm

, 1− hcm

}
(9)

πA2(ω) = min

{
1,
πcm(ω)
hcm

+ 1− hcm

}
(10)

πA3(ω) = πcm(ω) + 1− hcm (11)

Eq (11) is also known as one of the three commonly used
normalization rules when a conjunctive merge produces an
unnormalized π.

For the two extreme situations where h(π1, .., πn) = 1.0, all
the three rules are equivalent to the conjunctive merge whilst
when h(π1, .., πn) = 0.0, all the rules assign the degree of
possibility 1.0 to every element in the frame.

For other cases, we have detailed the analysis in Table X
with the four sets of PIBs used in previous sections. As we
can see, rule in Eq (9) behaves in a very similar fashion to Eq
(8), as long as 1 − h < πdm(φ) holds for most of φ ∈ Ω. It
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is also clear that none of these rules is better than either Eq
(8) or our algorithm. Therefore, these rules are less adaptive
and useful in a highly conflicting situation, a situation where
most of the pairs of PIBs are highly inconsistent.

TABLE X
THE MERGED RESULTS FROM THE THREE ADDITIONAL RULES FOR THE

FOUR SETS OF PIBS IN EXAMPLES 2, 3, AND 5.

Set Merged φ1 φ2 φ3 φ4 φ5

π
1 π1

A1 0.833 0.833 1.0 0.833 0.833
1 π1

A2 1.0 1.0 1.0 1.0 1.0
1 π1

A3 0.9 0.9 1.0 0.9 0.9

2 π2
A1 0.833 0.833 1.0 0.833 0.833

2 π2
A2 1.0 1.0 1.0 1.0 1.0

2 π2
A3 0.9 0.9 1.0 0.9 0.9

3 π3
A1 0.833 0.833 1.0 0.833 0.833

3 π3
A2 1.0 1.0 1.0 1.0 1.0

3 π3
A3 0.9 0.9 1.0 0.9 0.9

4 π4
A1 0.833 0.833 0.833 1.0 0.833

4 π4
A2 1.0 1.0 1.0 1.0 1.0

4 π4
A3 0.9 0.9 0.9 1.0 0.9

VII. INTEGRATING RELIABILITY INTO MERGING

Resolving conflict among information from multiple sources
can also be partially achieved by integrating the reliability
of each source into the merging process. By crediting some
sources over others, it is hoped that a conflict situation can be
resolved.

A. Methods of integrating reliability into merging

There have been many investigations into how reliability
information can be used in the merging [1], [20], [15], [5]. A
common assumption with these investigations is that reliability
of information for each source is extra information that has to
be provided separately.

A linear weighted approach irrelevant to the merging oper-
ator was originally reported in [6], and is then used to merge
information from two sources in [5] as detailed below.

πMerge(ω) = P (w1, w2)π⊗(ω) + P1(w1, w2)π1(ω)
+P2(w1, w2)π2(ω)

where w1 and w2 are the weights associated with the two
sources respectively, and coefficients P (w1, w2), P1(w1, w2)
and P2(w1, w2) are assigned to the merged possibility distri-
bution, the two original distributions respectively, and π⊗ is
the merged result when operator ⊗ is replaced with either a
conjunctive or a disjunctive operator. These coefficients are
constrained by the following conditions.

P1(w1, w2) =
{

0, when w1 ≤ w2
w1−w2

w1
otherwise

P2(w1, w2) =
{

0, when w2 ≤ w1
w2−w1

w2
otherwise

P (w1, w2) =

{
1, when w1 = w2 = 0
min{w1,w2}
max{w1,w2} otherwise

where P (w1, w2)+P1(w1, w2)+P2(w1, w2) = 1. With these
coefficients, information from one source can be preferred
over another, or both sources can be preferred equally. For
example, when w1 = 0.6 and w2 = 0.4, P (0.6, 0.4) =
0.667, P1(0.6, 0.4) = 0.333, P2(0.6, 0.4) = 0.0, information
from source one is particularly added into the final merged
result.

Another common linear approach to adding weights to
sources during merging is the convex sum of sources in the
probability framework

πM1(ω) =
∑

i

λiπi(ω) with
∑

i

λi = 1, ω ∈ Ω

where λi and πi are the reliability and the possibility distribu-
tion of source i. This approach can deal with more than two
sources, unlike the previous method, but does not integrate the
fusion operator.

In [23], this rule is revised to integrate a merging operator,
such as a disjunctive one as

πM2(ω) = β
∑

i

λiπi(ω) + (1− β)πdm(ω)

with
∑

i λi = 1 and β ∈ [0, 1].
A more general fusion rule that cooperates both the relia-

bility and merging operator was proposed in [1]

πM3(ω) = Xor(ti)maxn
i=1[tiπi(ω)]

+And(ti)minn
i=1[tiπi(ω)] (12)

where operators Xor and And are the fuzzy equivalent of the
logical operators.

In all the three rules listed above, the reliability values
ti or λi are explicitly required, which can be difficult to
obtain for many applications, especially when there is no prior
knowledge about the sources involved.

B. Modifying source information before merging

Instead of attaching a reliability to each source, another way
of resolving a conflict among multiple sources is to revise
some possibility distributions before merging. Two commonly
used rules to revise possibility distributions are

πY (ω) = tπ(ω) + 1− t, πDP ′(ω) = max{π(ω), 1− t}

where t is interpreted as the degree of certainty that the source
is reliable. The former was defined in [22] and the latter was
proposed in [10].

When a source is completely unreliable, e.g., t = 0.0, the
possibility distribution is reduced to a uniform one in both
cases. When a source is complete reliable, the possibility
distribution is unchanged.

Once again, the knowledge of t must be given in order to
revise these distributions. Revising a possibility distribution in
this way is also called discounting a possibility distribution.
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VIII. CONCLUSION

In this paper, we proposed a context-dependent merging
algorithm that dynamically generates largely partially maximal
consistent subsets (LPMCSs) for conjunctive merges before
a final disjunctive merge. To achieve this, we calculate the
coherence interval after each step of conjunctive merge and
the information loss of the corresponding disjunctive merge to
assess if the relaxation of conjunctive merge is feasible. We
also measure the distances among sources with a reference
PIB and rank sources according to their information quality,
so that the algorithm starts with a source of high quality. The
degree of information loss of a disjunctive merge is measured
to ensure that a disjunctive merge will not be carried out if it
will cause too much loss of original information.

We have proved that the computational complexity of our
algorithm is O(n2) with n original sources.

The comparison with related adaptive rules, especially with
Dubois and Prade’s rule and their subset merging scenario,
shows that our algorithm is more adaptive to the context and
can provide a more rational merge result.

The idea of finding the maximal consistent subsets among a
given set of sources was presented in [7], [13]. These methods
assume that the original information in each source is provided
in the form “x ∈ Ei ⊆ U” which means source i believes
that variable x is in subset Ei of the universe. When all the
original information is provided in this way, that is, Ei is
taken as an interval with Ei = [a1, bi], then the boundaries
of all the subsets can be arranged along a real number line.
An efficient algorithm is thus designed to find all the maximal
consistent subsets. The maximal consistent subset of sources
with interaction [ai, bj ] is defined by the maximal number of
elements of {E1, ..., En} which contain [ai, bj ]. Obviously, a
source with information x ∈ Ei ⊆ U implies that πi(ωi) = 1
for ω ∈ Ei. Information in this form is a special case of
information that we have considered in the paper and it can
equally be dealt with by our algorithm. Our algorithm finds
the same set of maximal consistent subsets when information
is in this form and when it is required that each LPMCS is
actually a maximal consistent subset, e.g., each LPMCS can
be merged with the conjunctively rule directly.

In most research, e.g., [1], reliability is required as extra data
in order to prioritize sources and, often, this extra information
is not available. Given that coherence intervals can measure
the quality of a source to some extend and that the degree
of information loss can tell how suitable a disjunctive merge
is, our next step of research will focus on how to provide
more accurate information on reliability of a source from
the information itself and how to use both the degree of
information loss and coherence intervals to further guide the
fusion process.
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