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Abstract—Evidence-based decision making is becoming in-
creasingly important in healthcare. Much valuable evidence is
in the form of the results from clinical trials that compare the
relative merits of treatments. For this, in previous papers [1],
[2], we have proposed a general framework for representing
and synthesizing knowledge from clinical trials involving the
same outcome indicator. Now, in this paper, we present a
new framework for representing and synthesizing knowledge
from clinical trials involving multiple outcome indicators. In this
framework, evidence from randomized clinical trials, systematic
reviews, meta-analyses, network analyses, etc., comparing a pair
of treatments τ1 and τ2 according to desired and/or undesired
outcomes is aggregated to give an overall evaluation of the
treatments saying τ1 is superior to τ2, or τ1 is equivalent to
τ2, or τ1 is inferior to τ2. Our general framework incorporates
inference rules for generating arguments and counterarguments
for claiming that one treatment is superior to another based
on the available evidence, and preference rules for specifying
which arguments are preferred. In this paper, we also present a
new version of this framework that incorporates utility-theoretic
criteria for defining specific preference rules over arguments.

Keywords-Logical argumentation; Knowledge aggregation;
Decision-support systems; Evidence-based medicine

I. INTRODUCTION

The systematic use of evidence is already established in
healthcare. However, the rapidly increasing amount of eviden-
tial knowledge on a subject means that it is difficult for a
clinician or biomedical researcher to effectively and efficiently
acquire and assimilate that evidence. Therefore, getting a
quick, up-to-date review of the state of the art on treatment
efficacy for a particular condition is not always feasible.
This problem is exacerbated by the fact that the evidence is
often conceptually complex, heterogeneous, incomplete and
inconsistent. Hence, there is a need to abstract away from
the details of individual items of evidential knowledge, and
to aggregate the evidence in a way that reduces the volume,
complexity, inconsistency and incompleteness. Moreover, it
would be helpful to have a method for automatically analyzing
and presenting the clinical trial results and the possible ways to
aggregate those in an intuitive form, highlighting agreement
and conflict present within the literature. As a first step to
addressing these needs, our proposal in [3], [1], [2] presents
a general framework for representing and synthesizing knowl-
edge from clinical trials involving the same outcome indicator
(e.g. overall survival, or disease-free survival).

In this paper, to further address these needs of aggregating
evidence, we present a new framework for representing and
synthesizing knowledge from clinical trials involving multiple
outcome indicators. Our framework allows the construction of
arguments on the basis of evidence as well as their syntheses,
published or generated on-the-fly. The evidence available is
then presented and organized according to the agreement and
conflict inherent. In addition, users can encode preferences for
automatically favour preferred arguments in a conflict.

The input to a system based on our framework is a table
of evidence comparing pairs of treatments. Each row in the
table gives the pair of treatments, the kind of comparison (e.g.
randomized clinical trial, meta-analysis, or network analysis),
the outcome indicator (e.g. disease-free survival, or overall
survival), the outcome, the statistical significance, etc. The
output of the system is an overall comparison of a pair
treatments τ1 and τ2, saying whether τ1 is superior to τ2,
or τ1 is equivalent to τ2, or τ1 is inferior to τ2. The output is
justified by the arguments and counterarguments used to reach
this conclusion.

So by determining in general whether one treatment is
superior to another based on comparisons involving specific
outcome indicators, we are using the items of evidence (con-
cerning comparisons involving specific outcome indicators) as
proxies for the general statement that in clinical and statistical
terms one treatment is superior (or equivalent) to another.
Furthermore, since the items of evidence are normally incom-
plete and also disagree with each other as to which treatment
is superior (for instance a treatment τ1 may be superior to
another τ2 in suppressing the risk of mortality due to a
particular disease, but τ1 may be inferior to τ2 because τ1 has
a substantial risk of a fatal side-effect and τ2 has no risk of this
side-effect). So to deal with the incomplete and inconsistent
nature of the evidence, we have developed an approach that is
based on a computational model of argumentation that takes
into account the logical structure of individual arguments, and
the dialectical structure of sets of arguments.

We proceed as follows: (Section II) We review an abstract
model of argumentation that we will incorporate in our general
framework; (Section III) We discuss how we can represent
evidence in a tabular format; (Section IV) We show how
we can represent arguments based on the available evidence;
(Section V) We show how we can compare arguments based
on the benefits promised by the evidence and the veracity of



that evidence; (Section VI) We show how we can use the
framework to aggregate evidence to make recommendations;
(Section VII) We present a case study with evidence taken
from 21 meta-analyses concerning 5 treatment options for
raised intraocular pressure (raised IOP), and we compare the
results we obtain with those presented in the NICE Guideline
for Glaucoma; (Section VIII) We conclude with a discussion
of the proposal in this paper, and how it relates to the literature.

II. ABSTRACT ARGUMENTATION

In this section, we review the proposal for abstract argu-
mentation by Dung [4]. The simplest way to formalize a
collection of arguments consists of just naming arguments (so,
in a sense, treating them as atomic) and merely representing
the fact that an argument is challenged by another (and so not
indicating what the nature of the challenge is). In other words,
a collection of arguments can be formalized as a directed
binary graph.

Definition 1. An abstract argument graph is a pair (A,R)
whereA is a set andR is a binary relation overA (in symbols,
R ⊆ A×A).

Each element a ∈ A is called an argument and (Ai, Aj) ∈
R means that Ai attacks Aj (accordingly, Ai is said to be an
attacker of Aj). So Ai is a counterargument for Aj when
(Ai, Aj) ∈ R holds.

Example 1. Consider arguments A1 = “Patient has hyperten-
sion so prescribe diuretics”, A2 = “Patient has hypertension
so prescribe betablockers”, and A3 = “Patient has emphy-
sema which is a contraindication for betablockers”. Here, we
assume that A1 and A2 attack each other because we should
only give one treatment and so giving one precludes the other,
and we assume that A3 attacks A2 because it provides a
counterargument to A2. Hence, we get the following abstract
argument graph.

A1 � A2 ← A3

Arguments can form coalitions to attack other arguments
and to defend their members from attack as follows.

Definition 2. Let S ⊆ A be a set of arguments.
• S attacks Aj ∈ A iff there is an argument Ai ∈ S such

that Ai attacks Aj .
• S defends Ai ∈ S iff for each argument Aj ∈ A, if Aj

attacks Ai then S attacks Aj .

The following gives a requirement that should hold for a
coalition of arguments to make sense. If it holds, it means
that the arguments in the set offer a consistent view on the
topic of the argument graph.

Definition 3. A set S ⊆ A of arguments is conflict-free iff
there are no Ai and Aj in S such that Ai attacks Aj .

Now, we consider how we can find an acceptable set of
arguments from an abstract argument graph. The simplest case
of arguments that can be accepted is as follows.

Definition 4. A set S ⊆ A of arguments is admissible iff S
is conflict-free and defends all its elements.

The intuition here is that for a set of arguments to be
accepted, we require that, if any one of them is challenged
by a counterargument, then they offer grounds to challenge,
in turn, the counterargument. There always exists at least one
admissible set: The empty set is always admissible.

The notion of admissible sets of arguments is the minimum
requirement for a set of arguments to be accepted. The
following provide further restrictions.

Definition 5. Let Γ be a conflict-free set of arguments, and
let Defended : ℘(A) 7→ ℘(A) be a function such that
Defended(Γ) = {A | Γ defends A}.

1) Γ is a complete extension iff Γ = Defended(Γ)
2) Γ is a grounded extension iff it is the minimal (w.r.t.

set inclusion) complete extension.
3) Γ is a preferred extension iff it is a maximal (w.r.t. set

inclusion) complete extension.

Example 2. Continuing Example 1: The conflict free sets are
{}, {A1}, {A2}, {A3}, and {A1, A3}; The admissible sets are
{}, {A1}, {A3}, and {A1, A3}; And the only complete set is
{A1, A3}, and so this set is grounded and preferred.

Example 3. Consider the situation where we have just two
arguments A4 and A5 that attack each other. We classify each
subset of arguments as follows: The conflict free sets are {},
{A4}, and {A5}, and these are the admissible and complete
sets; and The preferred sets are {A4}, and {A5}. However,
there is only one grounded set which is {}.

As can be seen from the examples, the grounded extension
provides a skeptical view on which arguments can be accepted,
whereas each preferred extension takes a credulous view on
which arguments can be accepted.

The formalization we have reviewed in this section is
abstract because both the nature of the arguments and the
nature of the attack relation are ignored. In particular, the
internal (logical) structure of each of the arguments is not
made explicit. Nevertheless, Dung’s proposal for abstract
argumentation is ideal for clearly representing arguments
and counterarguments, and for intuitively determining which
arguments should be accepted (depending on whether we want
to take a credulous or skeptical perspective).

We harness abstract argumentation in our general framework
for aggregating evidence. We will introduce mechanisms for
generating arguments from the evidence, and for generating
the attacks relation based on the preferences over the argu-
ments. In this way, we will instantiate abstract argumentation
with logical arguments. This means that we can use Dung’s
definitions for determining which sets of arguments are ac-
ceptable, and thereby determine which aggregations of the
evidence are acceptable.

III. REPRESENTING EVIDENCE

The types of evidence we consider in this paper are ran-
domized clinical trial (RCT), meta-analyses (MA), network



TABLE I
FOUR RESULTS OBTAIN FROM THE NICE HYPERTENSION GUIDELINE

(GC34, PAGES 36-37) CONCERNING ANGIOTENSIN-CONVERTING
INHIBITORS (ACE) AND CALCIUM CHANNEL BLOCKERS (CCB)

Left Right Outcome Value Net Sig Type
indicator

e1 ACE CCB mortality 1.04 < no MA
e2 ACE CCB stroke 1.15 < yes MA
e3 ACE CCB heart failure 0.84 > yes MA
e4 ACE CCB diabetes 0.85 > yes MA

analyses (NA), and cohort study (CS). Our focus will be on
2-arm superiority trials, i.e., clinical trials whose purpose is
to determine whether, given two treatments, one is superior to
the other (strictly speaking, such a trial tries to disprove the
hypothesis that the two treatments are identical). This is an
extremely common trial design.

We represent evidence in a table. Each row is an item of
evidence taken from an RCT, a CS, an MA or an NA. The
choice of columns depends on the available information and
the criteria that will be used for aggregating the evidence. We
give an example in Table I concerning patients who require
a prophylactic for hypertension (data from www.nice.org.uk).
The table incorporates the columns normally required for our
framework, and we explain them as follows.
• The left and right attributes signify the treatments com-

pared in each item of evidence. In the table, these are
angiotensin-converting inhibitors (ACE) for the left arm
and calcium channel blockers (CCB) for the right arm.

• The outcome indicator is the specification of the partic-
ular outcome that is being considered when comparing
the two treatments. In the table, in each row, it is the
proportion of patients who have the event or condition
(i.e. “mortality”, “stroke”, “heart failure” or “diabetes”)
within the period of the trial.

• The value of the outcome is the value obtained by the
method applied to the outcome indicator. So for the first
row, it is the proportion of patients who died during the
trial taking ACE divided by the proportion of patients
who died during the trial taking CCB.

• The net outcome, abbreviated by the column name Net,
is a binary relation, denoted > (superior), ∼ (equal), and
< (inferior), over the two treatments that is determined
from the value of the outcome and an evaluation of
whether the outcome indicator is desirable or undesirable
for the patient class. For the first row, mortality is
undesirable, and so a risk ratio value less than 1 means
that the left arm is superior to the right arm, a risk ratio
value equal to 1 means that the left arm is equal to the
right arm, and risk ratio value greater than 1 means that
the left arm is inferior to the right arm.

• The statistically significant attribute, abbreviated by
the column name Sig, indicates whether the value is
statistically significant. If the entry is “yes”, then it means
that it is unlikely that the risk ratio result could have been
obtained by chance (using a conventional cut-off such as

0.05), whereas if it is “no” then it means that it is quite
likely to have been obtained by chance.

• The evidence type, abbreviated by the column name
Type, specifies the type of study undertaken, e.g. random-
ized clinical trial (RCT), cohort study (CS), meta-analysis
(MA), network analysis (NA), etc. It is an indicator of
the quality of the evidence.

The set of attributes we have discussed here is only in-
dicative. Often other attributes are useful for assessing and
aggregating evidence (e.g. the number of patients involved in
each trial, the geographical location for each trial, the drop-out
rate for the trial, the methods of randomization for ensuring
that patients and clinician do not know which arm a patient
is in, etc). For a general introduction to the nature of clinical
trials, and a discussion of a wider range of attributes, see [5].

The patient class is an important attribute that can be
captured about an item of evidence. In the above table, the
patient class is people with “persistent raised blood pressure
of 160/100 mmHg or more”. In our previous work, we
showed how the patient class may involve a conjunction
and/or disjunction of terms from a medical ontology and
description logics can be used to provide inferencing (see
[6]). Similarly, treatments presented in the left arm and right
arm can be composed for a conjunction and/or disjunction of
terms from an ontology. Again, medical ontologies cater for
this by providing categories and relationships on treatments,
substances used, and other characteristics. See [7], [3] for
proposals for using a medical ontology in argumentation about
clinical trials.

For simplicity, in the rest of this paper, we assume that the
evidence concerns a particular, sensible patient class, and that
each treatment in the left arm and right arm is atomic, and so
we do not consider the ontological aspects of patient class or
treatment further in the rest of this paper.

IV. REPRESENTING ARGUMENTS

Here we present a general framework for evidence aggre-
gation that involves constructing and comparing arguments
from items of evidence where the evidence involves multiple
outcome indicators.

We start with a set of evidence EVIDENCE = {e1, .., en}.
Each item in EVIDENCE is a result from an RCT, an MA, a
CS, or an NA, represented as a row in a table of evidence (as
described in the previous section).

We partition EVIDENCE into three sets SUPERIOR, EQUI-
TABLE, and INFERIOR. Those in SUPERIOR are the trials for
which τ1 was shown to be superior to τ2 with respect to some
outcome indicator µ. By superior, we mean that if the outcome
is desirable for the patient, then τ1 is shown to be more
efficacious for positive outcome than τ2, and if the outcome
is undesirable for the patient, then τ1 is shown to be less
susceptible to this negative outcome than τ2. Similarly, those
in EQUITABLE are the trials for which τ2 was shown to be
equitable with τ1 with respect to an outcome indicator µ, and
those in INFERIOR are the trials for which τ2 was shown to
be superior to τ1 with respect to an outcome indicator µ.



Given treatments τ1 and τ2, there are three possible inter-
pretations of a set of items of evidence (i.e. a set of rows from
an evidence table such as Table I):

1) τ1 > τ2, meaning the evidence supports the claim that
treatment τ1 is superior to τ2.

2) τ1 ∼ τ2, meaning the evidence supports the claim that
treatment τ1 is equivalent to τ2

3) τ1 < τ2, meaning the evidence supports the claim that
treatment τ1 is inferior to τ2.

Any formula of the form τ1 > τ2, τ1 ∼ τ2, and τ1 < τ2 we
will call a claim, denoted by ε. We treat τ1 > τ2 as equivalent
to τ2 < τ1, and τ1 ∼ τ2 as equivalent to τ2 ∼ τ1.

We use inference to derive a claim from a set of evidence.
We use inference rules to define what are the allowed infer-
ences. In this paper, we use three inference rules

Definition 6. An inference rule is one of the following three
forms, where X ⊆ EVIDENCE.

1) If X ⊆ SUPERIOR, then τ1 > τ2.
2) If X ⊆ EQUITABLE, then τ1 ∼ τ2.
3) If X ⊆ INFERIOR, then τ1 < τ2.

For example, in the evidence given in Table I, there is a
subset {e3, e4} of the evidence for which each item states that
ACE is superior to CCB. From this subset, we may draw the
conclusion that ACE is superior to CCB in general.

One can informally think of an argument comprising of a
set of evidence (i.e. a subset of EVIDENCE), and a conclusion
or claim that has been derived from the set of evidence using
an inferential rule.

Definition 7. An argument is tuple 〈X, ε〉 such that ε follows
from X using one of the three inferences rules given in
Definition 6. We call X the support and ε the claim of the
argument.

Example 4. Returning to the evidence in Table I, con-
cerning treatments ACE and CCB, we have EVIDENCE
= {e1, e2, e3, e4}, SUPERIOR = {e3, e4}, and INFERIOR =
{e1, e2}. From this, together with the inference rules, we get
the following arguments with non-empty support.

〈{e3},ACE > CCB〉 〈{e1},ACE < CCB〉
〈{e4},ACE > CCB〉 〈{e2},ACE < CCB〉
〈{e3, e4},ACE > CCB〉 〈{e1, e2},ACE < CCB〉

In the example, we see intuitively that the arguments with
differing claims conflict. We capture this relationship with the
following definition. Note that this definition is symmetric,
i.e., if Ai conflicts with Aj , then Aj conflicts with Ai.

Definition 8. If the claim of argument Ai is εi and the claim
of argument Aj is εj then we say that Ai conflicts with Aj
whenever:

1) εi = τ1 > τ2, and ( εj = τ1 ∼µ τ2 or εj = τ1 < τ2 ).
2) εi = τ1 ∼ τ2, and ( εj = τ1 > τ2 or εj = τ1 < τ2 ).
3) εi = τ1 < τ2, and ( εj = τ1 > τ2 or εj = τ1 ∼ τ2 ).

We organize the arguments into a graph. To do this, we
first consider the conflict relation given above. It is easy to

see that the graph induced is tripartite, and its independent
sets are given by those arguments with claim τ1 > τ2, those
arguments with claim τ1 ∼ τ2, and those arguments with claim
τ1 < τ2.

Example 5. Consider the following fictional evidence table,
we get the argument graph below using the arguments with
non-empty support.

Left Right Outcome Value Net Sig Type
indicator

e71 τ1 τ2 mortality 0.80 > yes RCT
e72 τ1 τ2 palpitations 1.15 < yes NA

〈{e71}, τ1 > τ2〉� 〈{e72}, τ1 < τ2〉

Since the argument graph is by definition symmetric (if
we use the conflict relation), it would be beneficial to allow
breaking the symmetry with user-defined preferences. We do
this by defining preference rules.

Definition 9. A preference rule is a set of conditions on
an ordered pair of conflicting arguments Ai, Aj . When the
conditions are satisfied, Ai is said to be preferred to Aj
otherwise, we say that Ai is not preferred to Aj .

We use the preference rules chosen by the user in breaking
the symmetry present in the conflict relation, and capture the
attack relation as follows.

Definition 10. For any pair of arguments Ai and Aj , Ai
attacks Aj iff Ai conflicts with Aj and Ai is preferred to
Aj and it is not the case that Aj is preferred to Ai.

The motivation here is that if Ai and Aj conflict with each
other and Ai is preferred to Aj then Aj’s conflict with Ai is
cancelled. However, this wording leads to problems when Ai
is preferred to Aj according to a preference rule and Aj is
preferred to Ai according to a preference rule. In this case,
cancelling both attacks will give the misleading impression
that Ai and Aj are consistent together. For this reason we give
the above, more complicated definition, which only cancels an
attack if exactly one argument is preferred to the other.

Now we combine these components by defining an argu-
ment graph based on a set of trial results, a set of inference
rules, and a set of preference rules as follows.

Definition 11. Given a pair of treatments τ1 and τ2, and a set
EVIDENCE concerning these treatments, an argument graph
is a graph where the set of nodes is the set of arguments formed
by Definition 7 and the set of arcs is the attacks relation given
by Definition 10.

We leave the formalization of specific preference rules until
the next section. In the meantime, we illustrate the use of an
informally defined preference rule to get the following argu-
ment graph by applying the preference rule to the arguments
in our running example.

Example 6. Continuing Example 5, suppose we prefer the
argument with statistically significant evidence showing supe-
riority for the outcome indicator of “mortality” over other



arguments. As a result, we get the following argument graph.

〈{e71}, τ1 > τ2〉 → 〈{e72}, τ1 < τ2〉

We can directly use the dialectical semantics given by Dung
[4] (i.e. Definition 5) to decide extensions of argument graphs.
Here, there is one grounded and preferred extension and it
contains just the argument 〈{{e71}, τ1 > τ2〉.

We regard a preferred extension as an interpretation of a set
EVIDENCE (i.e. an aggregation of the evidence in EVIDENCE).
So if E is a preferred extension of the argument graph, and
A ∈ E, and ε is the claim of A, then ε is a possible aggregation
of the evidence. Furthermore, we regard a grounded extension
as a higher quality interpretation than a preferred extension.

This section has provided a general framework for aggre-
gating evidence concerning a pair of treatments according to
multiple outcomes. To use the framework, a specific set of
preference rules needs to be specified. In the next section, we
consider specific criteria for preferring some arguments over
others based on utility theory.

V. COMPARING ARGUMENTS

In this section, we introduce the ideas behind comparing
arguments based on the benefits promised by the evidence
and on the veracity of that evidence. We start with the table
given in Example 5. Here, we see that e71 promises that τ1
is superior to τ2 because the relative risk of mortality is 0.8,
whereas e72 promises that τ1 is inferior to τ2 because relative
risk of palpitation is 1.15. The first is a substantial benefit for
the left arm whereas the second is a modest benefit for the
right arm. So to aggregate the evidence, we require a method
to take account of these relative benefits.

The way we can deal with this is by adopting a ben-
efit function B from sets of evidence into the reals (i.e.
B : ℘(EVIDENCE) 7→ R) based on the outcome indicators
and values appearing in the evidence. This function gives a
measure of the evidence based on how useful the outcomes
(as promised by the evidence) are for the patient. We can
think of a benefit function in monetary units, and so it
could indicate how much a patient is prepared to pay for
the combination of benefits promised by the evidence. For
instance, we could adopt a benefit function for this example
where B({e71}) = 100 and B({e72}) = 1 which reflects our
discussion of the benefits above.

A benefit function is defined in terms of a utility function
over attributes appearing in the evidence table. For this paper,
we assume it is in terms of the outcome indicator and value
attributes. If INDICATORS is the domain for the outcome
indicator attribute and REALS is the domain for the value
attribute, then we assume that we can define a utility function
over sets of the tuples from INDICATORS × REALS or at least
over those relevant for the arguments being considered. So,
for the above example, let the utility function be U , defined
as follows.

U({(mortality, 0.80)}) = 100
U({(palpitations, 1.15)}) = −1

We define the benefit function using the utility function as
follows.

Definition 12. Let X∗ be the set of the tuples from INDICA-
TORS × REALS appearing in X .

1) For X ⊆ SUPERIOR, B(X) is U(X∗)
2) For X ⊆ EQUITABLE, B(X) is 0
3) For X ⊆ INFERIOR, B(X) is −U(X∗)

Hence, for X = {e71}, we have X∗ = {(mortality, 0.80)},
and for X = {e72}, we have X∗ = {(palpitations, 1.15)}.
In this way, for this example, the benefit function above (i.e.
B({e71}) = 100 and B({e72}) = 1 ) is obtained by the utility
function above.

So utility is the money the patient would pay in order to
get the advantages of τ1 instead of τ2. We assume that the
utility function conforms to the usual axioms of utility theory
as regard preferences over outcomes. For instance, we assume
that all sets of benefits can be ranked (i.e. all subsets of
INDICATORS × REALS can be assigned by a utility), and we
assume that transitivity holds so that if an outcome indicator
o1 with value v1, denoted (o1, v1) is preferred to (o2, v2), and
(o2, v2) is preferred to (o3, v3), then (o1, v1) is preferred to
(o3, v3). We also assume that the utility function is monotonic
in the membership of the subset of INDICATORS × REALS
when there are not multiple occurrences of the same outcome
indicator (i.e. when no outcome indicator occurs in more than
one tuple in a set).

Example 7. Consider the following evidence table containing
fictional evidence comparing use of the contraceptive pill (CP)
with no contraception (NC).

Left Right Outcome Value Net Sig Type
indicator

e81 CP NC breast cancer 1.04 < yes RCT
e82 CP NC ovarian cancer 0.99 > yes MA
e81 CP NC pregnancy 0.05 > yes RCT
e82 CP NC thrombosis 1.02 < yes MA

For this table, a user of contraceptive pills may be trading the
benefit of a substantial reduction in risk of pregnancy against a
small increased risk of breast cancer and thrombosis. Though,
there is also small positive effect for contraceptive users who
get a reduced risk of ovarian cancer. We can use the following
utility function, where oc is ovarian cancer, preg is pregnancy,
bc is breast cancer, and th is thrombosis.

U({(oc, 0.99)}) = 2
U({(preg, 0.05)}) = 20
U({(oc, 0.99), (preg, 0.05)}) = 22
U({(bc, 1.04)}) = −2
U({(th, 1.02)}) = −1
U({(bc, 1.04), (th, 1.02)}) = −3

Hence, we get the benefit function as follows.

B({e81}) = 2 B({e82}) = 2
B({e84}) = 1 B({e83}) = 20
B({e81, e84}) = 3 B({e82, e83}) = 22

Normally, there is some doubt about the veracity of the
evidence, and this should be used to qualify the use of the



benefit function. For this, we assume a probability function
V , which we call the veracity function, over sets of evidence
(i.e. V : ℘(EVIDENCE) 7→ [0, 1]) which captures the belief the
user has in the benefits reported in the evidence being true
given the quality of the evidence. Note, the empty set always
has veracity 1.

Example 8. Returning to Table I, we may choose to take a very
simple approach capturing a difference in veracity between
items of evidence that are statistically significant and items of
evidence that are not statistically significant. So here, only e1
is not statistically significant.

V ({e3}) = 0.7 V ({e1}) = 0.1
V ({e4}) = 0.7 V ({e2}) = 0.7

V ({e3, e4}) = 0.65 V ({e1, e2}) = 0.1

We have V ({e3, e4}) lower than either V ({e3}) or V ({e4})
since the probability that both items of evidence turn out to be
correct is lower than either individually even if they are both
statistically significant.

Example 9. Consider the following fictional evidence table
concerning treatments for breast cancer, tamoxifen (TAM) and
methotrexate with flouracil and tamoxifen (MFT).

Left Right Outcome Value Net Sig Type
indicator

e91 MFT Tam mortality 0.89 > yes RCT
e92 MFT Tam mortality 0.87 > yes MA
e93 MFT Tam mortality 0.91 > yes RCT

Each item of evidence confirms the benefits promised by the
other items of evidence. So we would expect that the veracity
rises monotonically with respect to set membership for the
evidence used as follows.

V ({e91}) = V ({e92}) = V ({e93}) = 0.70
V ({e91, e92}) = V ({e91, e93}) = V ({e92, e93}) = 0.71

V ({e91, e92, e93}) = 0.72

In general, the veracity function is a subjective probabil-
ity, (i.e., we consider how we would bet whether a set of
evidence would indeed turn out to be true with respect to
the benefits promised) that conforms to various constraints
such as expressed for the examples above. However, we could
also consider learning the veracity function from past data
concerning similar kinds of evidence (though not necessarily
for the same treatments or disorders). For instance, if we look
at the literature 5 years ago, identify the evidence used to
make recommendations, and then reconsider that evidence in
the light of today’s literature to see whether it subsequently
was confirmed or rebutted. This then gives us an objective
probability. In this paper, we have restricted the set of attributes
used in the evidence table, but other attributes are likely to be
useful for this. For instance, whether the study was funded
by a drug company, the size of the study, the randomization
techniques used, the confidence interval, etc.

VI. AGGREGATING EVIDENCE

Now, we consider how we harness the ideas introduced
so far for systematically aggregating evidence. We start by

defining our preference rules which use the utility and veracity
measures, and then show how we can use argumentation to
aggregate the evidence.

Definition 13. The benefit preference rules over arguments
Ai and Aj are as follows where π ∈ [0, 1] is a threshold for
veracity, V is a veracity function, B is a benefit function, Xi

is the support of Ai, and Xj is the support of Aj .
1) If V (Xi) > π and B(Xi) > B(Xj),

then Ai is preferred to Aj .
2) If V (Xi) > π and V (Xj) ≤ π,

then Ai is preferred to Aj .

So for arguments based on evidence with a veracity above
an acceptable threshold (i.e. V (X) > π where X is the support
of the argument and π is say 0.6), then we prefer the arguments
with evidence with greater benefit.

With these preference rules, we see that when we construct
all the arguments from the evidence, an argument with any
empty support can only affect the outcome of the argumenta-
tion (i.e. it can only affect the overall aggregated result) if there
is no argument with the same claim and a non-empty support.
So to simplify our presentation, we will take advantage of
this redundancy by not considering arguments with an empty
support if there is an argument with the same claim and a
non-empty support.

Example 10. For the evidence in Table I, we use the following
benefit and veracity functions.

X B(X) V (X)
{e1} 10 0.1
{e2} 9 0.7

{e1, e2} 16 0.1
{e3} 9 0.7
{e4} 4 0.7

{e3, e4} 10 0.65

For the argument graph (for simplicity we have excluded the
arguments with empty support) there is a grounded extension
containing just the arguments with the claim ACE > CCB.

〈{e1},ACE < CCB〉

〈{e2},ACE < CCB〉

〈{e1.e2},ACE < CCB〉

〈{e3},ACE > CCB〉

〈{e4},ACE > CCB〉

〈{e3, e4},ACE > CCB〉
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We use the following criteria for interpreting an argument
graph that has been generated from an evidence table, and
thereby show how we obtain an aggregation of that evidence.
• If there is a non-empty grounded extension, and ε is

the claim of the arguments in the extension (note, all
arguments in a grounded or preferred extension will have
the same claim), the result of the aggregation is ε.

• If there is an empty grounded extension, then there are
multiple preferred extensions (say E1, ..., En), and so the
result of the aggregation is ε1 or ... or εn where ε1 is the
claim of the arguments in E1 and ... and εn is the claim
of the arguments in En.



Note, if the result of the aggregation is a disjunction, then
either there is insufficient evidence to determine which of the
disjuncts holds (and this can be determined by the support for
all the arguments being below the threshold π) or the utility
of the evidence is the same for the claims.

VII. CASE STUDY

In this section, we report on a case study we undertook
concerning treatments for raised intraocular pressure (raised
IOP), which is raised pressure in the eye, where the evi-
dence was obtained from the NICE Guideline for Glaucoma
(available from www.nice.org.uk). The evidence is presented
in Table II. Each item is an MA generated by the guideline
authors as presented in the appendix of the guideline. The
medications considered are no treatment (NT), beta-blocker
(BB), prostaglandin analogue (PG), sympathomimetic (SY),
and carbonic anhydrase inhibitor (CA). The Net column gives
an interpretation of the value with respect to the type of
outcome indicator: For the outcome indicator “change in IOP”,
if the value is negative, the left arm is superior, otherwise
it is inferior. For the outcome indicator “acceptable IOP”,
which is a desirable outcome for the patient, if the value
is greater than 1, the left arm is superior, otherwise it is
inferior. For each of the remaining outcome indicators (i.e. for
“respiratory problems”, “cardiovascular problems”, “allergy
problems”, “hyperaemia”, “convert to COAG”, “visual field
progression”, “IOP > 35mmHg”, and “drowsiness”), which
are undesirable for the patient, if the value is less than 1,
then the left arm is superior, otherwise it is inferior. Note,
“hyperaemia” means redness of eyes, “convert to COAG”
means the patient develops chronic open angle glaucoma,
“visual field progression” means that there is damage to the
retina and/or optic nerve resulting in loss of the visual field
and “IOP > 35mmHg” means that the intraocular pressure is
above 35mmHg (which is very high).

We undertook a pairwise comparison of the five treatment
options (i.e. beta-blockers versus no-treatment, prostaglandin
analogues versus beta-blockers, prostaglandin analogues ver-
sus sympathomimetics, carbonic anhydrase inhibitors ver-
sus no treatment, carbonic anhydrase inhibitors versus beta-
blockers, and sympathomimetics versus beta-blockers). We
only considered these six comparisons because the guideline
only has evidence that considers these pairs. For each of these
comparisons, we generated an argument graph, and determined
the arguments in the preferred or grounded extensions for each
of these comparisons.

For our study we classify some outcomes as major (namely,
“visual field prog” when value < 0.95, “change in IOP” when
value < -1, “acceptable IOP” when value > 1.2, “convert to
COAG” when value < 0.95, and “IOP > 35mmHg” when
value < 0.9) and the remaining outcomes we classify as minor.
For a set of evidence X , we let x be the number of major
outcomes appearing in X∗, we let y be the number of minor
outcomes appearing in X∗ where the value is less than 1,
and we let z be the number of minor outcomes appearing in
X∗ where the value is greater than 1. We then defined the

TABLE II
THE EVIDENCE TABLE FOR THE CASE STUDY. EACH ROW IS A

META-ANALYSIS FROM THE NICE GLAUCOMA GUIDELINE (CG85
APPENDIX PAGES 213-223) FOR THE CLASS OF PATIENTS WHO HAVE

RAISED INTRAOCULAR PRESSURE (I.E. RAISED PRESSURE IN THE EYE)
AND ARE THEREFORE AT RISK OF GLAUCOMA WITH RESULTING

IRREVERSIBLE DAMAGE TO THE OPTIC NERVE AND RETINA.

Left Right Outcome indicator Value Net Sig Type

e01 BB NT visual field prog 0.77 > no MA
e02 BB NT change in IOP -2.88 > yes MA
e03 BB NT respiratory prob 3.06 < no MA
e04 BB NT cardio prob 9.17 < no MA
e05 PG BB change in IOP -1.32 > yes MA
e06 PG BB acceptable IOP 1.54 > yes MA
e07 PG BB respiratory prob 0.59 > yes MA
e08 PG BB cardio prob 0.87 > no MA
e09 PG BB allergy prob 1.25 < no MA
e10 PG BB hyperaemia 3.59 < yes MA
e11 PG SY change in IOP -2.21 > yes MA
e12 PG SY allergic prob 0.03 > yes MA
e13 PG SY hyperaemia 1.01 < no MA
e14 CA NT convert to COAG 0.77 > no MA
e15 CA NT visual field prog 0.69 > no MA
e16 CA NT IOP > 35mmHg 0.08 > yes MA
e17 CA BB hyperaemia 6.42 < no MA
e18 SY BB visual field prog 0.92 > no MA
e19 SY BB change in IOP -0.25 > no MA
e20 SY BB allergic prob 41.00 < yes MA
e21 SY BB drowsiness 1.21 < no MA
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Fig. 1. Summary of the conclusions from the argumentation with the
glaucoma case study where a directed arc from τ1 to τ2 denotes τ1 is superior
to τ2 and an undirected arc from τ1 to τ2 denotes τ2 is superior or equivalent
or inferior to τ2.

utility function U(X∗) to be (5x) + y− z. For veracity, if all
evidence in X is statistically significant, we let V (X) = 0.8,
otherwise we let V (X) = 0.2. We illustrate them with some
of the arguments we generated.

Argument X B(X) V (X)
〈{e05, e06, e07}, PG > BB〉 {e05, e06, e07} 10 0.8

〈{e09, e10}, PG < BB〉 {e09, e10} 2 0.2
〈{e10}, PG < BB〉 {e10} 1 0.8

〈{e14, e15, e16},CA > NT〉 {e14, e15, e16} 15 0.2
〈{e18, e19}, SY > BB〉 {e18, e19} 10 0.2

From the argumentation, we got the aggregations of the ev-
idence concerning the treatment options which we summarise
in Figure 1. By contrast, the NICE guideline just selects two



options, namely prostaglandin analogues and beta-blockers,
as superior to the rest with prostaglandin analogues being
the preferred treatment for the patients with thinner central
corneal thickness, a group of patients who are more at risk
of developing glaucoma as a result of having raised IOP. We
therefore claim that our qualitative framework provides a result
that indicates the adequacy of our framework for capturing the
underlying argumentation inherent in the guideline.

VIII. CONCLUSION

The problem of conflicting information is a general issue
in handling knowledge and it arises in virtually all real-world
domains. To address this, computational models of argumen-
tation which aim to reflect how human argumentation uses
conflicting information to construct and analyze arguments,
are being developed (for reviews see [8], [9]).

In this paper, we have drawn on argumentation techniques
(in particular influenced by assumption-based argumentation
[10]) to provide a general framework for taking evidence
involving multiple outcome indicators and aggregate it in
terms of arguments. In this framework, we instantiate abstract
argument graphs with arguments generated by inference rules
applied to the evidence, and attacks relationships obtained via
the preference rules. For any application of our framework, a
specific set of inference rules and preference rules needs to be
given. Given an evidence table, the algorithms for generating
arguments and the argument graph are simple, and there are
existing argumentation engines [11], [12] that can be used to
calculate the different extensions.

As well as presenting the general framework, we have
presented a new specific version of it with a simple and
complete set of inference and preference rules, and we have
evaluated this specific version with respect to a case study with
evidence taken from 21 meta-analyses concerning 5 treatment
options for raised intraocular pressure (raised IOP), and we
have shown the results we obtained corresponded closely with
those presented in the NICE Guideline for Glaucoma.

We do not believe that utility theory can be used in a
straightforward way to address the problems of aggregating
clinical evidence. A central idea in utility theory is that of a
lottery [p1, o1; ..., pn, on] that we get if we choose a particular
action, where pi is the probability of getting outcome oi.
For aggregating evidence, lottery would be required for each
treatment option, where each outcome would be a particular
combination of possible benefits from that treatment. Unfor-
tunately, the evidence is unlikely to be sufficiently detailed to
allow for generating this probability distribution. Furthermore,
even if this distribution were guessed, it would decouple the
evidence used to justify the claims made. For this application,
clinicians want to see clearly the link between the evidence
used and the recommendations made, and we believe that our
approach provides that link clearly and rationally.

Little work exists that aims to address the problem in focus
in this paper. Medical informatics and bioinformatics research
does not address the reasoning aspects inherent in the analysis
of evidence of primary nature, especially from clinical trials.

Previous interesting work ([13], [14], [15], [16] and others)
exists that uses argumentation as a tool in medical decision
support, but as such, assumes the existence of a hand-crafted
knowledgebase.

In future work, we aim to developed generic utility functions
based on an ontology of outcome indicators, and a generic ve-
racity function based on calculus of evidence quality. We also
aim to develop theoretical tools for effectively and efficiently
acquiring and representing functions based on lattice theory
and/or logical constraints.
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creasing human-organ transplant availability:argumentation-based agent
deliberation,” IEEE Intelligent Systems, vol. 21, no. 6, pp. 30–37, 2006.

[16] R. Walton, C. Gierl, P. Yudkin, H. Mistry, M. Vessey, and J. Fox,
“Evaluation of computer support for prescribing (CAPSULE),” British
Medical Journal, vol. 315, pp. 791–795, 1997.


