
1

A Review of Argumentation Based on
Deductive Arguments
Philippe Besnard, Anthony Hunter

abstract. A deductive argument is a pair where the first item is a
set of premises, the second item is a claim, and the premises entail the
claim. This can be formalized by assuming a logical language for the
premises and the claim, and logical entailment (or consequence relation)
for showing that the claim follows from the premises. Examples of logics
that can be used include classical logic, modal logic, description logic,
temporal logic, and conditional logic. A counterargument for an argu-
ment A is an argument B where the claim of B contradicts the premises
of A. Different choices of logic, and different choices for the precise defi-
nitions of argument and counterargument, give us a range of possibilities
for formalizing deductive argumentation. Further options are available
to us for choosing the arguments and counterarguments we put into an
argument graph. If we are to construct an argument graph based on
the arguments that can be constructed from a knowledgebase, then we
can be exhaustive in including all arguments and counterarguments that
can be constructed from the knowledgebase. But there are other op-
tions available to us. These include being selective in the arguments and
counterargument we present according to a specified criterion. We con-
sider some of the possibilities in this review and introduce properties and
postulates for comparing proposals for deductive argumentation.

1 Introduction

In deductive reasoning, we start with some premises, and we derive a conclu-
sion using one or more inference steps. Each inference step is infallible in the
sense that it does not introduce uncertainty. In other words, if we accept the
premises are valid, then we should accept that the intermediate conclusion of
each inference step is valid, and therefore we should accept that the conclu-
sion is valid. For example, if we accept that Philippe and Tony are having
tea together in London is valid, then we should accept that Philippe is not
in Toulouse (assuming the background knowledge that London and Toulouse
are different places, and that nobody can be in different places at the same
time). As another example, if we accept that Philippe and Tony are having
an ice cream together in Toulouse is valid, then we should accept that Tony
is not in London. Note, however, we do not need to believe or know that the
premises are valid to apply deductive reasoning. Rather, deductive reasoning
allows us to obtain conclusions that we can accept contingent on the validity
of their premises. So for the first example above, the reader might not know

2 Philippe Besnard, Anthony Hunter

whether or not Philippe and Tony are having tea together in London. How-
ever, the reader can accept that Philippe is not in Toulouse, contingent on the
validity of these premises. Important alternatives to deductive reasoning in ar-
gumentation, include inductive reasoning, abductive reasoning, and analogical
reasoning.

In this review, we assume that deductive reasoning is formalized by a mono-
tonic logic. Each deductive argument is a pair where the first item is a set of
premises that logically entails the second item according to the choice of mono-
tonic logic. So we have a logical language to express the set of premises, and
the claim, and we have a logical consequence relation to relate the premises to
the claim.

Key benefits of deductive arguments include: (1) Explicit representation
of the information used to support the claim of the argument; (2) Explicit
representation of the claim of the argument; and (3) A simple and precise
connection between the support and claim of the argument via the consequence
relation. What a deductive argument does not provide is a specific proof of
the claim from the premises. There may be more than one way of proving the
claim from the premises, but the argument does not specify which is used. It
is therefore indifferent to the proof used.

Deductive argumentation is formalized in terms of deductive arguments and
counterarguments, and there are various choices for defining this [Besnard and
Hunter, 2008]. Deductive argumentation offers a simple route to instantiating
abstract argumentation which we will consider in this review paper. Perhaps
the first paper to consider this is by Cayrol who instantiated Dung’s proposal
with deductive arguments based on classical logic [Cayrol, 1995].

In the rest of this review, we will investigate some of the choices we have
for defining arguments and counterarguments, and for how they can be used in
modelling argumentation. We will focus on three choices for base logic. These
are (1) simple logic (which has a language of literals and rules of the form
α1 ∧ . . . ∧ αn → β where α1, . . . , αn, β are literals, and modus ponens is the
only proof rule), (2) classical logic (propositional and first-order classical logic),
and (3) A conditional logic. Then for instantiating argument graphs (i.e. for
specifying what the arguments and attacks are in an argument graph), we will
consider descriptive graphs and generated graphs defined informally as follows.

• Descriptive graphs Here we assume that the structure of the argument
graph is given, and the task is to identify the premises and claim of
each argument. Therefore the input is an abstract argument graph, and
the output is an instantiated argument graph. This kind of task arises in
many situations: For example, if we are listening to a debate, we hear the
arguments exchanged, and we can construct the instantiated argument
graph to reflect the debate1.

1When we listen to a debate (or similarly, when we read an article that discusses some
topic), we use natural language processing to identify arguments and counterarguments in
spoken (or written) language. At a high level, this involves determining the words used (i.e.

A Review of Argumentation Based on Deductive Arguments 3

Generated graphsDescriptive graphs

Counterarguments

Arguments

Base logic

Figure 1. Framework for constructing argument graphs with deductive argu-
ments: For defining a specific argumentation system, there are four levels for
the specification: (1) A base logic is required for defining the logical language
and the consequence or entailment relation (i.e. what inferences follow from a
set of formlulae); (2) A definition of an argument 〈Φ, α〉 specified using the base
logic (e.g. Φ is consistent, and Φ entails α); (3) A definition of counterargument
specified using the base logic (i.e. a definition for when one argument attacks
another); and (4) A definition of how the arguments and counterarguments are
composed into an argument graph (which is either a descriptive graph or some
form of generated graph).

• Generated graphs Here we assume that we start with a knowledge-
base (i.e. a set of logical formulae), and the task is to generate the
arguments and counterarguments (and hence the attacks between argu-
ments). Therefore, the input is a knowledgebase, and the output is an
instantiated argument graph. This kind of task also arises in many sit-
uations: For example, if we are making a decision based on conflicting
information. We have various items of information that we represent by
formulae in the knowledgebase, and we construct an instantiated argu-
ment graph to reflect the arguments and counterarguments that follow
from that information.

For constructing both descriptive graphs and generated graphs, there may be
a dynamic aspect to the process. For instance, when constructing descriptive
graphs, we may be unsure of the exact structure of the argument graph, and it
is only by instantiating individual arguments that we are able to say whether
it is attacked or attacks another argument. As another example, when con-
structing generated graphs, we may be involved in a dialogue, and so through
the dialogue, we may obtain further information which allows us to generate
further arguments that can be added to the argument graph.

So in order to construct argument graphs with deductive arguments, we
need to specify the choice of logic (which we call the base logic) that we use

the verbal description) for each argument and counterargument. This can be thought of
as a form of argument mining. Then once the arguments and counterarguments have been
identified, the actual logical structure of each argument can be determined from the verbal
description.

4 Philippe Besnard, Anthony Hunter

A1 = Patient has hyperten-
sion so prescribe diuretics

A2 = Patient has hypertension
so prescribe betablockers

A3 = Patient has emphysema which
is a contraindication for betablockers

Figure 2. Example of an abstract argument graph which captures a deci-
sion making scenario where there are two alternatives for treating a patient,
diuretics or betablockers. Since only one treatment should be given for the
disorder, each argument attacks the other. There is also a reason to not give
betablockers, as the patient has emphysema which is a contraindication for this
treatment.

to define arguments and counterarguments, the definition for arguments, the
definition for counterarguments, and the definition for instantiating argument
graphs. For the latter, we can either produce a descriptive graph or a generated
graph. We will explore various options for generated graphs. We summarize
the framework for constructing argument graphs with deductive arguments in
Figure 1.

We proceed as follows: (Section 2) We briefly review the definitions for
abstract argumentation; (Section 3) We review the nature of base logics in
argumentation; (Section 4) We consider options for arguments in deductive
argumentation; (Section 5) We consider options for counterarguments in de-
ductive argumentation; (Section 6) We consider options for constructing ar-
gument graphs instantiated with deductive arguments; (Section 7) We review
some properties and postulates for argumentation based on deductive argu-
ments; and (Section 8) We discuss the approach of deductive argumentation
and provide suggestions for further reading.

2 Abstract argumentation

Abstract argumentation, as proposed by [Dung, 1995], provides a good starting
point for formalizing argumentation. Dung proposed that a set of arguments
and counterarguments could be represented by a directed graph. Each node in
the graph denotes an argument and each arc denotes one argument attacking
another. So if there is an arc from node A to node B, then A attacks B, or
equivalently A is a counterargument to B. See Figure 2 for an example of an
abstract argument graph.

An abstract argument graph is a pair (A,R) where A is a set and R ⊆
A × A. Each element A ∈ A is called an argument and (A,B) ∈ R means

A Review of Argumentation Based on Deductive Arguments 5

that A attacks B (accordingly, A is said to be an attacker of B) and so A
is a counterargument for B. A set of arguments S ⊆ A attacks Aj ∈ A
iff there is an argument Ai ∈ S such that Ai attacks Aj . Also, S defends
Ai ∈ A iff for each argument Aj ∈ A, if Aj attacks Ai then S attacks Aj . A
set S ⊆ A of arguments is conflict-free iff there are no arguments Ai and
Aj in S such that Ai attacks Aj . Let Γ be a conflict-free set of arguments,
and let Defended : ℘(A) → ℘(A) be a function such that Defended(Γ) = {A |
Γ defends A}. We consider the following extensions: (1) Γ is a complete
extension iff Γ = Defended(Γ); (2) Γ is a grounded extension iff it is
the minimal (w.r.t. set inclusion) complete extension; (3) Γ is a preferred
extension iff it is a maximal (w.r.t. set inclusion) complete extension; and
(4) Γ is a stable extension iff it is a preferred extension that attacks every
argument that is not in the extension.

Some argument graphs can be large, and yet we might only be interested
in whether some subset of the arguments is in an extension according to some
semantics. For this, we introduce the following definitions that lead to the
notion of a focal graph.

Definition 2.1 Let G = (A,R) be an argument graph. An argument graph
(A′,R′) is faithful with respect to (A,R) iff (A′,R′) is a subgraph of (A,R)
and for all arguments Ai, Aj ∈ A, if Aj ∈ A′ and (Ai, Aj) ∈ R, then Ai ∈ A′,
and R′ = {(Ai, Aj) | R | Ai, Aj ∈ A′}.

Example 2.2 Consider the following graph G

A1 A2 A3 A4

There are three subgraphs that are faithful with respect to G: (1) The graph
G ; (2) The subgraph containing just the argument A1; and (3) The following
subgraph. All other subgraphs of G are not faithful.

A1 A2 A3

A faithful subgraph has the same extensions as the graph modulo the argu-
ments in the subgraph. So for every argument A in the subgraph, if A is in the
grounded extension in the subgraph, then A is in the grounded extension of the
graph, and vice versa. Similarly, for every argument A in the subgraph, if A is
in a preferred extension of the subgraph, then A is in a preferred extension of
the graph, and vice versa. This follows directly from the directionality criterion
of [Baroni and Giacomin, 2007] that says that for a subgraph, arguments in
the graph that do not attack any arguments in the subgraph have no affect on
the extensions of the subgraph. Therefore, we can ignore the arguments that
are not in a faithful subgraph.

6 Philippe Besnard, Anthony Hunter

Definition 2.3 Let Π ⊆ A be a set of arguments of interest called the focus.
A graph (A′,R′) is the focal graph of graph (A,R) with respect to focus Π
iff (A′,R′) is the smallest subgraph of (A,R) such that Π ⊆ A′ and (A′,R′) is
faithful with respect to (A,R).

Example 2.4 Continuing Example 2.2, if we let Π = {A1, A2} be the focus,
then the third subgraph (i.e. the faithful graph containing A1, A2, and A3) is
the focal graph.

The motivation for finding the focal graph is that given a set of arguments Π
as the focus, we want to just have those arguments and any arguments that may
affect whether or not any of the arguments in Π are in an extension. By taking
the directionality of the arcs into account (i.e. the directionality criteria [Baroni
and Giacomin, 2007; Liao et al., 2011]), we can ignore the other arguments.

Even though abstract argumentation provides a clear and precise approach
to formalizing aspects of argumentation, the arguments are treated as atomic.
There is no formalized content to an argument, and so all arguments are treated
as equal. Therefore if we want to understand individual arguments, we need
to provide content for them. This leads to the idea of “instantiating” abstract
argumentation with deductive arguments. Each deductive argument has some
premises from which a claim is derived by deductive reasoning.

3 Base logics

Proposals for logic-based argumentation rely on an underlying logic, which we
call a base logic, for generating logical arguments and for defining the counterar-
gument relationships (using inference of conflict or existence of inconsistency).

The choice of base logic is an important design decision for a logic-based
argumentation system. This then raises the questions of what are the minimal
requirements for a base logic and what are the factors that need to be considered
for a base logic?

In this paper, we focus on three options for the base logic, namely simple
logic, classical logic, and a conditional logic, but other options include modal
logic, temporal logic, paraconsistent logic, description logics, and logic pro-
gramming languages.

Let L be a language for a logic, and let `i be the consequence relation for
that logic. Therefore, `i⊆ ℘(L)×L. If α is an atom in L, then α is a positive
literal in L and, assuming a negation symbol ¬ is available in the language,
¬α is a negative literal in L. For a literal β, the complement of β is defined
as follows: If β is a positive literal, i.e. it is of the form α, then the complement
of β is the negative literal ¬α, and if β is a negative literal, i.e. it is of the form
¬α, then the complement of β is the positive literal α.

The list of properties of a consequence relation given in Table 1 provides a
good starting point for considering this question. These properties have been
proposed as desirable conditions of a consequence relation. Furthermore, ac-
cording to Gabbay [Gabbay, 1985] and Makinson [Makinson, 1994], the minimal

A Review of Argumentation Based on Deductive Arguments 7

properties of a consequence relation are reflexivity, monotonicity (or a variant
of it) and cut, and the need for each of them can be justified as follows:

• Reflexivity captures the idea of “transparency”; If a formula α is assumed
(i.e. α ∈ ∆), then α can be inferred (i.e ∆ `x α).

• Monotonicity captures the idea of “irreversibility”; Once a formula α is
inferred (i.e ∆ `x α), then there is no assumption that can cause α to be
withdrawn (i.e. there is no β such that ∆ ∪ {β} 6`x α).

• Cut captures the idea of “equitability” of assumptions and inferences.
Once a formula α is inferred (i.e ∆ `x α), it can be used for further
reasoning.

These three properties can be seen equivalently in terms of the following
three properties based on the consequence closure Cx of a logic x [Makinson,
1994], where Cx(∆) = {α | ∆ ` α}: (inclusion) ∆ ⊆ Cx(∆); (idempotence)
Cx(∆) = Cx(Cx(∆)); and (monotony) Cx(∆′) ⊆ Cx(∆) whenever ∆′ ⊆ ∆.

Classes of base logics can be identified using properties of the consequence
relation, and then argument systems can be developed in terms of them. For in-
stance, to instantiate abstract argumentation, in [Amgoud and Besnard, 2009],
the class of Tarskian logics has been used. This is the class defined by inclu-
sion, idempotence, finiteness (i.e. Cx(∆) is the union of Cx(Γ) for all finite
subsets Γ of ∆), absurdity (i.e. Cx({φ}) = L for some φ in the language L),
and coherence (i.e. Cx(∅) 6= L). Classical logic is an example of a Tarskian
logic.

4 Arguments

A deductive argument is an ordered pair 〈Φ, α〉 where Φ `i α. Φ is the
support, or premises, or assumptions of the argument, and α is the claim, or
conclusion, of the argument. The definition for a deductive argument only
assumes that the premises entail the claim (i.e. Φ `i α). For an argument
A = 〈Φ, α〉, the function Support(A) returns Φ and the function Claim(A)
returns α.

Many proposals have further constraints for an ordered pair 〈Φ, α〉 to be
an argument. The most commonly assumed constraint is the consistency
constraint: An argument 〈Φ, α〉 satisfies this constraint when Φ is consistent
(assuming that the base logic has a notion of consistency). For richer logics,
such as classical logic, consistency is often regarded as a desirable property
of a deductive argument because claims that are obtained with logics such as
classical logic from inconsistent premises are normally useless as illustrated in
the next example.

Example 4.1 If we assume the consistency constraint, then the following are

8 Philippe Besnard, Anthony Hunter

Name Property

Reflexivity ∆ ∪ {α} `x α
Literal reflexivity ∆ ∪ {α} `x α if α is a literal
Left logical equivalent ∆ ∪ {β} `x γ if ∆ ∪ {α} `x γ and ` α↔ β
Right weakening ∆ `x α if ∆ `x β and ` β → α
And ∆ `x α ∧ β if ∆ `x α and ∆ `x β
Monotonicity ∆ ∪ {α} `x β if ∆ `x β
Cut ∆ `x β if ∆ `x α and ∆ ∪ {α} `x β
Conditionalization ∆ `x α→ β if ∆ ∪ {α} `x β
Deduction ∆ ∪ {α} `x β if ∆ `x α→ β
Contraposition ∆ ∪ {α} `x β if ∆ ∪ {¬β} `x ¬α
Or ∆ ∪ {α ∨ β} `x γ if ∆ ∪ {α} `x γ and ∆ ∪ {β} `x γ

Table 1. Some properties of a consequence relation `x adapted from D. Makin-
son. General patterns in nonmonotonic reasoning. In D. Gabbay, C. Hog- ger,
and J. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 3, pages 35–110. Oxford University Press, 1994.

not arguments.

〈{study(Sid, logic),¬study(Sid, logic)},
study(Sid, logic)↔ ¬study(Sid, logic)〉

〈{study(Sid, logic),¬study(Sid, logic)}, KingOfFrance(Sid)〉

In contrast, for weaker logics (such as paraconsistent logics), it may be de-
sirable to not impose the consistency constraint. With such logics, a credulous
approach could be taken so that pros and cons could be obtained from incon-
sistent premises (as illustrated by the following example).

Example 4.2 If we assume the base logic is a paraconsistent logic (such as
Belnap’s four valued logic), and we do not impose the consistent constraint,
then the following are arguments.

〈{study(Sid, logic) ∧ ¬study(Sid, logic)}, study(Sid, logic)〉

〈{study(Sid, logic) ∧ ¬study(Sid, logic)},¬study(Sid, logic)〉

Another commonly assumed constraint is the minimality constraint: An
argument 〈Φ, α〉 satisfies this constraint when there is no Ψ ⊂ Φ such that Ψ `
α. Minimality is often regarded as a desirable property of a deductive argument
because it eliminates irrelevant premises (as in the following example).

A Review of Argumentation Based on Deductive Arguments 9

Example 4.3 If we assume the minimality constraint, then the following is
not an argument.

〈{report(rain), report(rain)→ carry(umbrella), happy(Sid)},
carry(umbrella)〉

When we construct a knowledgebase, with simple logic, classical logic, or
other base logics, it is possible that some or all of the formulae could be incor-
rect. For instance, individual formulae may come from different and conflicting
sources, they may reflect options that disagree, they may represent uncertain
information. A knowledgebase may be inconsistent, and individual formulae
may be contradictory. After all, if the knowledge is not inconsistent (i.e. it
is consistent), then we will not have counterarguments. We may also include
formulae that we know are not always correct. For instance, we may include
a formula such as the following that says that a water sample taken from the
Mediterranean sea in the summer will be above 15 degrees Celcius. While this
may be a useful general rule, it is not always true. For instance, the sample
could be taken when there is a period of bad weather, or the sample is taken
from a depth of over 500 metres.

∀X, Y.watersample(X) ∧ location(X, Mediterranean)
∧season(X, summer) ∧ termperature(X, Y)→ Y > 15

In the following subsections, we define arguments based on simple logic and
on classical logic as the base logic. Alternative base logics include description
logic, paraconsistent logic, temporal logic, and conditional logic.

4.1 Arguments based on simple logic

Simple logic is based on a language of literals and simple rules where each
simple rule is of the form α1∧ . . .∧αk → β where α1 to αk and β are literals.
A simple logic knowledgebase is a set of literals and simple rules. The
consequence relation is modus ponens (i.e. implication elimination) as defined
next.

Definition 4.4 The simple consequence relation, denoted `s, which is the
smallest relation satisfying the following condition, and where ∆ is a simple
logic knowledgebase: ∆ `s β iff there is an α1 ∧ · · · ∧ αn → β ∈ ∆, and for
each αi ∈ {α1, . . . , αn}, either αi ∈ ∆ or ∆ `s αi.

Note, the simple consequence relation does not satisfy reflexivity. We could
slightly amend the definition so that it does satisfy reflexivity but the above
definition will be useful to us later when we consider properties of the argu-
mentation based on this base logic.

Example 4.5 Let ∆ = {a, b, a∧ b→ c, c→ ¬d}. Hence, ∆ `s c and ∆ `s ¬d.
However, ∆ 6`s a and ∆ 6`s b.

10 Philippe Besnard, Anthony Hunter

Definition 4.6 Let ∆ be a simple logic knowledgebase. For Φ ⊆ ∆, and a
literal α, 〈Φ, α〉 is a simple argument iff Φ `s α and there is no proper
subset Φ′ of Φ such that Φ′ `s α.

So each simple argument is minimal but not necessarily consistent (where
consistency for a simple logic knowledgebase ∆ means that for no atom α does
∆ `s α and ∆ `s ¬α hold). We do not impose the consistency constraint in the
definition for simple arguments as simple logic is paraconsistent, and therefore
can support a credulous view on the arguments that can be generated.

Example 4.7 Let p1, p2, and p3 be the following formulae. Then the following
is a simple argument.

〈{p1, p2, p3}, goodInvestment(BP)〉

Note, we use p1, p2, and p3 as labels in order to make the presentation of the
premises more concise.

p1 = oilCompany(BP)
p2 = goodPerformer(BP)
p3 = oilCompany(BP) ∧ goodPerformer(BP))→ goodInvestment(BP)

Simple logic is a practical choice as a base logic for argumentation. Having
a logic with simple rules and modus ponens is useful for applications because
the behaviour is quite predictable in the sense that given a knowledgebase it is
relatively easy to anticipate the inferences that come from the knowlegebase.
Furthermore, it is relatively easy to implement an algorithm for generating
the arguments and counterarguments from a knowledgebase. The downside of
simple logic as a base logic is that the proof theory is weak. It only incorpo-
rates modus ponens (i.e. implication elimination) and so many useful kinds of
reasoning (e.g. contrapositive reasoning) are not supported.

4.2 Arguments based on classical logic

Classical logic is appealing as the choice of base logic as it better reflects the
richer deductive reasoning often seen in arguments arising in discussions and
debates.

We assume the usual propositional and predicate (first-order) languages for
classical logic, and the usual the classical consequence relation, denoted
`. A classical knowledgebase is a set of classical propositional or predicate
formulae.

Definition 4.8 For a classical knowledgebase Φ, and a classical formula α,
〈Φ, α〉 is a classical argument iff Φ ` α and Φ 6` ⊥ and there is no proper
subset Φ′ of Φ such that Φ′ ` α.

So a classical argument satisfies both minimality and consistency. We impose
the consistency constraint because we want to avoid the useless inferences that
come with inconsistency in classical logic (such as via ex falso quodlibet).

A Review of Argumentation Based on Deductive Arguments 11

Example 4.9 The following classical argument uses a universally quantified
formula in contrapositive reasoning to obtain the claim about number 77.

〈{∀X.multipleOfTen(X)→ even(X),¬even(77)},¬multipleOfTen(77)〉

Given the central role classical logic has played in philosophy, linguistics, and
computer science (software engineering, formal methods, data and knowledge
engineering, artificial intelligence, computational linguistics, etc.), we should
consider how it can be used in argumentation. Classical propositional logic and
classical predicate logic are expressive formalisms which capture more detailed
aspects of the world than is possible with restricted formalisms such as simple
logic.

4.3 Arguments based on conditional logic

Conditional logics are a valuable alternative to classical logic for knowledge
representation and reasoning. They can be used to capture hypothetical state-
ments of the form “If α were true, then β would be true”. This done by intro-
ducing an extra connective ⇒ to extend a classical logic language. Informally,
α⇒ β is valid when β is true in the possible worlds where α is true. Represent-
ing and reasoning with such knowledge in argumentation is valuable because
useful arguments exist that refer to fictitious and hypothetical situations (see
[Besnard et al., 2013] for some examples).

In this review, we consider the well-known conditional logic MP which can be
extended to give many other well-known conditional logics, and we follow the
presentation for argumentation given by [Besnard et al., 2013]. The language
of conditional logic is that of classical logic extended with the formulae of the
form α ⇒ β where α and β are formulae in the language of conditional logic.
The proof theory for the consequence relation `c of MP is given by classical
logic proposition extended by the following axiom schemas and inference rules.

RCEA
`c α↔ β

`c (α⇒ γ)↔ (β ⇒ γ)

RCEC
`c α↔ β

`c (γ ⇒ α)↔ (γ ⇒ β)

CC `c ((α⇒ β) ∧ (α⇒ γ))→ (α⇒ (β ∧ γ))

CM `c (α⇒ (β ∧ γ))→ ((α⇒ β) ∧ (α⇒ γ))

CN `c (α→ >)

MP `c (α→ β)→ (α→ β)

Using the `c consequence relation, we can define the notion of an argument
with the same constraints as for classical logic arguments. For this, a condi-
tional knowledgebase is a set of formulae of the language of conditional logic.

12 Philippe Besnard, Anthony Hunter

Definition 4.10 For a conditional knowledgebase Delta, and a formula of con-
ditional logic α, 〈∆, α〉 is a conditional argument iff ∆ `c α and ∆ 6`c ⊥
and there is no proper subset ∆′ of ∆ such that ∆′ ` α.

Example 4.11 Let ∆ = {matchIsStruck ⇒ matchLights, matchIsStruck}.
From this knowledgebase, we get the following argument.

〈{matchIsStruck⇒ matchLights, matchIsStruck}, matchLights〉

Note, from ∆, we cannot get the following argument.

〈{matchIsStruck∧matchIsWet⇒ matchLights, matchIsStruck}, matchLights〉

Whereas if we consider ∆′ = {matchIsStruck→ matchLights, matchIsStruck}
where we use the classical implication for the formula, we get the classical ar-
gument from ∆′.

〈{matchIsStruck∧matchIsWet→ matchLights, matchIsStruck}, matchLights〉

This is because from matchIsStruck→ matchLights, we can infer the follow-
ing using classical logic.

matchIsStruck ∧ matchIsWet→ matchLights

So the above example illustrates how the proof theory (and the semantics) for
conditional logic is more restricted for the ⇒ connective than for the →. This
makes it useful for representing and reasoning with knowledge about fictitious
and hypothetical situations [Cross and Nute, 2001; Girard, 2006].

5 Counterarguments

A counterargument is an argument that attacks another argument. In deduc-
tive argumentation, we define the notion of counterargument in terms of logical
contradiction between the claim of the counterargument and the premises of
claim of the attacked argument. We explore some of the kinds of counterargu-
ment that can be specified for simple logic, classical logic and classical logic.

5.1 Counteraguments based on simple logic

For simple logic, we consider two forms of counterargument. For this, recall
that literal α is the complement of literal β if and only if α is an atom and β
is ¬α or if β is an atom and α is ¬β.

Definition 5.1 For simple arguments A and B, we consider the following type
of simple attack:

• A is a simple undercut of B if there is a simple rule α1 ∧ · · · ∧αn → β
in Support(B) and there is an αi ∈ {α1, . . . , αn} such that Claim(A) is
the complement of αi

A Review of Argumentation Based on Deductive Arguments 13

• A is a simple rebut of B if Claim(A) is the complement of Claim(B)

Example 5.2 The first argument A1 captures the reasoning that the metro is
an efficient form of transport, so one can use it. The second argument A2

captures the reasoning that there is a strike on the metro, and so the metro is
not an efficient form of transport (at least on the day of the strike). A2 is a
simple undercut of A1.

A1 = 〈{efficientMetro, efficientMetro→ useMetro}, useMetro〉
A2 = 〈{strikeMetro, strikeMetro→ ¬efficientMetro},¬efficientMetro〉

Example 5.3 The first argument A1 captures the reasoning that the govern-
ment has a budget deficit, and so the government should cut spending. The
second argument A2 captures the reasoning that the economy is weak, and so
the government should not cut spending. The arguments are simple rebuts of
each other.

A1 = 〈{govDeficit, govDeficit→ cutGovSpend}, cutGovSpend〉
A2 = 〈{weakEconomy, weakEconomy→ ¬cutGovSpend},¬cutGovSpend〉

So in simple logic, a rebut attacks the claim of an argument, and an undercut
attacks the premises of the argument (by attacking one of the consequents of
one of the rules in the premises).

Simple arguments and counterarguments can be used to model defeasible
reasoning. For this, we use simple rules that are normally correct but sometimes
are incorrect. For instance, if Sid has the goal of going to work, Sid takes the
metro. This is generally true, but sometimes Sid works at home, and so it is
no longer true that Sid takes the metro, as we see in the next example.

Example 5.4 The first argument A1 captures the general rule that if workDay
holds, then metro(Sid) holds (denoting that Sid takes the metro). The use of
the simple rule in A1 requires that the assumption normal holds. This is given
as an assumption. The second argument A2 undercuts the first argument by
contradicting the assumption that normal holds

A1 = 〈{workDay, normal, workDay ∧ normal→ metro(Sid)}, metro(Sid)〉
A2 = 〈{workAtHome(Sid), workAtHome(Sid)→ ¬normal},¬normal〉

Informally, if we start with just argument A1, then A1 is undefeated, and so
metro(Sid) is an acceptable claim. However, if we then add A2, then A1 is a
defeated argument and A2 is an undefeated argument. Hence, if we have A2,
we have to withdraw metro(Sid) as an acceptable claim.

So by having appropriate conditions in the antecedent of a simple rule we
can disable the rule by generating a counterargument that attacks it. This in

14 Philippe Besnard, Anthony Hunter

effect stops the usage of the simple rule. This means that we have a convention
to attack an argument based on the inferences obtained by the simple logic
(e.g. as in Example 5.2 and Example 5.3), or on the rules used (e.g. Example
5.4).

This way to disable rules by adding appropriate conditions (as in Example
5.4) is analogous to the use abnormality predicates used in formalisms such
as circumscription (see for example [McCarthy, 1980]). We can use the same
approach to capture defeasible reasoning in other logics such as classical logic.
Note, this does not mean that we turn the base logic into a nonmonotonic logic.
Both simple logic and classical logic are monotonic logics. Hence, for a simple
logic knowledgebase ∆ (and similarly for a classical logic knowledgebase ∆),
the set of simple arguments (respectively classical arguments) obtained from
∆ is a subset of the set of simple arguments (respectively classical arguments)
obtained from ∆∪{α} where α is a formula not in ∆. But at the level of eval-
uating arguments and counterarguments, we have non-monotonic defeasible
behaviour. For instance in Example 5.2, with just A1 we have the acceptable
claim that useMetro, but then when we have also A2, we have to withdraw
this claim. In other words, if the set of simple arguments is {A1}, then we
can construct an argument graph with just A1, and by applying Dung’s di-
alectical semantics, there is one extension containing A1. However, if the set
of simple arguments is {A1, A2}, then we can construct an argument graph
with A1 attacked by A2, and by applying Dung’s dialectical semantics, there is
one extension containing A2. This illustrates the fact that the argumentation
process is nonmonotonic.

5.2 Counterarguments based on classical logic

Given the expressivity of classical logic (in terms of language and inferences),
there are a number of natural ways to define counterarguments.

Definition 5.5 Let A and B be two classical arguments. We define the fol-
lowing types of classical attack.

• A is a classical defeater of B if Claim(A) ` ¬
∧

Support(B).

• A is a classical direct defeater of B if ∃φ ∈ Support(B) s.t. Claim(A) `
¬φ.

• A is a classical undercut of B if ∃Ψ ⊆ Support(B) s.t. Claim(A) ≡
¬
∧

Ψ.

• A is a classical direct undercut of B if ∃φ ∈ Support(B) s.t. Claim(A) ≡
¬φ.

• A is a classical canonical undercut of B if Claim(A) ≡ ¬
∧
Support(B).

• A is a classical rebuttal of B if Claim(A) ≡ ¬Claim(B).

• A is a classical defeating rebuttal of B if Claim(A) ` ¬Claim(B).

A Review of Argumentation Based on Deductive Arguments 15

classical defeater

classical di-
rect defeater

classical undercut classical defeat-
ing rebuttal

classical di-
rect undercut

classical canon-
ical undercut classical rebuttal

Figure 3. We can represent the containment between the classical attack rela-
tions as above where an arrow from R1 to R2 indicates that R1 ⊆ R2.

Note, in the rest of this section, we will drop the term ”classical” when we
discuss these types of attack.

To illustrate these different notions of classical counterargument, we consider
the following examples, and we relate these definitions in Figure 3 where we
show that classical defeaters are the most general of these definitions.

Example 5.6 Let ∆ = {a ∨ b, a↔ b, c→ a,¬a ∧ ¬b, a, b, c, a→ b,¬a,¬b,¬c}

〈{a ∨ b, c}, (a ∨ b) ∧ c〉 is a defeater of 〈{¬a,¬b},¬a ∧ ¬b〉
〈{a ∨ b, c}, (a ∨ b) ∧ c〉 is a direct defeater of 〈{¬a ∧ ¬b},¬a ∧ ¬b〉
〈{¬a ∧ ¬b},¬(a ∧ b)〉 is a undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{¬a ∧ ¬b},¬a〉 is a direct undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{¬a ∧ ¬b},¬(a ∧ b ∧ c)〉 is a canonical undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{a, a→ b}, b ∨ c〉 is a rebuttal of 〈{¬a ∧ ¬b,¬c},¬(b ∨ c)〉
〈{a, a→ b}, b〉 is a defeating rebuttal of 〈{¬a ∧ ¬b,¬c},¬(b ∨ c)〉

Using simple logic, the definitions for counterarguments against the support
of another argument are limited to attacking just one of the items in the sup-
port. In contrast, using classical logic, a counterargument can be against more
than one item in the support. For example, in Example 5.7, the undercut is
not attacking an individual premise but rather saying that two of the premises
are incompatible (in this case that the premises lowCostFly and luxuryFly

are incompatible).

Example 5.7 Consider the following arguments. A1 is attacked by A2 as A2

is an undercut of A1 though it is neither a direct undercut nor a canonical
undercut. Essentially, the attack says that the flight cannot be both a low cost

16 Philippe Besnard, Anthony Hunter

flight and a luxury flight.

A1 = 〈{lowCostFly, luxFly, lowCostFly ∧ luxFly→ goodFly}, goodFly〉
A2 = 〈{¬lowCostFly ∨ ¬luxFly},¬lowCostFly ∨ ¬luxFly〉

Trivially, undercuts are defeaters but it is also quite simple to establish that
rebuttals are defeaters. Furthermore, if an argument has defeaters then it has
undercuts. It may happen that an argument has defeaters but no rebuttals as
illustrated next.

Example 5.8 Let ∆ = {¬containsGarlic ∧ goodDish,¬goodDish}. Then
the following argument has at least one defeater but no rebuttal.

〈{¬containsGarlic ∧ goodDish},¬containsGarlic〉

There are some important differences between rebuttals and undercuts that
can be seen in the following examples.

Example 5.9 Consider the following arguments. The first argument A1 is
a direct undercut to the second argument A2, but neither rebuts each other.
Furthermore, A1 “agrees” with the claim of A2 since the premises of A1 could
be used for an alternative argument with the same claim as A2.

A1 = 〈{¬containsGarlic ∧ ¬goodDish},¬containsGarlic〉
A2 = 〈{containsGarlic, containsGarlic→ ¬goodDish},¬goodDish〉

Example 5.10 Consider the following arguments. The first argument is a
rebuttal of the second argument, but it is not an undercut because the claim
of the first argument is not equivalent to the negation of some subset of the
premises of the second argument.

A1 = 〈{goodDish}, goodDish〉
A2 = 〈{containsGarlic, containsGarlic→ ¬goodDish},¬goodDish〉

So an undercut for an argument need not be a rebuttal for that argument,
and a rebuttal for an argument need not be an undercut for that argument.

Arguments are not necessarily independent. In a sense, some encompass
others (possibly up to some form of equivalence), which is the topic we now
turn to.

Definition 5.11 An argument 〈Φ, α〉 is more conservative than an argu-
ment 〈Ψ, β〉 iff Φ ⊆ Ψ and β ` α.

Example 5.12 〈{a}, a ∨ b〉 is more conservative than 〈{a, a→ b}, b〉.
Roughly speaking, a more conservative argument is more general: It is, so

to speak, less demanding on the support and less specific about the claim.

A Review of Argumentation Based on Deductive Arguments 17

Example 5.13 Consider the following formulae.

p1 = divisibleByTen(50)
p2 = ∀X.divisibleByTen(X)→ divisibleByTwo(X)
p3 = ∀X.divisibleByTwo(X)→ even(X)

Hence, A1 is an argument with the claim “The number 50 is divisible by 2”,
and A2 is an argument with the claim “The number 50 is divisible by 2 and the
number 50 is an even number”. However, A1 is more conservative than A2.

A1 = 〈{p1, p2}, divisibleByTwo(50)〉
A2 = 〈{p1, p2, p3, }, even(50) ∧ divisibleByTwo(50)〉

We can use the notion of “more conservative” to help us identify the most
useful counterarguments amongst the potentially large number of counterargu-
ments.

Example 5.14 Let {a, b, c,¬a ∨ ¬b ∨ ¬c} be our knowledgebase. Suppose we
start with the argument 〈{a, b, c}, a ∧ b ∧ c〉. Now we have numerous undercuts
to this argument including the following.

〈{b, c,¬a ∨ ¬b ∨ ¬c},¬a〉
〈{a, c,¬a ∨ ¬b ∨ ¬c},¬b〉
〈{a, b,¬a ∨ ¬b ∨ ¬c},¬c〉
〈{c,¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬b〉
〈{b,¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬c〉
〈{a,¬a ∨ ¬b ∨ ¬c},¬b ∨ ¬c〉
〈{¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬b ∨ ¬c〉

All these undercuts say the same thing which is that the set {a, b, c} is inconsis-
tent together with the formula ¬a∨¬b∨¬c. As a result, this can be captured by
the last undercut listed above. Note this is the maximally conservative undercut
amongst the undercuts listed, and moreover it is a canonical undercut. This ex-
ample therefore illustrates how the canonical undercuts are the undercuts that
(in a sense) represent all the other undercuts.

So choosing classical logic as the base logic gives us a wider range of choices
for defining attacks. This has advantages if we want to better capture argu-
mentation as arising in natural language, or to more precisely capture counter-
arguments generated from certain kinds of knowledge. However, it does also
mean that we need to be aware of the consequences of our choice of definition
for attacks when using a generated approach to instantiating argument graphs
(as we will discuss in the next section).

5.3 Counterarguments based on conditional logic

In order to define counterarguments, we follow the proposal in [Besnard et
al., 2013] for conditional contrariety. For this, we require the notion of an

18 Philippe Besnard, Anthony Hunter

extended literal which is either of the form φ or ¬φ where φ is either an atom
or a formula of the form α⇒ β. Then we exploit the fact that any formula of
conditional logic can be rewritten using the proof rules into an equivalent set
of disjunctive formulae of the form α1 ∨ . . . ∨ αn where each αi is an extended
literal. In particular, for the next definition, we are interested in the specific
situation when a formula can be equivalently represented by a single disjunctive
formula.

Definition 5.15 Let α and β be two formulae of conditional logic such that the
disjunctive form of α is α1∨. . .∨αm and the disjunctive form of β is β1∨. . .∨βn.
α is the contrary of β, denoted α . β iff for all αi ∈ {α1, . . . , αm}, and for all
βj ∈ {β1, . . . , βn},

1. {αi, βj} `c ⊥

2. there exists γ1, γ2, δ1, δ2 in the language such that the following conditions
are satisfied

(a) γ1 `c δ1
(b) δ1 6`c γ1

(c) γ1 6`c γ2

(d) δ2 `c γ2

(e) γ2 `c δ2

where either {αi, βj} `c (γ1 ⇒ γ2) ∧ (δ1 ⇒ δ2) such that α `c γ1 ⇒ γ2,
or βj `c (γ1 ⇒ γ2) ∧ (δ1 → δ2).

In the above definition, the first condition subsumes “classical contradic-
tion”, and the second condition captures situations where two rules conflict as
illustated by the following examples.

• a ∧ (a ∧ c⇒ f) is a contrary of a→ (a⇒ f)

• a ∧ (a ∧ c⇒ f) is a contrary of ¬a ∨ c⇒ f .

• ¬a ∧ b and a ∧ (a ∧ c→ b ∨ ¬d) are the contrary of each other.

As another illustration of rules for which the second condition of the above
definition applies is the following where the second rule is the contrary of the
first. The intuition of the example is that the second rule “corrects” the cir-
cumstances under which John will go to watch the match at the stadium.

• matchTonight⇒ JohnGoesToTheStadium

• matchTonight ∧ JohnHasEnoughMoney⇒ JohnGoesToTheStadium

A Review of Argumentation Based on Deductive Arguments 19

Example 5.16 Let ∆ = {a ⇒ b, a ∨ d ⇒ b ∧ c, a ⇒ c}. Let α be a ⇒ b ∧ c.
Note that ∆ `c α. However, α .∆ because α . a ∨ d⇒ b ∧ c.

The notion of contrary is extended to sets of conditional formulae Φ so that
α . Φ holds iff there exists a β ∈ Φ such that Φ `c β and α . β holds.

Example 5.17 Let ∆ = {a ⇒ b, a ∨ d ⇒ b ∧ c, a ⇒ c}. Let α be a ⇒ b ∧ c.
Note that ∆ `c α. However, α .∆ because α . a ∨ d⇒ b ∧ c.

Now we can extend the definitions of counterargument given for classical
logic. We just give two options to illustrate the space of possibilities.

Definition 5.18 Let 〈Φ, α〉 and Ψ, β〉 be conditional logic arguments.

• 〈Ψ, β〉 is a conditional rebuttal for 〈Φ, α〉 iff β . α.

• 〈Ψ, β〉 is a conditional defeater for 〈Φ, α〉 iff β . Φ.

Example 5.19 Below, the second argument is a conditional rebuttal for the
first argument.

〈{matchTonight⇒ JohnGoesToTheStadium},
matchTonight⇒ JohnGoesToTheStadium〉

〈{matchTonight ∧ JohnHasEnoughMoney⇒ JohnGoesToTheStadium},
matchTonight ∧ JohnHasEnoughMoney⇒ JohnGoesToTheStadium〉

Example 5.20 Some conditional defeaters for 〈{a∨¬d⇒ b∧ c, f ∨¬b, b}, f ∧
(a ∨ ¬d⇒ b ∧ c)〉 are listed below.

〈{¬b},¬b〉
〈{¬b},¬(¬b→ b)〉
〈{¬b,¬a→ b},¬b ∧ a〉
〈{e ∧ ¬d⇒ b ∧ c}, e ∧ ¬d⇒ b ∧ c〉
〈{a⇒ b, a⇒ c}, a⇒ b ∧ c〉
〈{a⇒ b, a⇒ c},¬¬(a⇒ b ∧ c)〉
〈{a⇒ b, a⇒ c}, (a⇒ b) ∧ (a⇒ c)〉

Example 5.21 Below, the second argument is a conditional defeater for the
first argument.

〈{matchTonight, matchTonight⇒ JohnGoesToTheStadium},
JohnGoesToTheStadium〉

〈{matchTonight ∧ JohnHasEnoughMoney⇒ JohnGoesToTheStadium},
matchTonight ∧ JohnHasEnoughMoney⇒ JohnGoesToTheStadium〉

20 Philippe Besnard, Anthony Hunter

By using conditional logic as a base logic, we have a range of options for more
effective modelling complex real-world scenarios. Whilst many conditional log-
ics extend classical logic, the implication introduced is normally more restricted
than the strict implication used in classical logic. This means that many knowl-
edge modelling situations, such as for non-monotonic reasoning, can be better
captured by conditional logics (such as [Delgrande, 1987; Kraus et al., 1990;
Arló-Costa and Shapiro, 1992]).

6 Argument graphs

We now investigate options for instantiating argument graphs. We start with
descriptive argument graphs, and then turn to generated argument graphs,
using simple logic, classical logic, and conditional logic.

6.1 Descriptive graphs

For the descriptive approach to argument graphs, we assume that we have some
abstract argument graph as the input, together with some informal description
of each argument. For instance, when we listen to a debate on the radio, we may
identify a number of arguments and counterarguments, and for each of these we
may be able to write a brief text summary. So if we then want to understand
this argumentation in more detail, we may choose to instantiate each argument
with a deductive argument. So for this task we choose the appropriate logical
formulae for the premises and claim for each argument (compatible with the
choice of base logic). Examples of descriptive graphs are given in Figure 4 using
simple logic, and in Example 6.1 and Figure 5 using classical logic.

Example 6.1 Consider the following argument graph where A1 is “The flight
is low cost and luxury, therefore it is a good flight”, and A2 is “A flight cannot
be both low cost and luxury”.

A1 A2

For this, we instantiate the arguments in the above abstract argument graph to
give the following descriptive graph. So in the descriptive graph below, A2 is a
classical undercut to A1.

A1 = 〈{lowCostFly, luxFly, lowCostFly ∧ luxFly→ goodFly}, goodFly〉

A2 = 〈{¬(lowCostFly ∧ luxFly)},¬lowCostFly ∨ ¬luxFly〉

So for the approach of descriptive graphs, we do not assume that there is
an automated process that constructs the graphs. Rather the emphasis is on
having a formalization that is a good representation of the argumentation. This
is so that we can formally analyze the descriptive graph, perhaps as part of

A Review of Argumentation Based on Deductive Arguments 21

some sense-making or decision-making process. Nonetheless, we can envisage
that in the medium term natural language processing technology will be able
to parse the text or speech (for instance in a discussion paper or in a debate) in
order to automatically identify the premises and claim of each argument and
counterargument.

Since we are primarily interested in representational and analytical issues
when we use descriptive graphs, a richer logic such as classical logic is a more
appealing formalism than a weaker base logic such as simple logic. Given a
set of real-world arguments, it is often easier to model them using deductive
arguments with classical logic as the base logic than a “rule-based logic” like
simple logic as the base logic. For instance, in Example 6.1, the undercut does
not claim that the flight is not low cost, and it does not claim that it is not
luxury. It only claims that the flight cannot be both low cost and luxury. It is
natural to represent this exclusion using disjunction.

As another example of the utility of classical logic as base logic, consider the
importance of quantifiers in knowledge which require a richer language such
as classical logic for reasoning with them. Moreover, if we consider that many
arguments are presented in natural language (spoken or written), and that
formalizing natural language often calls for a richer formalism such as classical
logic (or even richer), it is valuable to harness classical logic in formalizations
of deductive argumentation.

Conditional logics are also important formalisms for capturing some of the
subtleties of natural language as they can reflect hypothetical statements, and
can often provide a better representation of non-monotonic statements. We
give an example of descriptive graph using conditional logic in Figure 6.

6.2 Generated graphs based on simple logic

Given a knowledgebase ∆, we can generate an argument graph G = (A,R)
where A is the set of simple arguments obtained from ∆ as follows and R ⊆
A×A is simple undercut.

Definition 6.2 Let ∆ be a simple logic knowledgebase. A simple exhaustive
graph for ∆ is an argument graph G = (A,R) where A is Argumentss(∆) and
R is Attackss(∆) defined as follows

Argss(∆) = {〈Φ, α〉 | Φ ⊆ ∆ and 〈Φ, α〉 is a simple argument }
Attackss(∆) = {(A,B) | A,B ∈ Argss(∆) and A is a simple undercut of B}

This is an exhaustive approach to constructing an argument graph from a
knowledgebase since all the simple arguments and all the simple undercuts are
in the argument graph. We give an example of such an argument graph in
Figure 7.

Simple exhaustive graphs provide a direct and useful way to instantiate
argument graphs. There are various ways the definitions can be adapted, such
as defining the attacks to be the union of the simple undercuts and the simple
rebuts.

22 Philippe Besnard, Anthony Hunter

bp(high)

ok(diuretic)

¬give(betablocker)
bp(high) ∧ ok(diuretic) ∧ ¬give(betablocker)→ give(diuretic)

give(diuretic)

bp(high)

ok(betablocker)

¬give(diuretic)
bp(high) ∧ ok(betablocker) ∧ ¬give(diuretic)→ give(betablocker)

give(betablocker)

symptom(emphysema),
symptom(emphysema)→ ¬ok(betablocker)
¬ok(betablocker)

Figure 4. A descriptive graph representation of the abstract argument graph
in Figure 2 using simple logic. The atom bp(high) denotes that the patient
has high blood pressure. Each attack is a simple undercut by one argu-
ment on another. For the first argument, the premises include the assump-
tions ok(diuretic) and ¬give(betablocker) in order to apply its simple
rule. Similarly, for the second argument, the premises include the assumptions
ok(betablocker) and ¬give(diuretic) in order to apply its simple rule.

A Review of Argumentation Based on Deductive Arguments 23

bp(high)

ok(diuretic)

bp(high) ∧ ok(diuretic)→ give(diuretic)

¬ok(diuretic) ∨ ¬ok(betablocker)
give(diuretic) ∧ ¬ok(betablocker)

bp(high)

ok(betablocker)

bp(high) ∧ ok(betablocker)→ give(betablocker)

¬ok(diuretic) ∨ ¬ok(betablocker)
give(betablocker) ∧ ¬ok(diuretic)

symptom(emphysema),
symptom(emphysema)→ ¬ok(betablocker)
¬ok(betablocker)

Figure 5. A descriptive graph representation of the abstract argument graph
in Figure 2 using classical logic. The atom bp(high) denotes that the patient
has high blood pressure. The top two arguments rebut each other (i.e. the
attack is classical defeating rebut). For this, each argument has an integrity
constraint in the premises that says that it is not ok to give both betablocker
and diuretic. So the top argument is attacked on the premise ok(diuretic)
and the middle argument is attacked on the premise ok(betablocker). So we
are using the ok predicate as a normality condition for the rule to be applied
(as suggested in Section 5.1).

24 Philippe Besnard, Anthony Hunter

matchTonight

matchTonight⇒ JohnGoesToTheStadium

JohnGoesToTheStadium

matchTonight ∧ JohnHasEnoughMoney ⇒ JohnGoesToTheStadiumt

matchTonight ∧ JohnHasEnoughMoney ⇒ JohnGoesToTheStadium

Figure 6. A descriptive graph that captures two arguments. The first argument
says John will go to the stadium because there is a match tonight. The second
corrects the first argument by correcting the circumstances under which John
will go to watch the match at the stadium.

〈{a, c, a ∧ c→ ¬a},¬a〉 〈{a, c, a ∧ c→ ¬b},¬b〉 〈{b, b→ ¬c},¬c〉

Figure 7. An exhaustive simple logic argument graph where ∆ = {a, b, c, a∧c→
¬a, b→ ¬c, a∧ c→ ¬b}. Note, that this exhaustive graph contains a self cycle,
and an odd length cycle.

A Review of Argumentation Based on Deductive Arguments 25

6.3 Generated graphs based on classical logic

In this section, we consider generated graphs for classical logic. We start with
the classical exhaustive graphs which are the same as the simple exhaustive
graphs except we use classical arguments and attacks. We show that whilst this
provides a comprehensive presentation of the information, its utility is limited
for various reasons. We then show that by introducing further information,
we can address these shortcomings. To illustrate this, we consider a version
of classical exhaustive graphs augmented with preference information. This
is just one possibility for introducing extra information into the construction
process.

6.3.1 Classical exhaustive graphs

Given a knowledgebase ∆, we can generate an argument graph G = (A,R)
where A is the set of arguments obtained from ∆ as follows and R ⊆ A×A is
one of the definitions for classical attack.

Definition 6.3 Let ∆ be a classical logic knowledgebase. A classical exhaus-
tive graph is an argument graph G = (A,R) where A is Argumentsc(∆) and
R is AttacksXc (∆)) defined as follows where X is one of the attacks given in
Definition 5.5 such as defeater, direct undercut, or rebuttal.

Argumentsc(∆) = {〈Φ, α〉 | Φ ⊆ ∆ and 〈Φ, α〉 is a classical argument }
AttacksXc (∆) = {(A,B) ∈ Argumentsc(∆)× Argumentsc(∆) | A is X of B}

This is a straightforward approach to constructing an argument graph from a
knowledgebase since all the classical arguments and all the attacks (according
to the chosen definition of attack) are in the argument graph as illustrated
in Figure 8. However, if we use this exhaustive definition, we obtain infinite
graphs, even if we use a knowledgebase with few formulae. For instance, if
we have an argument 〈{a}, a〉, we also have arguments such as 〈{a}, a ∨ a〉,
〈{a}, a ∨ a ∨ a〉, etc, as well as 〈{a},¬¬a〉, etc.

Even though the graph is infinite, we can present a finite representation of
it, by just presenting a representative of each class of structurally equivalent
arguments (as considered in [Amgoud et al., 2011]), where we say that two
arguments Ai and Aj are structurally equivalent in G = (A,R) when the
following conditions are satisfied: (1) if Ak attacks Ai, then Ak attacks Aj ; (2)
if Ak attacks Aj , then Ak attacks Ai; (3) if Ai attacks Ak, then Aj attacks Ak;
and (4) if Ai attacks Ak, then Aj attacks Ak. For example, in Figure 8, the
argument A4 is a representative for 〈{b}, b〉, 〈{b}, a ∨ b〉, 〈{b},¬a ∨ b〉, etc.

We can also ameliorate the complexity of classical exhaustive graphs by
presenting a focal graph (as discussed in Section 2). We illustrate this in
Figure 9.

To conclude our discussion of classical exhaustive graphs, the definitions en-
sure that all the ways that the knowledge can be used to generate classical
arguments and classical counterarguments (modulo the choice of attack rela-
tion) are laid out. This may involve many arguments being presented. This

26 Philippe Besnard, Anthony Hunter

A1 = 〈{a,¬a ∨ ¬b},¬b〉 A2 = 〈{b,¬a ∨ ¬b},¬a〉

A3 = 〈{a, b},¬(¬a ∨ ¬b)〉

A4 = 〈{b}, . . .〉 A5 = 〈{a}, . . .〉

A6 = 〈{¬a ∨ ¬b}, . . .〉 A7 = 〈{a,¬a ∨ ¬b}, . . .〉A8 = 〈{b,¬a ∨ ¬b}, . . .〉

A9 = 〈{a, b}, . . .〉

Figure 8. An exhaustive classical logic argument graph where ∆ = {a, b,¬a ∨
¬b} and the attack is direct undercut. Note, argument A4 represents all argu-
ments with a claim that is implied by b, argument A5 represents all arguments
with a claim that is implied by a, argument A6 represents all arguments with
a claim that is implied by ¬a∨¬b, argument A7 represents all arguments with
a claim that is implied by a ∧ ¬b except ¬b or any claim implied by a or any
claim implied by ¬a ∨ ¬b, argument A8 represents all arguments with a claim
that is implied by ¬a ∧ b except ¬a or any claim implied by b or any claim
implied by ¬a ∨ ¬b, and argument A9 represents all arguments with a claim
that is implied by a ∧ b except ¬(¬a ∨ ¬b) or any claim implied by a or any
claim implied by b.

A1 = 〈{a,¬a ∨ ¬b},¬b〉 A2 = 〈{b,¬a ∨ ¬b},¬a〉

A3 = 〈{a, b},¬(¬a ∨ ¬b)〉

Figure 9. Focal graph formed from Figure 8 where focus is {A1, A2}.

A Review of Argumentation Based on Deductive Arguments 27

can be addressed by the generation process discriminating between the argu-
ments (and/or the attacks) based on extra information about the arguments
and/or information about the audience. There are many ways that this can be
done. In the next section, we consider a simple proposal for augmenting the
generation process with preferences over arguments.

6.3.2 Preferential exhaustive graphs

One of the first proposals for capturing the idea of preferences in constructing
argument graphs was preference-based argumentation frameworks (PAF) by
[Amgoud and Cayrol, 2002]. This generalizes Dung’s definition for an argument
graph by introducing a preference relation over arguments that in effect causes
an attack to be ignored when the attacked argument is preferred over the
attacker. So in PAF, we assume a preference relation over arguments, denoted
�, as well as a set of arguments A and an attack relation R. From this, we need
to define a defeat relation D as follows, and then (A,D) is used as the argument
graph, instead of (A,R), with Dung’s usual definitions for extensions.

D = {(Ai, Aj) ∈ R | (Aj , Ai) 6∈�}

So with this definition for defeat, extensions for a preference-based argument
graph (A,R,�) can be obtained as follows: For S denoting complete, preferred,
stable or grounded semantics, Γ ⊆ A, Γ is an extension of (A,R,�) w.r.t.
semantics S iff Γ is an extension of (A,D) w.r.t. semantics S.

We now revise the definition for classical exhaustive graphs to give the fol-
lowing definition for preferential exhaustive graphs.

Definition 6.4 Let ∆ be a classical logic knowledgebase. A preferential ex-
haustive graph is an argument graph (Argumentsc(∆),AttacksXc,�(∆)) defined
as follows where X is one of the attacks given in Definition 5.5 such as defeater,
direct undercut, or rebuttal.

Argumentsc(∆) = {〈Φ, α〉 | Φ ⊆ ∆ & 〈Φ, α〉 is a classical argument }
AttacksXc,�(∆) = {(A,B) | A,B ∈ Argumentsc(∆) & A is X of B & (B,A) 6∈�}

We give an illustration of a preferential exhaustive graph in Figure 10, and
we give an illustration of a focal graph obtained from a preferential exhaustive
graph in Example 6.5.

Example 6.5 This example concerns two possible treatments for glaucoma
caused by raised pressure in the eye. The first is a prostoglandin analogue
(PGA) and the second is a betablocker (BB). Let ∆ contain the following six
formulae. The atom p1 is the fact that the patient has glaucoma, the atom p2
is the assumption that it is ok to give PGA, and the atom p3 is the assumption
that it is ok to give BB. Each implicational formula (i.e. p4 and p5) captures
the knowledge that if a patient has glaucoma, and it is ok to give a particular

28 Philippe Besnard, Anthony Hunter

A1 = 〈{a,¬a ∨ ¬b},¬b〉 A2 = 〈{b,¬a ∨ ¬b},¬a〉

A3 = 〈{a, b},¬(¬a ∨ ¬b)〉

A4 = 〈{b}, . . .〉 A5 = 〈{a}, . . .〉

A6 = 〈{¬a ∨ ¬b}, . . .〉 A7 = 〈{a,¬a ∨ ¬b}, . . .〉A8 = 〈{b,¬a ∨ ¬b}, . . .〉

A9 = 〈{a, b}, . . .〉

Figure 10. The preferential exhaustive graph where the knowledgesbase is ∆ =
{a, b,¬a∨¬b} and the attack is direct undercut. This is the same knowledgebase
and attack relation as in Figure 8. For the preference relation, A1 is preferred
to all other arguments, A2 is preferred to all other arguments apart from A1,
and the remaining arguments are equally preferred. So for all i such that i 6= 1,
A1 ≺ Ai, and for all i such that i 6= 1 and i 6= 2, A2 ≺ Ai. This results in three
attacks in Figure 8 not appearing in this graph. The dropped attacks are A2

on A1, A3 on A1, and A3 on A1.

drug, then give that drug. Formula p6 is an integrity constraint that ensures
that only one treatment is given for the condition.

p1 = glaucoma p4 = glaucoma ∧ ok(PGA)→ give(PGA)
p2 = ok(PGA) p5 = glaucoma ∧ ok(BB)→ give(BB)
p3 = ok(BB) p6 = ¬ok(PGA) ∨ ¬ok(BB)

There are numerous arguments that can be constructed from this set of formulae
such as the following.

A1 = 〈{p1, p2, p4, p6}, give(PGA) ∧ ¬ok(BB)〉 A5 = 〈{p1, p2, p4}, give(PGA)〉
A2 = 〈{p1, p3, p5, p6}, give(BB) ∧ ¬ok(PGA)〉 A6 = 〈{p1, p3, p5}, give(BB)〉
A3 = 〈{p2, p3}, ok(PGA) ∧ ok(BB)〉 A7 = 〈{p2, p6},¬ok(BB)〉
A4 = 〈{p6},¬ok(PGA) ∨ ¬ok(BB)〉 A8 = 〈{p3, p6},¬ok(PGA)〉

Let Argumentsc(∆) be the set of all classical arguments that can be constructed
from ∆, and let the preference relation � be such that Ai � A1 and Ai � A2

for all i such that i 6= 1 and i 6= 2. Furthermore, let Π = {A1, A2} be the
focus (i.e. the arguments of interest). In other words, we know that each of
these two arguments in the focus contains all the information we are interested
in (i.e. we want to determine the options for treatment taking into account
the integrity constraint). This would give us the following focal graph using the
classical direct defeater definition for attack.

A Review of Argumentation Based on Deductive Arguments 29

A1 = 〈{p1, p2, p4, p6}, give(PGA) ∧ ¬ok(BB)〉

A2 = 〈{p1, p3, p5, p6}, give(BB) ∧ ¬ok(PGA)〉

By taking this focal graph, we have ignored arguments such as A3 to A8 which
do not affect the dialectical status of A1 or A2 given this preference relation.

Using preferences is a general approach. There is no restriction on what
preference relation we use over arguments, and there are various natural inter-
pretations for this ranking such as capturing belief for arguments (where the
belief in the argument can be based on the belief for the premises and/or claim),
and capturing the relative number of votes for arguments (where a group of
voters will vote for or against each argument), etc.

To conclude, by introducing preferences over arguments, we can reduce the
number of attacks that occur. Using preferences over arguments is a form of
meta-information, and with the definition for preference-based argumentation
(as defined by [Amgoud and Cayrol, 2002]), it supports selectivity in gen-
erating argument graphs that discriminates between arguments and thereby
between attacks. With this definition more practical argument graphs can be
constructed than with the definition for classical exhaustive graphs.

7 Properties of deductive arguments

In this section, we consider some properties of argumentation based on deduc-
tive arguments. Out focus is predominantly on classical logic. We consider
postulates for counterarguments (i.e. for the attack relation), postulates for
extensions, and properties of the structure of generated graphs.

7.1 Counterargument properties

We consider some desirable properties of attack relations in the form of postu-
lates and classify several well-known attack relations from the literature with
regards to the satisfaction of these postulates. We define these postulates in
terms of function D where D(A,B) = > holds iff A attacks B. Different defini-
tions of counterargument, give is different definitions of attack. So for example,
if A is a defeater of B, then this denoted by DD(A,B) = >.

In Table 2, we review postulates relevant to attack functions. From now on,
A,B,C and their primed versions will stand for arguments. We explain them
as follows:

• (D0) This is a classic syntax-independence requirement: the syntax of the
components of two arguments should not play a role in deciding whether
there is an attack between those arguments;

• (D1) This mandates that if an argument attacks another, then it must
be that the claim of the former is inconsistent with the support of the

30 Philippe Besnard, Anthony Hunter

Name Property

D0 if A ≡ A′, B ≡ B′ then D(A,B) = D(A′, B′)
D1 if D(A,B) = > then {Claim(A)} ∪ Support(B) ` ⊥
D2 if D(A,B) = > and Claim(C) ≡ Claim(A) then D(C,B) = >
D2i if D(A,B) = > and Claim(C) ` Claim(A) then D(C,B) = >
D3 if D(A,B) = > and support(B) = support(C) then D(A,C) = >
D3i if D(A,B) = > and support(B) ⊆ support(C) then D(A,C) = >
D4 if Arcs(G) = ∅ then MinIncon(∆) = ∅

Table 2. Postulates for an attack relation D. We denote an attack relation
from A to B as holding when D(A,B) = >.

latter. This requirement reflects a fundamental assumption in logical ar-
gumentation, namely that if two arguments are logically consistent there
cannot be any attack between them.

• (D2) This imposes a certain fairness restrictions on existing attacks by
requiring that all arguments that have equivalent claims with that of A
should attack B.

• (D2i) is a strengthening of D2. It requires that any argument with a
stronger claim than A, i.e., one that logically entails that of A, should
also attack anything A attacks

• (D3) This requires that if A attacks B then all arguments with the same
support with that of B should also be attacked by A.

• (D3i) is a strengthening of D3 proposed by Amgoud and Besnard [Am-
goud and Besnard, 2009]. It mandates that any argument whose support
is a superset of that of B, and thus is stronger than that of B, should
also be attacked by A.

• (D4) This postulate can be read as follows: if we restrict D on the argu-
ments that can be generated from ∆ and find that no two such arguments
attack each other, then it must be that ∆ itself is consistent (hence it has
no minimal inconsistent subsets).

Given the postulates in Table 2, we can classify the notions of counterargu-
ment given for classical logic. This classification is given in Table 3,

If we then impose further constraints as listed in Table 4, such as constraints
on the claim of the attacker D1i or D1ii, and D5 to D5iii, and constraints forcing
the existence of attacks D6 to D6iii, then we obtain the following proposition
provides characterization results for the classical attack relations. This means
we have alternative definitions for our attack relation that are specified entirely
in terms of a set of properties. For the proofs, see [Gorogiannis and Hunter,
2011].

A Review of Argumentation Based on Deductive Arguments 31

DD DDD DU DDU DCU DR DDR

D0 Yes Yes Yes Yes Yes Yes Yes
D1 Yes Yes Yes Yes Yes Yes Yes
D2 Yes Yes Yes Yes Yes Yes Yes
D2i Yes Yes No No No No Yes
D3 Yes Yes Yes Yes Yes No No
D3i Yes Yes Yes Yes No No No
D4 Yes Yes Yes Yes Yes Yes Yes

Table 3. Postulates satsified by attack functions

Name Property

D1i if D(A,B) = > then ∃φ ∈ Support(B) s.t. Claim(A) ` ¬φ
D1ii if D(A,B) = > then Claim(A) ` ¬Claim(B)
D5 if D(A,B) = > then ¬Claim(A) `

∧
Support(B)

D5i if D(A,B) = > then ∃φ ∈ Support(B) s.t. ¬Claim(A) ` φ
D5ii if D(A,B) = > then ¬Claim(A) ` Claim(B)
D5iii if D(A,B) = > then ∃X ⊆ Support(B) s.t. ¬Claim(A) ≡

∧
X

D6 if {Claim(A)} ∪ Support(B) ` ⊥
then there exists C s.t. Claim(A) ` Claim(C) and D(C,B) = >

D6i if ∃φ ∈ Support(B) s.t. Claim(A) ` ¬φ
then there exists C s.t. Claim(A) ` Claim(C) and D(C,B) = >

D6ii if Claim(A) ` ¬Claim(B)
then there exists C s.t. Claim(A) ` Claim(C) and D(C,B) = >

D6iii if ∃X ⊆ Support(B) s.t. Claim(A) ≡ ¬
∧
X

then D(A,B) = >

Table 4. Further constraints on the attack relation.

32 Philippe Besnard, Anthony Hunter

Proposition 7.1 Let D be an attack relation.

• D = DD is a defeater relation iff D satisfies D1, D2i and D6

• D = DDD is a direct defeater relation iff D satisfies D1i, D2i and D6i

• D = DDR is a defeating rebuttal relation iff D satisfies D1ii, D2i and
D6ii

• D = DCU is a canonical undercut relation iff D satisfies D1, D2, D5 and
D6

• D = DDU is a direct undercut relation iff D satisfies D1i, D2, D5i and
D6i

• D = DR is a rebuttal relation iff D satisfies D1ii, D2, D5ii and D6ii

• D = DU is an undercut relation iff D satisfies D5iii and D6iii

Since classical logic offers a variety of different options for defining a coun-
terargument (i.e. an attack relation), it is helpful to characterize the options
in terms of postulates. Furthermore, these postulates can be used or adapted
for classifying and characterizing attack relations for a variety of base logics.

7.2 Extension properties

Various postulates have been proposed for classical exhaustive graphs (e.g.
[Gorogiannis and Hunter, 2011]). Some of these are concerned with consistency
of the set of premises (or set of claims) obtained from the arguments in an
extension according to one of Dung’s dialectical semantics. In the rest of this
subsection, we restrict consideration to classical logic arguments, though the
postulates can be adapted for other base logics.

To consider extension properties, we will introduce some subsidiary defi-
nitions. We start with sceptical acceptance of arguments and credulous ac-
ceptance of arguments defined as follows where G is an argument graph and
Y ∈ {pr, gr, st} is a dialectical semantics (where pr denotes preferred, gr de-
notes grounded, and st denotes stable). and ExtensionsY (G) is the set of exten-
sions obtained according to Y . If ExtensionsY (G) = ∅, then ScepticalY (G) =
CredulousY (G) = ∅, otherwise

ScepticalY (G) =
⋂

S∈ExtensionY (G)

S

CredulousY (G) =
⋃

S∈ExtensionY (G)

S

So, for example, we will say that an argument A in Nodes(G) is sceptically
accepted in the preferred semantics if A ∈ Scepticalpr(G). Clearly, we have the
following observations where Y ∈ {pr, gr, st}

A Review of Argumentation Based on Deductive Arguments 33

• ScepticalY (G) ⊆ CredulousY (G)

• Credulousgr(G) = Scepticalgr(G)

The definition of an exhaustive argument graph takes an attack function D
and a knowledgebase ∆ in order to produce the argument graph. Such an argu-
ment graph can be evaluated with choices for dialectical semantics (preferred,
grounded, etc) and acceptability criteria (sceptical or credulous).

Since the arguments are logical, we can evaluate the logical properties of
the extensions. We will review the free postulate, non-free postulate, and
consistency postulates, in the rest of this section. For this, we require the
following definition for the free formulae which is the set of formulae not in any
minimal inconsistent subset of ∆.

Free(∆) = {α ∈ ∆ | α 6∈
⋃

Γ∈MinIncon(∆)

Γ}

where

MinIncon(∆) = {Γ ⊆ ∆ | Γ ` ⊥ and for all Γ′ ⊂ Γ,Γ′ 6` ⊥}

We identify the free arguments in a graph (i.e. the arguments with no
premises involved in a minimal inconsistent subset of the knowledgebase) and
the non-free arguments in a graph (i.e. the arguments with one or more premise
involved in a minimal inconsistent subset of the knowledgebase) as follows.

FreeArguments(G) = {A ∈ Nodes(G) | Support(A) ⊆ Free(∆)}

NonFreeArguments(G) = {A ∈ Nodes(G) | Support(A) 6⊆ Free(∆)}

Our first extension-based postulate is the free postulate (defined next) states
that the free arguments are sceptical arguments (i.e. in all extensions of the
graph). This encodes our expectation that since free arguments are uncontro-
versial, they should be in every extension.

Definition 7.2 For a descriptive or generated argument graph G based on clas-
sical logic arguments, the free postulate is defined as follows, where Y ∈
{pr, gr, st}.

FreeArguments(G) ⊆ ScepticalY (G)

For the proof of the following proposition, see [Gorogiannis and Hunter,
2011].

Proposition 7.3 If the attack relation D satisfies D1, then D satisfies the free
postulate.

All the attack functions considered for classical logic in this paper satisfy D1,
and therefore satisfy the free postulate. Therefore, for all semantics considered,
all extensions of G contain all free arguments.

34 Philippe Besnard, Anthony Hunter

Next, we define the non-free postulate. This states that there exists a knowl-
edgebase that is inconsistent and for which some arguments are not credulously
accepted.

Definition 7.4 For a descriptive or generated argument graph G based on clas-
sical logic arguments, the non-free postulate is defined as follows, where
Y ∈ {pr, gr, st}.

∃∆ s.t.
⋃

A∈Nodes(G) Support(A) ⊆ ∆

and Nonfree(G) 6= ∅ and CredulousX(G) 6= Nodes(G)

Failure means that if Support(A) ⊆ ∆, then A is credulously accepted. So
for any argument that can be formed from a knowledgebase, there is a preferred
extension that contains that argument. So if it does fail for an attack function
D and a dialectical semantics Y , then this indicates that the combination of D
and Y is, in a sense, very credulous. For the proof of the following proposition,
see [Gorogiannis and Hunter, 2011].

Proposition 7.5 We consider the non-free postulate with respect to the se-
mantics where the attack relation is undercut, direct undercut, canonical un-
dercut, or rebuttal.

• For stable, preferred, and complete extensions, the non-free postulate is
not satisfied.

• For grounded extensions, the non-free postulate is satisfied.

Finally, we consider the consistency postulates. These postulates are vari-
ations of the requirement that certain arguments’ supports or claims must be
consistent together. The expectation is that once an extension is obtained, then
the arguments contained in it present a somehow consistent set of assumptions.
Applying this restriction to the supports of the arguments or to their claims,
and to the sceptically accepted set of arguments or to all extensions individu-
ally, yields the versions of this principle listed below.

Definition 7.6 For a descriptive or generated argument graph G based on
classical logic arguments, the consistency postulates are defined as follows,

A Review of Argumentation Based on Deductive Arguments 35

Attack CN1 CN1’ CN2 CN2’

Direct undercut Yes Yes Yes Yes
Direct defeat Yes Yes Yes Yes
Canonical undercut Yes Yes Yes Yes
Rebut No No No No

Table 5. Satisfaction of consistency postulates for grounded semantics

Attack CN1 CN1’ CN2 CN2’

Direct undercut Yes Yes Yes Yes
Direct defeat Yes Yes Yes Yes
Canonical undercut Yes Yes No No
Rebut No No No No

Table 6. Satisfaction of consistency postulates for preferred and complete se-
mantics

where Y ∈ {pr, gr, st}.

(CN1)
⋃

A∈scepticalY (G)

Support(A) 6` ⊥

(CN2)
⋃
A∈S

Support(A) 6` ⊥, for all S ∈ ExtensionY (G)

(CN1′)
⋃

A∈ScepticalY (G)

Claim(A) 6` ⊥

(CN2′)
⋃
A∈S

Claim(A) 6` ⊥, for all S ∈ ExtensionY (G)

The reason we provide all four versions of the consistency postulates is that
it is not yet clear whether one form of the postulate is more appropriate than
others. For example, consistency postulates similar to CN1’ and CN2’ have
been proposed in [Caminada and Amgoud, 2005] in the context of rule-based
argumentation systems and versions of CN1 and CN2 have been proposed in
[Amgoud and Besnard, 2009] for classical logics. It should be clear that CN2
entails CN1, CN2’ entails CN1’, CN1 entails CN1’ and CN2 entails CN2’.

We summarize which attack relations satisfy which of the four consistency
postulates in Table 7.2 for grounded semantics and in Table 7.2 for preferred,
stable, and complete semantics. These results show that for some attack rela-
tion (e.g. rebuttal), the consistent extension property is not guaranteed (as in
Example 7.7) whereas for other choices of attack relation (e.g. direct undercut),

36 Philippe Besnard, Anthony Hunter

the consistent extension property is guaranteed. We illustrate a consistent set
of premises obtained from arguments in a preferred extension in Example 7.8.

Example 7.7 Let ∆ = {a ∧ b,¬a ∧ c}. For the reviewed semantics for rebut,
the following are arguments in any extension: A1 = 〈{a ∧ b}, b〉 and A2 =
〈{¬a ∧ c}, c〉. Clearly {a ∧ b,¬a ∧ c} ` ⊥. Hence, the consistent extensions
property fails for rebut.

Example 7.8 Consider the argument graph given in Figure 8. There are three
preferred extensions {A1, A5, A6, A7}, {A2, A4, A6, A8}, and {A3, A4, A5, A9}.
In each case, the union of the premises is consistent. For instance, for the first
extension,

Support(A1) ∪ Support(A5) ∪ Support(A6) ∪ Support(A7) 6` ⊥

Example 7.9 Consider the argument graph given in Figure 9. There are three
preferred extensions {A1}, {A2}, and {A3}. In each case, the union of the
premises is consistent.

The failure of the consistency postulates with some attack relations is an
issue that may be interpreted as a weakness of the attack relation or of the
specific semantics, and perhaps raises the need for alternatives to be identified.
Another response is that it is not the attack relation and dialectical seman-
tics that should be responsible for ensuring that all the premises used in the
winning arguments are consistent together. Rather, it could be argued that
checking that the premises used are consistent together should be the responsi-
bility of something external to the defeat relation and dialectical semantics, and
so knowing whether the consistent extensions property holds or not influences
what external mechanisms are required for checking. Furthermore, checking
consistency of premises of sets of arguments may be part of the graph con-
struction process. For instance, in Garcia and Simari’s proposal for dialectical
trees [Garćıa and Simari, 2004], there are constraints on what arguments can
be added to the tree based on consistency with the premises of other arguments
in the tree.

7.3 Structural properties

Simple logic has the property that for any argument graph, there is a knowl-
edgebase that can be used to generate it: Let (N,E) be a directed graph
(i.e. N is a set of nodes, and E is a set of edges between nodes), then there
is a simple logic knowledgebase ∆ such that the generated argument graph
(Argumentss(∆),Attackss(∆)) is isomorphic to (N,E). So simple exhaustive
graphs are said to be constructively complete for graphs.

To show that simple exhaustive graphs are constructively complete for graphs,
we can use a coding scheme for the premises so that each argument is based
on a single simple rule where the antecedent is a conjunction of one or more

A Review of Argumentation Based on Deductive Arguments 37

positive literals, and each consequent is a negative literal unique to that simple
rule (i.e. it is an identifier for that rule and therefore for that argument). If
we want one argument to attack another, and the attacking argument has the
consequent ¬α, then the attacked argument needs to have the positive literal
α in the antecedent of its simple rule. The restriction of each rule to only have
positive literals as conditions in the antecedent, and a negative literal as its
consequent, means that the rules cannot be chained. This ensures that the
premises of each argument has only one simple rule. We illustrate this in the
following example.

Example 7.10 Consider the following directed graph (N,E). Note, that it
includes a self-attack, bidirectional attacks and uni-directional attacks.

Let ∆ = {a, b, c, a∧c→ ¬a, a∧c→ ¬b, b→ ¬c}. From this we can construct the
following exhaustive argument graph which is isomorphic to the above directed
graph. Note that each argument is identified by a single simple rule.

〈{a, c, a ∧ c→ ¬a},¬a〉 〈{a, c, a ∧ c→ ¬b},¬b〉 〈{b, b→ ¬c},¬c〉

In contrast to simple logic, the definition for classical exhaustive graphs
(i.e. classical logic, with any of the definitions for counterarguments), is not
constructively complete for graphs. Since the premises of a classical argument
are consistent, by definition, it is not possible for a classical argument to attack
itself using the definitions for attack given earlier. But, there are many other
graphs for which there is no classical logic knowledgebase that can be used to
generate a classical exhaustive graph that is isomorphic to it. To illustrate this
failure, we consider in Example 7.11 the problem of constructing a component
with two arguments attacking each other. Note, this is not a pathological
example as there are many graphs that contain a small number of nodes and
that cannot be generated as a classical exhaustive graph.

Example 7.11 Let ∆ = {a,¬a} be a classical logic knowledgebase. Hence,
there are two classical arguments A1 and A2 that are direct undercuts of each
other. Plus, there is the representative A4 for arguments with a claim that is
strictly weaker than a (i.e. the claim b is such that {a} ` b and {b} 6` {a}),

38 Philippe Besnard, Anthony Hunter

and there is the representative A3 for arguments with a claim that is strictly
weaker than ¬a (i.e. the claim b is such that {¬a} ` b and {b} 6` {¬a}).

A1 = 〈{a}, a〉 A2 = 〈{¬a},¬a〉A3 = 〈{¬a}, . . .〉 A4 = 〈{a}, . . .〉

Given a set of directed graphs Φ we can define further properties. The set
of directed graphs can be based on well-known definitions such as the set of
bipartite graphs, the set of acyclic graphs, or the set of trees, or it can be
defined in a domain specific way. A deductive argumentation system (i.e. a
base logic, a definition for arguments, a definition for counterarguments, and a
definition for a generated graphs) can then be evaluated with respect to Φ. We
give these properties where we consider systems defined in terms of definitions
for Arguments(∆) (i.e. the definition for arguments that can be obtained from
a knowledgebase ∆) and Attacks(∆) (i.e. the definition for attacks that can
be obtained from a knowledgebase ∆) with exhaustive graphs.

• A system (Arguments, Attacks) constructively covers Φ iff for all
G ∈ X, there is a ∆ and there is an A ∈ Arguments(∆), such that
(Arguments(∆), Attacks(∆)) = G.

• A system (Arguments, Attacks) is constructively covered by Φ iff for
all ∆ and for all A ∈ Arguments(∆), if (Arguments(∆), Attacks(∆)) = G
then G ∈ Φ.

• A system (Arguments, Attacks) is constructively complete for Φ iff
(Arguments, Attacks) constructively covers Φ and (Arguments, Attacks)
is constructively covered by Φ

The more general the class of graphs that a logical argument system can
cover, the wider the range of argumentation situations the logical argument
systems can capture. If one of these properties holds for a class of graphs,
then it can be described as a kind of structural property of the system. If
it fails then, it means that there are situations that cannot be captured by
the system. This is, however, not necessarily bad news. In fact, it is known
that the computational complexity of evaluating argumentation frameworks
can be decreased if the class of graphs is restricted, for instance to acyclic,
bipartite or symmetric graphs or to graphs which have certain parameters (like
treewidth) fixed (see for example [Coste-Marquis et al., 2005; Dunne, 2007;
Dvorák et al., 2012b; Dvorák et al., 2012a]).

7.4 Discussion of properties

In this section, we have considered a range of properties of argumentation
based on deductive arguments. For some choices of attack relation, there is a

A Review of Argumentation Based on Deductive Arguments 39

question of consistency (which may be an issue if no further consistency check-
ing is undertaken). Also, the definition for classical exhaustive graphs is not
constructively complete for graphs (which means that many argument graphs
cannot be generated as classical exhaustive graphs). Perhaps more problem-
atical is that even for small knowledgebases, the classical exhaustive graphs
that are generated are complex. Because of the richness of classical logic, the
knowledge can be in different combinations to create many arguments. Whilst,
we can ameliorate this problem by presenting argument graphs using a repre-
sentative for a class of structurally equivalent arguments, and by using focal
graphs, the graphs can still be large. What is evident from this is that there
needs to be more selectivity in the process of generating argument graphs. The
generation process needs to discriminate between the arguments (and/or the
attacks) based on extra information about the arguments and/or information
about the audience. There are many ways that this can be done.

8 Further reading

We provide further reading on formalization of deductive arguments and coun-
terarguments, properties of exhaustive graphs, the importance of selectivity in
generating argument graphs, and on automated reasoning.

8.1 Deductive arguments and counterarguments

There have been a number of proposals for deductive arguments using classical
propositional logic [Cayrol, 1995; Besnard and Hunter, 2001; Amgoud and Cay-
rol, 2002; Gorogiannis and Hunter, 2011], classical predicate logic [Besnard and
Hunter, 2005], description logic [Black et al., 2009; Moguillansky et al., 2010;
Zhang et al., 2010; Zhang and Lin, 2013], temporal logic [Mann and Hunter,
2008], simple (defeasible) logic [Governatori et al., 2004; Hunter, 2010], con-
ditional logic [Besnard et al., 2013], and probabilistic logic [Haenni, 1998;
Haenni, 2001; Hunter, 2013].

There has also been progress in understanding the nature of classical logic in
computational models of argument. Various types of counterarguments have
been proposed including rebuttals [Pollock, 1987; Pollock, 1992], direct un-
dercuts [Elvang-Gøransson et al., 1993; Elvang-Gøransson and Hunter, 1995;
Cayrol, 1995], and undercuts and canonical undercuts [Besnard and Hunter,
2001]. In most proposals for deductive argumentation, an argument A is a
counterargument to an argument B when the claim of A is inconsistent with
the support of B. It is possible to generalize this with alternative notions of
counterargument. For instance, with some common description logics, there
is not an explicit negation symbol. In the proposal for argumentation with
description logics, [Black et al., 2009] used the description logic notion of in-
coherence to define the notion of counterargument: A set of formulae in a
description logic is incoherent when there is no set of assertions (i.e. ground
literals) that would be consistent with the formulae. Using this, an argument
A is a counterargument to an argument B when the claim of A together with
the support of B is incoherent.

40 Philippe Besnard, Anthony Hunter

Meta-arguments for deductive argumentation was proposed by [Wooldridge
et al., 2005], and the investigation of the representation of argument schemes
in deductive argumentation was first proposed by [Hunter, 2008].

8.2 Properties of exhaustive argument graphs

In order to investigate how Dung’s notion of abstract argumentation can be in-
stantiated with classical logic, [Cayrol, 1995] presents results concerning stable
extensions of argument graphs where the nodes are classical logic arguments,
and the attacks are direct undercuts. As well as being the first paper to pro-
pose instantiating abstract argument graphs with classical arguments, it also
showed how the premises in the arguments in the stable extension correspond
to maximal consistent subsets of the knowledgebase, when the attack relation
is direct undercut.

Insights into the options for instantiating abstract argumentation with clas-
sical logic can be based on postulates. [Amgoud and Besnard, 2009] have
proposed a consistency condition and they examine special cases of knowledge
bases and symmetric attack relations and whether consistency is satisfied in this
context. Then [Amgoud and Besnard, 2010] extend this analysis by showing
correspondences between the maximal consistent subsets of a knowledgebase
and the maximal conflict-free sets of arguments.

Given the wide range of options for attack in classical logic, [Gorogiannis
and Hunter, 2011] propose a series of desirable properties of attack relations
to classify and characterize attack relations for classical logic. Furthermore,
they present postulates regarding the logical content of extensions of argument
graphs that may be constructed with classical logic, and a systematic study
is presented of the status of these postulates in the context of the various
combinations of attack relations and extension semantics.

Use of the notion of generated graphs then raises the question of whether for
a specific logical argument system S, and for any graph G, there is a knowl-
edgebase such that S generates G. If it holds, then it can be described as a
kind of “structural” property of the system [Hunter and Woltran, 2013]. If it
fails then, it means that there are situations that cannot be captured by the
system. The approach of simple exhaustive graphs is constructively complete
for graphs, whereas the approach of classical exhaustive graphs is not.

Preferences have been introduced into classical logic argumentation, and
used to instantiate abstract argumentation with preferences by [Amgoud and
Cayrol, 2002]. Amgoud and Vesic [Amgoud and Vesic, 2010] have shown how
preferences can be defined so as to equate inconsistency handling in argu-
mentation with inconsistency handling using Brewka’s preferred sub-theories
[Brewka, 1989].

8.3 Importance of selectivity in deductive argumentation

Some of the issues raised with classical exhaustive graphs (i.e. the lack of
structural completeness, the failure of consistent extensions property for some
choices of attack relation, and the correspondences with maximally consistent

A Review of Argumentation Based on Deductive Arguments 41

subsets of the knowledgebase) suggest that often we need a more sophisticated
way of constructing argument graphs. In other words, to reflect any abstract
argument graph in a logical argument system based on a richer logic, we need to
be selective in the choice of arguments and counterarguments from those that
can be generated from the knowledgebase. Furthermore, this is not just for the-
oretical interest. Practical argumentation often seems to use richer logics such
as classical logic, and often the arguments and counterarguments considered
are not exhaustive. Therefore, we need to better understand how the argu-
ments are selected. For example, suppose agent 1 posits A1 = 〈{b, b → a}, a〉,
and agent 2 then posits A2 = 〈{c, c→ ¬b},¬b〉. It would be reasonable for this
dialogue to stop at this point (since further arguments are only re-expressing
the same conflict, and so, in a sense, they would be redundant) even though
there are further arguments that can be constructed from the public knowledge
such as A3 = 〈{b, c→ ¬b},¬c〉. So in terms of constructing the constellation of
arguments and counterarguments from the knowledge, we need to know what
are the underlying principles for selecting arguments.

Selectivity in argumentation is an important and as yet under-developed
topic [Besnard and Hunter, 2008]. Two key dimensions are selectivity based
on object-level information and selectivity based on meta-level information.

• Selectivity based on object-level information In argumentation,
object-level information is the information in the premises and claims of
the arguments. So if these are generated by deductive reasoning from
a knowledgebase, then the object-level information is the information
in the knowledgebase. Selectivity based on object-level information is
concerned with having a more concise presentation of arguments and
counterarguments in an argument graph without changing the outcome
of the argumentation. For instance, a more concise presentation can be
obtained by removing structurally equivalent arguments or by using focal
graphs (as discussed in Section 6.3.1).

• Selectivity based on meta-level information In argumentation, meta-
level information is the information about the arguments and counterar-
guments (e.g. certainty and sources of the premises in arguments) and
information about the participants or audience of the argumentation (e.g.
the goals, beliefs, or biases of the audience). Selectivity based on meta-
level information is concerned with generating an argument graph us-
ing the meta-level information according to sound principles. By using
this extra information, a different argument graph may be obtained than
would be obtained without the extra information. For instance, with a
preference relation over arguments which is a form of meta-level informa-
tion, preference-based argumentation offers a principled way of generating
an argument graph that has potentially fewer attacks between arguments
than obtained with the classical exhaustive argument graph (as discussed
in Section 6.3.2).

42 Philippe Besnard, Anthony Hunter

Various kinds of meta-level information can be considered for argumenta-
tion including preferences over arguments, weights on arguments, weights on
attacks, a probability distribution over models of the language of the deduc-
tive argumentation, etc. The need for meta-level information also calls for
better modeling of the audience, of what they believe, of what they regard as
important for their own goals, etc, are important features of selectivity (see
for example [Hunter, 2004b; Hunter, 2004a]). Consider a journalist writing
a magazine article on current affairs. There are many arguments and coun-
terarguments that could be included, but the writer is selective. Selectivity
may be based on what the likely reader already believes and what s/he may
find interesting. Or, consider a lawyer in court, again there may be many
arguments and counterarguments, that could be used, but only some will be
used. Selection will in part be based on what could be believed by the jury,
and convince them to take the side of that lawyer. Or, consider a politician
giving a speech to an audience of potential voters. Here, the politician will
select arguments based on what will be of more interest to the audience. For
instance, if the audience is composed of older citizens, there may be more argu-
ments concerning healthcare, whereas if the audience is composed of younger
citizens, there may be more arguments concerning job opportunities. So whilst
selectivity is clearly important in real-world argumentation, we need principled
ways of bringing selectivity into structured argumentation such as that based
on deductive argumentation.

8.4 Automated reasoning for deductive argumentation

For argumentation, it is computationally challenging to generate arguments
from a knowledgebase with the minimality constraints using classical logic. If
we consider the problem as an abduction problem, where we seek the existence
of a minimal subset of a set of formulae that implies the consequent, then the
problem is in the second level of the polynomial hierarchy [Eiter and Gottlob,
1995]. The difficult nature of argumentation has been underlined by stud-
ies concerning the complexity of finding individual arguments [Parsons et al.,
2003], the complexity of some decision problems concerning the instantiation
of argument graphs with classical logic arguments and the direct undercut at-
tack relation [Wooldridge et al., 2006], and the complexity of finding argument
trees [Hirsch and Gorogiannis, 2009]. Encodation of these tasks as quantified
Boolean formulae also indicate that development of algorithms is a difficult
challenge [Besnard et al., 2009], and Post’s framework, has been used to give a
breakdown of where complexity lies in logic-based argumentation [Creignou et
al., 2011].

Despite the computational complexity results, there has been progress in
developing algorithms for constructing arguments and counterarguments. One
approach has been to adapt the idea of connection graphs to enable us to
find arguments. A connection graph [Kowalski., 1975; Kowalski., 1979] is a
graph where a clause is represented by a node and an arc (φ, ψ) denotes that
there is a disjunct in φ with its complement being a disjunct in ψ. Essentially

A Review of Argumentation Based on Deductive Arguments 43

this graph is manipulated to obtain a proof by contradiction. Furthermore,
finding this set of formulae can substantially reduce the number of formulae
that need to be considered for finding proofs for a claim, and therefore for
finding arguments and canonical undercuts. Versions for full propositional
logic, and for a subset of first-order logic, have been developed and implemented
[Efstathiou and Hunter, 2011].

Another approach for algorithms for generating arguments and counterar-
guments (canonical undercuts) has been given in a proposal that is based on
a SAT solver [Besnard et al., 2010]. This approach is based on standard SAT
technology and it is also based on finding proofs by contradiction.

8.5 Handling enthymemes

Real arguments (i.e. those presented by people in general) are normally en-
thymemes. We can consider two types which we will refer to as implicit support
enthymemes and implicit claim enthymemes. An implicit support enthymeme
only explicitly represents some of the premises for entailing its claim. An
implicit claim enthymeme not only misses some of the premises for entailing
its claim, but also does not explicitly represent its claim. So if Γ is the set of
premises explicitly given for an implicit support enthymeme, and α is the claim,
then Γ does not entail α, but there are some implicitly assumable premises Γ′

such that Γ ∪ Γ′ is a minimal consistent set of formulae that entails α. For
example, for a claim that you need an umbrella today, a husband may give his
wife the premise the weather report predicts rain. Clearly, the premise does not
entail the claim, but it is easy for the wife to identify the common knowledge
used by the husband (i.e. if the weather report predicts rain, then you need an
umbrella today) in order to reconstruct the intended argument correctly.

If we want to build agents that can understand real arguments coming from
humans, they need to identify the missing premises and missing claims with
some reliability. And if we want to build agents that can generate real argu-
ments for humans, they need to identify the premises and claims that can be
missed without causing undue confusion. Clearly, deciding how to construct
or deconstruct enthymemes is difficult, and proposals for logic-based formali-
sations of the process remain underdeveloped.

In [Hunter, 2007; Black and Hunter, 2008], we introduced a way for each
agent in a dialogue to have information about what it can use as shared knowl-
edge, and then a proponent can use this information to remove redundant
premises from an intended argument (creating an implicit support enthymeme),
and a recipient can use this information to identify the necessary premises in
order to recover the intended argument. Then in [Black and Hunter, 2012], this
proposal was extended by allowing each agent to also have a representation of
information requirements. These are formulae that the agent would like to
receive arguments about. So for example if an agent asks a question, it is mak-
ing an explicit declaration of an information requirement. By introducing the
notion of information requirements, we can formalise a key idea from relevance
theory that the relevance of an utterance depends on maximising cognitive

44 Philippe Besnard, Anthony Hunter

effect and minimising cognitive effort. This allows proponents to construct
both implicit support and implicit claim enthymemes that are relevant for the
intended recipient, and the recipient can deconstruct such enthymemes by us-
ing relevance criteria to overcome some of the ambiguities that normally arise
when trying to understand enthymemes. This has been further developed for
persuasion dialogues [Dupin de Saint-Cyr, 2011].

9 Discussion

Deductive argumentation is an appealing approach to instantiation of abstract
argumentation. A deductive argument has all the premises explicitly in the
support of the argument, and the claim is derived by the consequence relation
of the base logic. Since established and well-understood logics can be used as a
base logic, the semantics and proof theory for the individual arguments is inher-
ited from the base logic. This is important if we want to harness developments
in knowledge representation and in computational linguistics for specialized
logics. So for example, if we want to represent a natural language argument
as a deductive argument, we can use an appropriate logic from computational
linguistics to represent the information.

The approach is also flexible since different constraints can put on an ar-
gument (e.g. consistency, minimality, etc) and on the definition for counter-
argument (e.g. defeater, undercut, direct undercut, canonical undercut, rebut-
tal, etc). Furthermore, we can use the approach for descriptive graphs and for
generated graphs. Over the past few years, there has been substantial interest
in bipolar argumentation (see for example [Cayrol and Lagasquie-Schiex, 2005;
Oren and Norman, 2008; Nouioua and Risch, 2011]). In future work, we would
like to generalize the use of deductive arguments for bipolar argumentation.

Acknowledgements

The authors are very grateful to Henry Prakken for some very interesting and
valuable discussions on the nature of structural argumentation. The authors
are also very grategul to the anonymous reviewers for their comprehensive
and insightful feedback. This research was partly supported by EPSRC grant
EP/N008294/1.

BIBLIOGRAPHY
[Amgoud and Besnard, 2009] L. Amgoud and Ph. Besnard. Bridging the gap between ab-

stract argumentation systems and logic. In Proceedings of the 3rd International Confer-
ence on Scalable Uncertainty Management (SUM’09), volume 5785 of Lecture Notes in
Computer Science, pages 12–27. Springer, 2009.

[Amgoud and Besnard, 2010] L. Amgoud and Ph. Besnard. A formal analysis of logic-based
argumentation systems. In Proceedings of the 4th International Conference on Scalable
Uncertainty Management (SUM’10), volume 6379 of Lecture Notes in Computer Science,
pages 42–55. Springer, 2010.

[Amgoud and Cayrol, 2002] L. Amgoud and C. Cayrol. A reasoning model based on the
production of acceptable arguments. Annals of Mathematics and Artificial Intelligence,
34:197–215, 2002.

[Amgoud and Vesic, 2010] L. Amgoud and S. Vesic. Handling inconsistency with preference-
based argumentation. In Proceedings of the 4th International Conference on Scalable

A Review of Argumentation Based on Deductive Arguments 45

Uncertainty Management (SUM’10), volume 6379 of Lecture Notes in Computer Science,
pages 56–69. Springer, 2010.

[Amgoud et al., 2011] L. Amgoud, Ph. Besnard, and S. Vesic. Identifying the core of logic-
based argumentation systems. In Proceedings of the IEEE International Conference on
Tools with Artificial Intelligence, (ICTAI’11), pages 633–636. IEEE Press, 2011.

[Arló-Costa and Shapiro, 1992] H. Arló-Costa and S. Shapiro. Maps between conditional
logic and non-monotonic logic. In Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning (KR’92), page 553565. Morgan
Kaufmann, 1992.

[Baroni and Giacomin, 2007] P. Baroni and M. Giacomin. On principle-based evaluation of
extension-based argumentation semantics. Artificial Intelligence, 171:675–700, 2007.

[Besnard and Hunter, 2001] Ph. Besnard and A. Hunter. A logic-based theory of deductive
arguments. Artificial Intelligence, 128:203–235, 2001.

[Besnard and Hunter, 2005] Ph Besnard and A Hunter. Practical first-order argumenta-
tion. In Proceedings of the 20th American National Conference on Artificial Intelligence
(AAAI’05), pages 590–595. MIT Press, 2005.

[Besnard and Hunter, 2008] Ph. Besnard and A Hunter. Elements of Argumentation. MIT
Press, 2008.

[Besnard et al., 2009] Ph. Besnard, A. Hunter, and S. Woltran. Encoding deductive ar-
gumentation in quantified boolean formulae. Artificial Intelligence, 173(15):1406–1423,
2009.

[Besnard et al., 2010] Ph. Besnard, E. Gregoire, C. Piette, and B. Raddaoui. Mus-based
generation of arguments and counter-arguments. In Proceedings of the 11th IEEE In-
ternational Conference on Information Reuse and Integration (IRI’10), pages 239–244.
IEEE Press, 2010.

[Besnard et al., 2013] Ph. Besnard, E. Gregoire, and B. Raddaoui. A conditional logic-based
argumentation framework. In Proceedings of the 7th International Conference on Scalable
Uncertainty Management (SUM’13), volume 7958 of Lecture Notes in Computer Science,
pages 44–56. Springer, 2013.

[Black and Hunter, 2008] E. Black and A. Hunter. Using enthymemes in an inquiry dialogue
system. In Proceedings of the 7th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’08), pages 437–444. IFAAMAS, 2008.

[Black and Hunter, 2012] E Black and A Hunter. A relevance-theoretic framework for con-
structing and deconstructing enthymemes. Journal of Logic and Computation., 22(1):55–
78, 2012.

[Black et al., 2009] E. Black, A Hunter, and J Pan. An argument-based approach to using
multiple ontologies. In Proceedings of the 3rd International Conference on Scalable Un-
certainty Management (SUM’09), volume 5785 of Lecture Notes in Computer Science,
pages 68–79. Springer, 2009.

[Brewka, 1989] G. Brewka. Preferred subtheories: An extended logical framework for de-
fault reasoning. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence (IJCAI’89), pages 1043 – 1048. Morgan Kaufmann, 1989.

[Caminada and Amgoud, 2005] M. Caminada and L. Amgoud. An axiomatic account of
formal argumentation. In Proceedings of the 20th National Conference on Artificial In-
telligence (AAAI’05), pages 608–613. AAAI Press, 2005.

[Cayrol and Lagasquie-Schiex, 2005] C. Cayrol and M-C Lagasquie-Schiex. On the accept-
ability of arguments in bipolar argumentation frameworks. In Proceedings of the 8th
Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’05),
volume 3571 of LNCS, pages 378–389. Springer, 2005.

[Cayrol, 1995] C. Cayrol. On the relation between argumentation and non-monotonic
coherence-based entailment. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI’95), pages 1443–1448, 1995.

[Coste-Marquis et al., 2005] S Coste-Marquis, C Devred, and P Marquis. Symmetric argu-
mentation frameworks. In Proceedings of the 8th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’05), volume 3571 of
Lecture Notes in Computer Science, pages 317–328. Springer, 2005.

[Creignou et al., 2011] N. Creignou, J. Schmidt, M. Thomas, and S. Woltran. Complexity
of logic-based argumentation in Post’s framework. Argument & Computation, 2(2-3):107–
129, 2011.

46 Philippe Besnard, Anthony Hunter

[Cross and Nute, 2001] C. Cross and D. Nute. Conditional logic. In D. Gabbay, editor,
Handbook of Philosophical Logic, volume IV. D. Reidel, 2001.

[Delgrande, 1987] J. Delgrande. A first-order logic for prototypical properties. Artificial
Intelligence, 33:105–130, 1987.

[Dung, 1995] P. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming, and n-person games. Artificial Intelligence,
77:321–357, 1995.

[Dunne, 2007] P Dunne. Computational properties of argument systems satisfying graph-
theoretic constraints. Artificial Intelligence, 171(10-15):701–729, 2007.

[Dupin de Saint-Cyr, 2011] F. Dupin de Saint-Cyr. Handling enthymemes in time-limited
persuasion dialogs. In Proceedings of the 5th International Conference on Scalable Un-
certainty Management (SUM’11), volume 6929 of Lecture Notes in Computer Science,
pages 149–162. Springer, 2011.

[Dvorák et al., 2012a] W. Dvorák, R. Pichler, and S. Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artificial Intelligence, 186:1–37, 2012.

[Dvorák et al., 2012b] W. Dvorák, S. Szeider, and S. Woltran. Abstract argumentation via
monadic second order logic. In Proceedings of the 6th International Conference on Scalable
Uncertainty Management (SUM’12), volume 7520 of LNCS, pages 85–98. Springer, 2012.

[Efstathiou and Hunter, 2011] V. Efstathiou and A. Hunter. Algorithms for generating argu-
ments and counterarguments in propositional logic. International Journal of Approximate
Reasoning, 52:672–704., 2011.

[Eiter and Gottlob, 1995] T. Eiter and G. Gottlob. The complexity of logic-based abduction.
Journal of the ACM, 42(1):3–42, 1995.

[Elvang-Gøransson and Hunter, 1995] M. Elvang-Gøransson and A. Hunter. Argumentative
logics: Reasoning with classically inconsistent information. Data & Knowledge Engineer-
ing, 16(2):125–145, 1995.

[Elvang-Gøransson et al., 1993] M. Elvang-Gøransson, P. Krause, and J. Fox. Acceptability
of arguments as ‘logical uncertainty’. In Proceedings of the 2nd European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’93),
volume 747 of Lecture Notes in Computer Science, pages 85–90. Springer, 1993.

[Gabbay, 1985] D. Gabbay. Theoretical foundations for nonmonotonic reasoning in expert
systems. In K. Apt, editor, Logic and Models of Concurrent Systems. Springer, 1985.

[Garćıa and Simari, 2004] A. Garćıa and G. Simari. Defeasible logic programming: An
argumentative approach. Theory and Practice of Logic Programming, 4:95–138, 2004.

[Girard, 2006] P. Girard. From onions to broccoli: Generalizing lewis’ counterfactual logic.
Journal of Applied Non-Classical Logic, 17(2):213 – 229, 2006.

[Gorogiannis and Hunter, 2011] N. Gorogiannis and A. Hunter. Instantiating abstract ar-
gumentation with classical logic arguments: Postulates and properties. Artificial Intelli-
gence, 175(9-10):1479–1497, 2011.

[Governatori et al., 2004] G. Governatori, M. Maher, G. Antoniou, and D. Billington. Ar-
gumentation semantics for defeasible logic. Journal of Logic and Computation, 14(5):675–
702, 2004.

[Haenni, 1998] R. Haenni. Modelling uncertainty with propositional assumptions-based sys-
tems. In Applications of Uncertainty Formalisms, volume 1455 of Lecture Notes in Com-
puter Science, pages 446–470. Springer, 1998.

[Haenni, 2001] R. Haenni. Cost-bounded argumentation. International Journal of Approx-
imate Reasoning, 26(2):101–127, 2001.

[Hirsch and Gorogiannis, 2009] R. Hirsch and N. Gorogiannis. The complexity of the war-
ranted formula problem in propositional argumentation. Journal of Logic and Computa-
tion, 20(2):481–499, 2009.

[Hunter and Woltran, 2013] A Hunter and S Woltran. Structural properties for deductive
argument systems. In Proceedings of the 12th European Conference on Symbolic and
Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’13), volume 7958 of
Lecture Notes in Computer Science, pages 278–289. Springer, 2013.

[Hunter, 2004a] A. Hunter. Making argumentation more believable. In Proceedings of the
19th National Conference on Artificial Intelligence (AAAI’04), pages 269–274. MIT Press,
2004.

A Review of Argumentation Based on Deductive Arguments 47

[Hunter, 2004b] A. Hunter. Towards higher impact argumentation. In Proceedings of the
19th National Conference on Artificial Intelligence (AAAI’04), pages 275–280. MIT Press,
2004.

[Hunter, 2007] A. Hunter. Real arguments are approximate arguments. In Proceedings of
the 22nd AAAI Conference on Artificial Intelligence (AAAI’07), pages 66–71. MIT Press,
2007.

[Hunter, 2008] A Hunter. Reasoning about the appropriateness of proponents for arguments.
In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI’08), pages
89–94. MIT Press, 2008.

[Hunter, 2010] A. Hunter. Base logics in argumentation. In Proceedings of the 3rd Interna-
tional Conference on Computational Models of Argument (COMMA’10), volume 216 of
Frontiers in Artificial Intelligence and Applications, pages 275–286. IOS Press, 2010.

[Hunter, 2013] A Hunter. A probabilistic approach to modelling uncertain logical arguments.
International Journal of Approximate Reasoning, 54(1):47–81, 2013.

[Kowalski., 1975] R. Kowalski. A proof procedure using connection graphs. Journal of the
ACM, 22:572–595, 1975.

[Kowalski., 1979] R. Kowalski. Logic for Problem Solving. North-Holland Publishing, 1979.
[Kraus et al., 1990] S. Kraus, D. Lehmann, and M. Magidor. Non-monotonic reasoning,

preferential models and cumulative logics. Artificial Intelligence, 44:167–207, 1990.
[Liao et al., 2011] B. Liao, L. Jin, and RC. Koons. Dynamics of argumentation systems: A

division-based method. Artificial Intelligence, 175(11):1790–1814, 2011.
[Makinson, 1994] D. Makinson. General patterns in nonmonotonic reasoning. In D. Gabbay,

C. Hogger, and J. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 3, pages 35–110. Oxford University Press, 1994.

[Mann and Hunter, 2008] N. Mann and A. Hunter. Argumentation using temporal knowl-
edge. In Proceedings of the 2nd Conference on Computational Models of Argument
(COMMA’08), volume 172 of Frontiers in Artificial Intelligence and Applications, pages
204–215. IOS Press, 2008.

[McCarthy, 1980] J. McCarthy. Circumscription: A form of non-monotonic reasoning. Ar-
tificial Intelligence, 13(1-2):23–79, 1980.

[Moguillansky et al., 2010] M. Moguillansky, R. Wassermann, and M. Falappa. An argu-
mentation machinery to reason over inconsistent ontologies. In Advances in Artificial
Intelligence (IBERAMIA 2010), volume 6433 of LNCS, pages 100–109. Springer, 2010.

[Nouioua and Risch, 2011] F. Nouioua and V. Risch. Argumentation frameworks with neces-
sities. In Proceedings of the 5th International Conference on Scalable Uncertainty Mange-
ment (SUM’11), volume Lecture Notes in Computer Science, pages 163–176. Springer,
2011.

[Oren and Norman, 2008] N. Oren and T. Norman. Semantics for evidence-based argumen-
tation. In Proceedings of the 2nd International Conference Computational Models of
Argument (COMMA’08), pages 276–284. IOS Press, 2008.

[Parsons et al., 2003] S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complex-
ity of some formal inter-agent dialogues. Journal of Logic and Computation, 13(3):347–
376, 2003.

[Pollock, 1987] J.L. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–518, 1987.
[Pollock, 1992] J.L. Pollock. How to reason defeasibly. Artificial Intelligence, 57(1):1–42,

1992.
[Wooldridge et al., 2005] M. Wooldridge, P. McBurney, and S. Parsons. On the meta-logic

of arguments. In Argumentation in Multi-agent Systems, volume 4049 of Lecture Notes
in Computer Science, pages 42–56. Springer, 2005.

[Wooldridge et al., 2006] M. Wooldridge, P. Dunne, and S. Parsons. On the complexity of
linking deductive and abstract argument systems. In Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI’06), pages 299–304. AAAI Press, 2006.

[Zhang and Lin, 2013] X. Zhang and Z. Lin. An argumentation framework for description
logic ontology reasoning and management. Journal of Intelligent Information Systems,
40(3):375–403, 2013.

[Zhang et al., 2010] X. Zhang, Z. Zhang, D. Xu, and Z. Lin. Argumentation-based reasoning
with inconsistent knowledge bases. In Advances in Artificial Intelligence, volume 6085 of
Lecture Notes in Computer Science, pages 87–99. Springer, 2010.

48 Philippe Besnard, Anthony Hunter

Philippe Besnard
IRIT
Université Paul Sabatier
F-31062, Toulouse, France
Email: philippe.besnard@irit.fr

Anthony Hunter
Department of Computer Science
University College London
London, WC1E 6BT, UK
Email: anthony.hunter@ucl.ac.uk

