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Abstract—The formalisation of design decisions serves two
purposes: To support the decision maker in choosing which de-
cision to take (decision analysis), and to document the reasons
behind decisions for future reference (decision documentation).
Approaches which solve the latter task involve a semi-formal
pattern of documenting the reasons for and against each of
the options, but they generally do not allow an automation
of the decision making process. Approaches which solve the
former task use a mathematical model of the problem, in
which each option is evaluated numerically with respect to
some relevant criteria, but they do not support documentation.
We investigate the use of argumentation to both analyse and
document decisions, solving both tasks with the same method.
Additionally, the system we present is able to generate decisions
for analysis, instead of relying on a predefined input of options.
We collaborated with an aerospace manufacturer to identify
common problems in the industry and to create realistic
examples from the engineering domain.
We show that our system subsumes a certain class of multi
criteria decision making problems and that it improves upon
previous argumentation-based decision making systems by
adding the capability to generate decisions and by clearly
defining the semantics used to choose accepted arguments.

Keywords-argumentation; decision making; decision docu-
mentation; decision analysis; generating decisions

I. INTRODUCTION

Engineering design processes, such as those practised
in the aerospace industry, are often complex and long-
running. They involve a multitude of decisions, many of
which affect subsequent steps in the process. Automated
methods are commonly used to handle the complexity and
interrelatedness of the decisions. The formal foundation of
these methods has been studied widely in the literature [1].
However, while the quantitative analysis of decisions helps
to manage the complexity of individual decisions, it does not
address requirements that result from the long duration of
the overall process. These requirements relate to decision
documentation and include justifiability of decisions and
traceability of the impact decisions have on one another.
Information of this kind is recorded in a less rigorous
manner, for example as text documents. The two tasks
of analysing and documenting decisions are solved using
two different methods. Therefore, a single human reasoning
process (making a particular design decision) results in the

production not only of two different artifacts, but of two
entirely different models of that decision. We claim that an
argumentation can serve as a common foundation for both
the analysis and the documentation of decisions.
We present an argumentation-based method of decision mak-
ing. Computational models of argument are being developed
to formalise human reasoning patterns, especially when
handling conflicting information [2], [3]. Previous work by
Amgoud and Prade [4] uses argumentation to reason about
the consequences of decisions. We extend their abstract
framework in two ways: By adding the ability to generate
decisions, and by clearly specifying a semantics for selecting
accepted arguments.
Our system is a method for decision analysis. Unlike in
earlier proposals, decisions in our framework are modeled
as sets of literals, rather than as single literals. This means
that they can partially overlap, resulting in a more finely
tuned set of decisions. The need for this kind of analysis
was identified during our collaboration with an aerospace
manufacturer.
Our system also provides output that can be used to create
decision documentation. It uses formal logic to reason with
arguments and counterarguments. Because these arguments
are generated from structured knowledge (in the form of
rules), they can with little additional effort be transformed
into an ontology-based format. This is because ontology
standards are based upon a formal foundation of description
logics [5].
The rest of the paper is organised as follows: We give an
overview of a class of multi criteria decision analysis, and
outline some possible methods of documenting decisions
(section II). In section III, we discuss some of the problems
of the current approach in more detail. In particular, we
present a list of common problems that companies face in
the decision analysis and documentation process. In section
IV, we present our solution and our main results. Section
V contains a formal discussion of the relation between our
system and multi criteria decision analysis. In the following
section (VI), we evaluate our system with respect to the
requirements for a method of analysing and documenting
decisions. The paper concludes with a discussion of related
work in section VII.



II. CURRENT APPROACH

This section summarises the current approach to the two
tasks of modeling and documenting decisions.

A. Multi criteria decision making

A variety of formal definitions exists for multi criteria
decision making. We will focus our analysis on the class of
problems characterised by the definition below. The criteria
C are represented by functions D that map decisions onto
numerical values, representing the quality of a decision w.r.t
a criterion. The values for each criterion are then aggregated
to obtain an overall result (or a ranking) that determines the
most favourable decision.

Definition 1 (Multi criteria decision problem). A multi
criteria decision problem P = (D,C, agg) consists of

1) A sequence of decisions D = (d1, . . . , dn)
2) A sequence of criteria C = (c1, . . . , ck). Each ci ∈ C

is a function ci : D → R
3) An aggregation function agg : R|D|∗|C| → R|D|

The set of all multi criteria decision problems is called
MCD. We denote with VP the two-dimensional vector of
the criteria values for each decision:

VP =

 c1(d1) . . . ck(d1)
...

. . .
c1(dn) ck(dn)


The actual rating of a decision for a particular criterion is

carried out by the decision maker who creates the table. In
order to achieve consistency and accountability in the deci-
sion making process, additional documentation is required
to justify decisions for a later verification. The numerical
model alone does not explain why the criteria were assigned
their values.

Example 1. Table 1 illustrates the problem of choosing a
material for a wing component of an airplane. There are four
possible decisions, aluminium, plastics, steel, and composite
materials. The two criteria are weight and cost. The example
demonstrates how the choice of agg influences the results:
If one considers the sum of the criteria, aluminium is the
first choice, but if one is instead interested in maximising
the best criterion, then composites and steel are tied for
first place, and aluminium is last. Aluminium has better
results for both criteria than plastics, therefore plastics is
dominated by aluminum.

A preferred decision is a decision that as good as or better
than all other decisions.

Definition 2 (Preferred Decision). Given a decision system
P = (D,C, agg), a decision di ∈ D is preferred iff for all
dj ∈ D

agg(VP )j ≤ agg(VP )i

Table I
A MULTI CRITERIA DECISION MAKING EXAMPLE

Criteriaa Aggregations
Weight Cost Σb maxc

Aluminium 0.4 0.7 1.1 0
Plastics 0.3 0.6 0.9 0
Steel 0.2 0.8 1.0 1
Composites 0.7 0.2 0.9 1
a The higher the value, the better this criterion is met,

e.g. low weight will result in a high value for weight.
b Σ is the sum of all criteria for one decision.
c max(d) is the number of criteria in which d has the

highest value.

Example 2. In the example given in table 1, aluminium is
preferred if we choose Σ as the aggregation. Otherwise, steel
or composites would be preferred.

B. Informal Documentation of Decisions

As outlined in section I, the primary reasons for docu-
menting design decisions are consistency and accountabil-
ity. The design decision process needs to be consistent
throughout organisations and, with regards to regulations,
the entire industry. Consistency means that given a specific
problem, any decision maker would ideally come to the same
conclusion. Records need to be kept in order to verify that
the decision making process is consistent.
Design decisions in the aerospace industry are often com-
plex. They are also part of an iterative design process,
which means that decisions may need to be revised to
account for previously unconsidered factors or for changed
requirements.
In our collaboration with one major aerospace manufacturer,
we found that discussions about design questions were
primarily carried out in emails and personal meetings. Only
when a decision was made, it was documented in a central
repository used to manage the design process. To create this
documentation, some of the information contained in the
emails had to be duplicated, while the rest remained only
on the email server and was thus not readily available to
a search of the structured repository. Having to duplicate
information carries the risk of introducing errors, sometimes
simply by using a slightly different wording.
This process also entails that alternative decisions which had
been discussed would only be documented informally. Later
on in the process, a changing requirement might lead to
a re-evaluation of previously made decisions. In this case,
the alternatives have to be retrieved from the unstructured
documentation. This is a labour intensive process. It is also
error prone, especially after several iterations of the design.
The retrieval of decision rationale could therefore benfit
greatly from a formal, structured documentation.
Contract and claims management are another use case for



decision documentation. At the beginning of each phase
in the project life cycle, it needs to be shown that all of
the requirements of the previous stage have been fulfilled.
Design documentation is used to show how each requirement
is addressed. Here, the same issues that were described in
the previous paragraph arise.

III. PROBLEMS WITH CURRENT APPROACH

The two problems outlined at the beginning of this paper
are the modeling and the documentation of decisions. Hav-
ing presented common solutions to each of those problems,
we are now going to highlight their shortcomings.

1, Opaque resoning process: For each of the potential
decisions, a set of criteria has to be evaluated. Assigning
values to decisions accounts for a large part of the effort
involved in making decisions with an MCDM approach. It
usually represents the outcome of some reasoning process,
which itself does not appear in the final model and needs to
be documented separately.

2, Local optimum: An MCDM model can only identify
the best of a predefined set of options. It is possible that
there exists a better decision that was not part of the
model. Therefore, MCDM models have the inherent risk of
producing only a local optimum.

3, Proprietary documentation formats: There is no
standard method of documenting decisions. This prevents
the development of standard tools to support decision doc-
umentation.

4, Manual analysis: If decisions are documented infor-
mally, there is no underlying model on which an automated
analysis of decisions could be performed. With an automated
approach, one could, for example, immediately spot conflict-
ing assumptions made by two different engineers.

5, Costly retrieval of documentation: Most of the
documentation relating to the process of decision making
is documented in an unstructured way. The effort required
to find a particular piece of information in an unstructured
repository is much higher than that of finding it in a
structured repository. If, at the end of a project, there are
claims that some requirements have not been met, the entire
documentation related to that subcomponent has to be read
by an engineer in order to verify that either the requirement
has actually been met or that the requirement was defined
differently in the contract.
Both of the problems associated with multi criteria decision
making (1-2) relate to the fact that creating the model is the
actual challenge in MCDM. Once a model has been created,
the actual evaluation is simply applying a set of predefined
mathematical operations. The informal documentation of
decisions, on the other hand, is limited in terms of automated
processing of information (3-5).

IV. ARGUMENTATION DECISION FRAMEWORK (ADS)
We present a framework for decision making using argu-

mentation. More precisely, given a set of possible decisions

s1

s2

br

shim

Figure 1. Joining Two Structures

and a set of goals, we are going to use argumentation to
construct arguments in favour of and against each decision,
with the aim of identifying the best decision. The best
decision is the one that satisfies the most goals. However,
this should not be the only criterion for selecting a decision:
Any formal method of decision making depends on a model,
a formalised representation of the problem. The quality of
the model affects the quality of the decision. There are two
factors which determine the quality of the model: The quality
of the information that the model was built on, and the
quality (correctness) of the model itself. Because of these
two inherent risk factors, we argue that any formal method of
decision making should not only identify the best decision,
but it should also present a justification for the outcome, so
that the influence on the decision making process of potential
flaws in the model can be traced.
Formal methods of argumentation are suitable for this pur-
pose. They produce not only a claim, but also a description
of how the available information was used to arrive at that
claim, and how any counterarguments were addressed. Our
decision making framework uses argumentation to reason
about the possible outcomes of decisions. It is based on
previous work by Amgoud and Prade [4], but it has been
enhanced in some key points which we will discuss below
in section VII.

A. Argumentation Graphs

We reproduce the relevant definitions from Dung’s frame-
work [6].

Definition 3 (Argument Graph). An argument graph is a
pair 〈A, defeat〉. A is a set of arguments and attacks ⊆
A × A is a binary relation of defeat. An argument A ∈ A
defeats an argument B ∈ A if (A,B) ∈ defeat.

Example 3. Imagine we are faced with the problem of
designing a structure (t) that has two components, s1 and s2
as illustrated in Figure 1. s1 and s2 are joined with a bracket
fixed by bolts, bb. Our task is to decide which bolts to use,
whether or not to use a shim, a thin sheet of metal, between
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Figure 2. Argument graph for examples 3 and 6

the bracket and the components, and how many layers of
varnish to apply. Some requirements are to maintain the
structural integrity of t and to achieve a high resistance
to corrosion. The first decision we consider, D1, is to use
steel/titanium bolts, not to use a shim, and to apply two
layers of varnish to the product. The following arguments
might be put forward:

A1 Not using a shim means that the structure remains
balanced. Therefore, it will not be damaged.

A2 Steel/titanium bolts cause microscopic fractures in s1
and s2, resulting in damage to the structure.

A3 Steel/titanium bolts are too strong for the material that
s1 is made of, so there will be microscopic fractures.

A4 The structure has a high corrosion resistance, because
two layers of varnish are used.

The argument graph for this example is shown in Figure 2.

Definition 4 (Conflict-free, defence). Let B ⊆ A.

• B is conflict-free iff there exist no Ai, Aj in B such
that Ai defeats Aj .

• B defends an argument Ai iff for each argument Aj

A: If Aj defeats Ai, then there exists an argument Ak

in B such that Ak defeats Aj .

Definition 5 (Acceptability semantics). Let B be a conflict-
free set of arguments, and let F : 2A 7→ 2A be a function
such that F(B) = {A | B defends A}. B is a grounded
extension iff it is the least (w.r.t set-inclusion) fixpoint of F .

Every argumentation framework has a single grounded
extension.

Example 4. The grounded extension of example 3 is
{A2, A3, A4}.

B. Argumentation Formalism

The logic we use in our argumentation system is a
simplified version of ASPIC+ [7]. In our system, we only
have defeasible rules, and we only consider two kinds of
attack.
An argument consists of a conclusion, a set of assumptions,
and a method of inferring the conclusion from the assump-
tions. We use a defeasible logic to represent arguments. Let
L be a logical language. An argumentation system is a tuple
(A,K) such that A ⊆ L and K is a set of rules of the form
α1, . . . , αn ⇒ αn where each alphai is in L. Negation is
denoted with ¬. The only inference rule we use is modus
ponens. `K denotes inference over a set of rules K. Axioms
are written as rules with an empty body.

Definition 6 (Argument). Let (A,K) be an argumentation
system. Let Φ ⊆ A. The tuple 〈Φ, α〉 is an argument iff
Φ `K α.

Φ is the set of premises and α is the conclusion. From
now on, we will omit the subscript and simply write ` if
there is no danger of ambiguity. Arguments can be attacked
in two ways, on their premises and on their conclusion.

Definition 7 (Argument Attack). Let A1 = 〈Φ1, α1〉 and A2

= 〈Φ2, α2〉 be arguments.

1) A1 rebuts A2 iff α1 = ¬α2

2) A1 undercuts A2 iff there exists an argument 〈Φ′2, α′2〉
with Φ′2 ⊆ Φ2 and α1 = ¬α′2

An undercut is a rebuttal of a subargument. Because ¬ is
symmetrical, rebuttals are always mutual.

Example 5. Based on our previous example, we can write
down the rules as follows:

r1 material(bb, s− t)⇒ fractured(s1)
r2 fractured(s1)⇒ damaged(t)
r3 ¬shim(t)⇒ balanced(t)
r4 ¬shim(t)⇒ ¬fractured(s1)
r5 ¬fractured(s1), balanced(t)⇒ ¬damaged(t)
r6 varnish(t, 2)⇒ co res(t, high)

r1 shows that using steel/titanium bolts (s − t) will cause
microscopic fractures in s1. r2 says that if s1 is fractured,
then the whole structure T is damaged. Not using a shim
results in a good overall balance of t, as well as in the
absence of fractures (r3, r4). If the structure is balanced
and free of fractures, then it is not damaged (r5). Finally,
applying two layers of varnish results in high resistance to
corrosion (r6).

C. Argumentation Decision Framework ADF

The argumentation formalism presented so far is quite
general, but is is sufficient to develop the main contribution
of this paper. The next step is to define a framework for
modelling decisions.
A decision D is a set of literals. Each of the Di, together
with the knowledge base, forms an argumentation system.
This is used to derive arguments about the goals achieved
by taking this decision. Goals are represented as literals.
To show that a decision has good consequenes, we will
construct arguments that have a goal as their claim. We then
check which of those arguments are part of an grounded
extension.

Definition 8 (ADS). A tuple (D,K,G) is an argumentation
decision system (ADS) iff

1) D = {D1, . . . , Dk} and each Di ∈ D is a subset of
L

2) For each D ∈ D: (D,K) is an argumentation systen



Table II
AN ARGUMENTATION DECISION MAKING EXAMPLE

Name Definition

D1 {mat(bb, s− t),¬shim(t), varnish(T, 2)}
D2 {mat(bb, s− t), shim(t), varnish(T, 2)}
K {r1, . . . , r6}
G {¬damaged(t), co res(T, high)}

Every ADS defines several argumentation systems,
namely one for each of its decisions. The function Arg(D)
returns the set of all arguments in the argumentation system
(A,K).

Example 6. Continuing with the previous example, we can
define an ADS PM = (D,K,G) with the decisions explained
in Table I.
For decision D1, we get the argumentation system (D1,K).
The following are some of the arguments we can form:
A1 = 〈 {¬shim(t)}, ¬damaged(t)〉.
A2 = 〈 {mat(bb, s− t)}, damaged(t)〉
A3 = 〈 {mat(bb, s− t)}, fractured(s1)〉.
A4 = 〈 {varnish(t, 2)}, co res(t, high)〉.
Argument A1 rebuts A2 and vice versa. A3 undercuts A1.
The argumentation graph for decision D1 is shown in Figure
2.

A common notion in multi criteria decision making is
that of dominated decisions. Informally, a decision d is
dominated if there is another decision that satisfies the same
criteria at least as well as d. It is not reasonable to choose
a dominated decision, because there is a better decision
that can be chosen without any disadvantages. In order
to identify the goals that a decision satisfies, we define a
satisfaction function s. It returns the goals that can be shown
by arguments generated with this decision.

Definition 9 (Satisfaction Function).
Let S = (D,K,G) be an ADS. satS : D → P(G) is defined
as satS(D) = {α ∈ G | ∃〈A, α〉 ∈ Arg(D) such that 〈A, α〉
is in the grounded extension of (A,K)}.

Example 7. The grounded extension for decision D1 is
{A2, A3, A4}. Since only the conclusion of A4 is a goal,
we get satS(D1) = {co res(T, high)}.

It is important to note that we restrict the satisfaction
function to arguments in the grounded extension. If, for
example, admissible or stable semantics had been used
instead, we would face the problem of having to choose
one out of a set of extensions. Each of the extensions could
contain arguments in favour of the decision, but they cannot
all be accepted at the same time. Further information would
be required to resolve this conflict.

Definition 10 (Dominated Decision). Let S = (D,K,G)

be an ADS. A decision D ∈ D is dominated iff there is
a decision D′ ∈ D with D 6= d′ such that satS(D) ⊆
satS(D′). D is strictly dominated if satS(D′) * satS(D)
also holds.

In the above example, D1 is strictly dominated by D2.

D. Generating Decisions

ADF prefers decisions which satisfy the most goals, as
shown by the number of accepted arguments in favour of
each decision, which are in turn built from a fixed knowledge
base. This means that it is possible to identify options
(i.e. sets of assumptions) that satisfy a maximum number
of goals, by using a backward reasoning method. In this
section, we formally define such an approach. The method
consists of two steps. In the first step, we examine each goal
separately and define sets of assumptions that can be used
to construct grounded arguments pro. In the second step, we
take the possible combinations of assumptions from the first
step and choose the one with the best result.

Definition 11 (Backward Argument). Let (A,K) be an ar-
gumentation system. A backward argument for a conclusion
α ∈ L is a sequence of two sets, (C1, B1), . . . , (Cm, Bm)
where (C1, B1) = ({α}, ∅), Bm ⊆ A such that Bm ` α and
Cm = ∅. For each (Ci, Bi) with 1 ≤ i < m, the following
condition holds:

1) There exists a rule γ1, . . . , γn ⇒ β ∈ K such that
β ∈ Ci and for all γi, if γi ∈ A then γi ∈ Bi+1, else
γi ∈ Ci+1

The Ci contain literals that have yet to be proven, and the
Bi contain assumptions. If A = (C1, B1), . . . , (Cm, Bm)
is a backward argument for α, then claim(A) = α and
support(A) = Bm.

Example 8. To make our previous example more detailed,
we want to explain why steel/titanium bolts might cause
microscopic fractures. The reason is that s1 is made
of composites (comp), which are a relatively brittle
material: brittle(comp), mat(s1, comp) ⇒ brittle(s1);
joined with(t, bb), mat(bb, s − t), part of(s1, t),
brittle(s1) → dmg(t). A backward argument for dmg(t)
might consist of the following (Ci, Bi):

(C1, B1) = ({dmg(t)}, ∅)
(C2, B2) = ({brittle(s1)}, {mat(bb, s− t),

joined with(t, bb), part of(s1, t)}
(C3, B3) = (∅, {mat(bb, s− t), mat(s1, comp),

joined with(t, bb), part of(s1, t),
brittle(comp)})

Step by step, the remaining literals in C are removed and
replaced according to rules in K. The last set B3 supports
the argument 〈B3, dmg(t)〉.

In the context of decision making problems, we are
presented with a knowledge base K and a set of goals G,



and it is our aim to generate a set of assumptions. We first
define the set of assumptions AK that contains all literals
which are in the body of at least one rule in K, but not the
head of any rule.

Definition 12 (Recommended Decision). Let K be a set of
rules, G ⊆ L a set of literals, and AK the set of assumptions
as above. A set D ⊆ AK is a recommended decision iff for
all D′ ⊆ AK:

1) |satS(D′)| ≤ |satS(D)| with S = ({D,D′},K,G)
or

2) |satS(D′)| = |satS(D)| with S = ({D,D′},K,G)
and D ⊂ D′

Condition 2 assures that every assumption in D is
used in at least one argument that is part of a grounded
extension of the argumentation system (A,K). To compute
a recommended decision, one could consider all subsets of
AK. However, the effort required for this approach grows
exponentially with the size of the input set. We propose
to work backwards from the set of goals, generating only
the relevant sets of assumptions. Our algorithm works as
follows: First, we generate AK. Then, for each goal g ∈ G,
we generate arguments that support g. Finally, combinations
of the generated arguments are evaluated to maximise the
set of satisfied goals.

Proposition 1. Let AK, G and K be defined as above and
let D ⊆ AK be a recommended decision. Let P ⊆ ArgS(D)
with S = ({D},K,G) such that P contains exactly the argu-
ments in the grounded extension of (D,K). Then, for every
argument 〈Φ, α〉 ∈ P , there exists a backward argument BA

such that claim(BA) = α and support(A) = Φ.

This means that we can find all recommended decisions
by evaluating possible combinations of backward arguments
for goals and their possible counterarguments.

E. Mutually Exclusive Choices

There is one potential problem, which we will demon-
strate in example 9.

Example 9. We use the knowledge base from the previ-
ous examples and the two goals g1 : emc(T, high) and
g2 : ¬dmg(t). The question we’re trying to answer is: which
material should the bolts be made of? We add to K the rules
mat(bb, c), joined with(T, bb)→¬dmg(t) and the axioms
joined with(T, bb), part of(c1, T ), mat(c1, comp), as-
suming that they represent decisions made elsewhere. Using
the algorithm as described above, we first compute argument
supports for g1 and get AM1 = {mat(bb, s − t)}. For g2,
we get AM2 = mat(bb, c). Taking D = AM1 ∪ AM2, we
get a decision that satisfies all of our goals. However, while
both of the arguments pro D are accepted, D is not a valid
solution because AM1 and AM2 contain two contradicting

choices: the material for bb can be either c, or s − t, but
not both. If the decisions had been modeled manually, D
would not have been part of the result, because the mutual
exclusion would have been represented implicitly.

The reason for this behaviour of our system is that some
domain knowledge is missing. This problem does not occur
if the knowledge base contains certain rules:

Proposition 2. Let K, G and AK be defined as in definition
12 and let D be a recommended decision. For every pair
of literals a, b ∈ AK: If there are two rules a ⇒ ¬b and
b⇒ ¬a in K, then a /∈ D or b /∈ D.

Proof: Proof by contradiction. Let D be a recom-
mended decision such that a, b ∈ D and a ⇒ ¬b ∈ K
and b⇒ ¬a ∈ K. Then, the argument graph defined by the
argumentation system S = (D,K) contains two arguments
A1 : 〈{a},¬b〉 and A2 : 〈{b},¬a〉. Since A1 attacks A2 and
A2 attacks A1, the grounded extension cannot contain both
A1 and A2. Furthermore, A1 attacks any argument whose
support contains b. A2 attacks any argument whose support
contains a. The grounded extension of the argumentation
system defined by D can either contain arguments with a in
their support, or arguments with b in their support, but not
both.

V. THE RELATION OF MCDM TO ADF

In this section, we show how our system formally cor-
responds with the class of multi criteria decision making
problems characterised by definition 1. Our proof of the cor-
respondence consists of two results: That every ADF system
can be expressed as an MCDM system, and conversely that
every MCDM system can be expressed as a ADF system.
The first result can be found in [4] and we repeat it here
for completeness. In order to achieve the second result, we
will construct a function that maps multi criteria decision
problems to ADF systems. We are going to model MCDM
decisions as decisions in an ADS, each containing a single
element. The values of the criteria functions are also going
to be represented as literals. We then express the results of
the aggregation function agg as ADF goals, and finally we
will create a rule for each decision that leads to the desired
goals. For the second result, we construct an aggregation
function based on goals in the ADF system.

Proposition 3 (Equivalent to property 7 in [4]). For every
argumentation decision problem P = (D,K,G), there exists
a multi criteria decision problem P ′ = (D,C, agg) such that
for all Di, Dj ∈ D:

satP (Dj) ⊆ satP (Di)⇔ agg(VP ′)j ≤ agg(VP ′)i

This shows that we can construct a mapping from ADF
to MCD which preserves the preference relation over de-
cisions. Next, we will show that a similar mapping can be



constructed in the other direction, from MCD to ADF, again
preserving the preference relation.

Definition 13 (Mapping from MCD to ADF). Let P =
(D,C, agg) be a multicriteria decision problem. We con-
struct an argumentation decision problem P ′ = (D,K,G)
as follows:

1) D = {{di} | di ∈ D}
2) K = R1 ∪R2 ∪R3 and

a) R1 = {di → cj(vi,j) | vi,j ∈ VP }
b) R2 = {vi,1, ..., vi,k−1, vi,k → agg(VP )i | di ∈

D and k = |C|}
c) R3 = {agg(VP )i → agg(VP )j | agg(VP )i ≥

agg(VP )j}
3) G = {agg(VP )i | di ∈ D}

In P ′, there are no counterarguments. We will now show
that every MCD problem can be represented as a ADF
problem with the same results, i.e. with the same ranking
of decisions. This shows that ADF is at least as expressive
as MCD – and it adds benefits such as reusability, account-
ability and deduction of decisions which will be explained
below.

Proposition 4. Let P = (D,C, agg) be a multi criteria de-
cision problem and P ′ = (D,K,G) the ADS as constructed
according to definition 13. For every decision d ∈ D and
every criterion c ∈ C, there exists an argument 〈{d}, c(d)〉
in a preferred extension of the argumentation system (D,K)
with D = {d}.

If an ADS is generated from a multi criteria decision
making system, then its knowledge base is very simplistic,
because it does not contain any domain knowledge. This
results from the fact that the domain knowledge which was
applied to assign the criteria values for each decision is not
represented in the model, and therefore cannot be included
in the ADS.

Theorem 1. For every multi criteria decision problem P =
(D,C, agg), there exists an ADS P ′ = (D,K,G) such that
for all di, dj ∈ D:

agg(VP )j ≤ agg(VP )i ⇔ satP ′(Dj) ⊆ satP ′(Di)

The proof relies on the fact that in the mapping con-
structed according to defintion 13, a decision di ∈ D
subsumes all decisions dk that are worse than d, that is
if agg(VP )i ≤ agg(VP )k, then the corresponding decision
d ∈ D satisfies all goals that are satisfied by d′ ∈ D, where
d′ corresponds to dk.

Proof: Let P = (DMCD, C, agg) be a multi criteria
decision problem and let P ′ = (DARG,K,G) the ADS as
constructed according to definition 13.

(⇒): Let di, dj ∈ DMCD such that agg(VP )j ≤
agg(VP )i. We are going to show that every element v ∈
satP ′(Dj) is also in satP ′(Di). Let v ∈ satP ′(Dj). Then

v ∈ G. By condition 3 of definition 13, v ∈ agg(VP ),
and v ≤ agg(VP )j (condition 2c of definition 13). Let
v′ = agg(VP )i. By condition 3 of definition 13, v′ ∈ G, and
by conditions 2a and 2b of definition 13 there is an argu-
ment 〈{di}, v′〉 in a preferred extension of (L,K, D, ·) with
D = {di}. By condition 2c of definition 13, v′ → v ∈ K,
so there is an argument 〈{di}, v〉 in a preferred extension of
(L,K, D, ·) with D = {di}. Therefore, v ∈ satP ′(Di).

(⇐): Proof by contradiction. Let di, dj ∈ DMCD such
that agg(VP )j ≤ agg(VP )i and satP ′(Dj) * satP ′(Di).
Then there exists an element e ∈ satP ′(Dj) sucht that e /∈
satP ′(Di). By condition 3 of definition 13, there exists a
k ∈ N such that e = agg(VP )k. If agg(VP )k ≤ agg(VP )i,
then, by condition 2c of definition 13, there is an argument
〈{di}, e〉 in a preferred extension of (L,K, D, ·) with D =
{di}, so e ∈ satP ′(Di), which contradicts the assumption.
If agg(VP )k > agg(VP )i, then agg(VP )j ≥ agg(VP )k >
agg(VP )i, which also contradicts the assumption.

VI. EVALUATION

We are now going to discuss how ADF meets the five
requirements that were set in section III.
(1, opaque reasoning process) Preferred decisions in ADF
are backed by arguments. Those arguments are part of
grounded extensions of an argument graph generated from a
knowledge base and are therefore based on a formal model
of the domain. This model is part of the ADF, which means
outside of that knowledge base, no additional information is
needed to reproduce the reasoning process.
(2, local optimum) With the notion of recommended deci-
sions in ADF, a decision maker does not have to enumerate
the possible decisions manually. Rather, they are the deci-
sions are defined by the knowledge base. The problem of
identifying possible decisions has thus been replaced by the
problem of modeling the domain.
(3, lack of documentation standards) Ontologies, which are
based on description logics, are a widely used method of
recording domain knowledge. Since ADF relies on a formal
language with an inference mechanism, it may easily be
transformed to an ontology. Conversely, domain knowledge
from an ontology can be transformed into ADF rules.
Williams and Hunter [8] describe how knowledge from an
ontology can be used in the argumentation process.
(4, lack of automated analysis) With the domain knowledge
represented as rules used in argumentation, automated deci-
sion analsysis is possible as discussed in section IV.
(5, effort of reproducing decision rationale) For ADF sys-
tems, the problem of re-evaluating previous decisions de-
pends mainly on the data structure chosen for the knowledge
base, because it is sufficient to retrieve the relevant rules and
assumptions from previous decisions. It is not necessary to
perform the entire analysis again.
In section II-B, we presented decision reusability and claims
management as two use cases for documentation in the



aerospace industry. Both require a formal, structured doc-
umentation of decisions. If an argumentation based system
is used for decision making, then the documentation could
be generated by the same system with no additional cost,
since the arguments used by the system to evaluate decisions
are, at the same time, formal justifications of decisions.
Because they are structured (as determined by the contents
of the knowledge base), they can easily be converted into
a structured format for documentation, for example an
ontology.

VII. RELATED WORK

Amgoud and Prade [4] propose a decision making frame-
work based on argumentation. Their approach is similar
to ours in the way that argumentation is used to generate
arguments relating to decisions. There are two kinds of
arguments: arguments pro and arguments con. The claims
of arguments pro are goals, and the claims of arguments
con are negations of goals. The approach we took in ADF
differs in that ADF considers only one kind of argument (i.e.
arguments pro). Arguments against a decision are part of the
argument graph and attack arguments pro; thus, we use the
argumentation formalism not for generating a list of pros and
cons, but for resolving conflicts between arguments related
to decisions. We further only take into account the grounded
semantics of argument graphs and in ADF, the arguments
in favour of each decision are in the same extension. In
Amgoud and Prade’s system it is possible, for example, to
have a graph with multiple extensions that contain arguments
in favour of only one decision. In that case, it is not
specified which of the extensions will be accepted. Amgoud
and Prade’s system accounts for levels of uncertainty in
the knowledge base and prioritised goals. It also uses a
generic logic. Our system is based on a simplified version
of ASPIC+ [7], which allows us to generate decisions as
explained in section IV-D.
W. Ouerdane et. al. [9] describe how argumentation can be
used to partially automate decision making using an inter-
active dialogue with a user. Their system aims to improve
the documentation of decisions. This is done via a dialogue
protocol that modifies the knowledge in several iterations.
To determine the system’s responses in this dialogue, the
authors use argument schemes, an approach that captures
stereotypical patterns of reasoning [10]. Investigating how
argument schemes could be utilised by ADF would be a
worthwhile task.

VIII. CONCLUSION

We presented an argumentation-based system for decision
analysis. The key improvements over previous work are
the use of grounded extension as acceptability criterion
and adding a method of generating decisions. Furthermore,
we showed an additional relation to multi criteria decision
making. The second contribution of this paper is an analysis

of the requirements that engineering companies have for
decision analysis and decision documentation systems. We
presented a list of five issues of methods that are currently
in use by the industry.
A direction for future research is to further validate our
approach. We already implemented a software prototype of
ADS. An improved version of this software will be used to
conduct a user study with mechanical engineers. From this
we hope to gain further insights into the design decision
making process and how argumentation can be used to assist
it.
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