Algorithms for effective argumentation in classical
propositional logic: A connection graph approach

Vasiliki Efstathiou, Anthony Hunter

Department of Computer Science
University College London
Gower Street, London WC1E 6BT, UK
{v.efstathiou, a.hunter}@cs.ucl.ac.uk

Abstract There are a number of frameworks for modelling argumentation in
logic. They incorporate a formal representation of individual arguments and tech-
niques for comparing conflicting arguments. A common assumption for logic-
based argumentation is that an argument is a {@jex) where® is minimal
subset of the knowledgebase such thas consistent an@ entails the claimu.
Different logics provide different definitions for consistency and entailment and
hence give us different options for argumentation. Classical propositional logic
is an appealing option for argumentation but the computational viability of gen-
erating an argument is an issue. Here we propose ameliorating this problem by
using connection graphs to give information on the ways that formulae of the
knowledgebase can be used to minimally and consistently entail a claim. Using
a connection graph allows for a substantially reduced search space to be used
when seeking all the arguments for a claim from a knowledgebase. We provide a
theoretical framework and algorithms for this proposal, together with some theo-
retical results and some preliminary experimental results to indicate the potential
of the approach.

1 Introduction

Argumentation is a vital aspect of intelligent behaviour by humans. Consider diverse
professionals such as politicians, journalists, clinicians, scientists, and administrators,
who all need to collate and analyse information looking for pros and cons for conse-
gquences of importance when attempting to understand problems and make decisions.
There are a number of proposals for logic-based formalisations of argumentation
(for reviews see [9,21,5]). These proposals allow for the representation of arguments
for and against some claim, and for counterargument relationships between arguments.
In a number of key examples of argumentation systems, an argument is a pair where the
firstitem in the pair is a minimal consistent set of formulae that proves the second item
which is a formula (see for example [2,14,3,1,15,4]). Furthermore, in these approaches,
a key form of counterargument is an undercut: One argument undercuts another argu-
ment when the claim of the first argument negates the premises of the second argument.
Proof procedures and algorithms have been developed for finding preferred arguments
from a knowledgebase using defeasible logic and following for example Dung’s pre-
ferred semantics (see for example [7,23,20,17,8,11,12]). However, these techniques and

analyses do not offer any ways of ameliorating the computational complexity inherent
in finding arguments and counterarguments for classical logic. Furthermore, we wish
to find all arguments for a particular claim, and this means a pruning strategy, such as
incorporated into defeasible logic programming [15,10], would not meet our require-
ments since some undercuts would not be obtained.

In this paper we restrict the language used to a language of (disjunctive) clauses
and for this language we propose algorithms for finding arguments using search tree
structures that correspond to the steps of a systematic application of the connection
graph proof procedure [18,19]. We describe how this method can be efficient regarding
the computational cost of finding arguments.

2 Logical argumentation for a language of clauses

In this section, we adapt an existing proposal for logic-based argumentation [3] by
restricting the language to being disjunctive clauses so that the premises of an argument
is a set of clauses and the claim of an argument is a literal.

Definition 1. A language of clauseS is composed from a set of atomdsas follows:
If o is an atom, theny is a positive literal, and -« is a negative literal. If 5 is a
positive literal, or 3 is a negative literal, thers is a literal. If 31, .., 3, are literals,
thens; Vv ... Vv 3, is aclause A clause knowledgebases a set of clauses.

We useg, v, ... to denote disjunctive clauses aall &, ¥, ... to denote sets of
clauses. For the following definitions, we first assume a clause knowledgebése
finite set of clauses) and use thisthroughout. The paradigm for the approach is that
there is a large repository of information, represented\bjrom which arguments can
be constructed for and against arbitrary claims. Apart from information being under-
stood as declarative statements, there iapoiori restriction on the contents, and the
pieces of information in the repository can be arbitrarily complex. Thereftris,not
expected to be consistent.

The framework adopts a very common intuitive notion of an argument. Essentially,
an argument is a set of clauses that can be used to prove some claim, together with that
claim. In this paper, we assume each claim is represented by a literal.

Definition 2. Aliteral argument is a pair (®, o) such that: (1) is aliteral (2)® C A;
)@ L;(4) P+ «; and (5) there is n@’ C & such thatd’ - . We say thatd, o)
is a literal argument fore. We calla the claim of the argument and the support of
the argument (we also say thétis a support forx).

Example 1.Let A = {a,~a V b,—bV ¢,bV ~d,—a,aV b,—c,~bV —¢,cV a}. Some
literal arguments are:
<{aa —aV b}v b>
<{_‘a}7 ﬁa’>
{{a,—aV b,—bV c},c)
{aVvb,=bV —c,cVal,a)

Some arguments oppose the claim or the support of other arguments. This leads to
the notion of a counterargument as follows.

Definition 3. Let(®, o) and (¥,) be literal arguments

— (¥, B) is arebut of (@, o) iff {B,a} F L.
— (¥, B) is anundercut of (P,) iff & - —4.
— (¥, B) is acounteragumentof (P, «) iff (¥, 3) is a rebut or an undecut b,).

Example 2.({—c V b, c}, b) is arebut of({—a,a V =d,d vV bV ¢, ~c}, —b).
({—cV b,c},b) isan undercut of{a,d, ma vV ~dV —b, bV e}, e).

Following a number of proposals for argumentation (e.g. [3,1,15,20,12]), logical
arguments and counterarguments can be presented in a graph: Each node denotes an
argument and each afel;, A2) denotes that argumert;, is a counterargument to ar-
gumentA; . Various constraints have been imposed on the nature of such graphs leading
to a range of options for evaluating whether a particular argument in the graph is “de-
feated” or “undefeated”. We will not consider this aspect of logic-based argumentation
further in this paper. We are only concerned in this paper with how we can construct the
arguments from the knowledgebase, and not how to compare them.

3 Towards effective algorithms for generating arguments

We now turn to automating the construction of arguments and counterarguments. Un-

fortunately automated theorem proving technology cannot do this directly for us. For

each argument, we need a minimal and consistent set of formulae that proves the claim.

An automated theorem prover (an ATP) may use a “goal-directed” approach, bringing

in extra premises when required, but they are not guaranteed to be minimal and consis-

tent. For example, supposing we have a clause knowledg¢base s, 5}, for proving

3, the ATP may start with the premisex Vv 3, then to proves3, a second premise is

required, which would bg, and so the net result{s-aV 3, 3}, which does not involve

a minimal set of premises. In addition, an ATP is not guaranteed to use a consistent set

of premises since by classical logic it is valid to prove anything from an inconsistency.
So if we seek arguments for a particular clainwe need to post queries to an ATP

to ensure that a particular set of premises entaithat the set of premises is minimal

for this, and that it is consistent. So finding arguments for a ctainvolves considering

subsetgb of A and testing them with the ATP to ascertain whetéér oo and® t/ L

hold. For@ C A, and a formulay, let @7« denote a call (a query) to an ATP. df

classically entailsy, then we get the answért «, otherwise we get the answ@r/ a.

In this way, we do not give the whole af to the ATP. Rather we call it with particular

subsets ofA. So for example, if we want to know i,) is an argument, then we

have a series of calB?a, &7 L, &\ {¢1}7q,...2 \ {¢x}?a, where® = {¢1, .., di }.

So the first call is to ensure thét - «, the second call is to ensure that/ L, the

remaining calls are to ensure that there is no subSef & such that?’ - «. This then

raises the question of which subsétsf A to investigate to determine wheth@,)

holds when we are seeking for an argumentdor

A further problem we need to consider is that if we want to generate all arguments
for a particular claim in the worst case we may have to send each shiloed to the
ATP to determine whetheb - o and® / L. So in the worst case, [A| = n, then we
may need to makg"t! calls to the ATP. Even for a small knowledgebase of say 20 or
30 formulae, this can become prohibitively expensive.

It is with these issues in mind that we explore an alternative way of finding all the
arguments from a knowledgebaddor a claima. Our approach is to adapt the idea of
connection graphs to enable us to find arguments.

4 Connection graphs

Connection graphs were initially proposed by Kowalski (see [18,19]) for reducing the
search space for applying resolution to clauses in logic programming. They have also
been developed more generally for classical logic [6]. In this section we will adapt
the definition of a connection graph to give us the notion of a focal graph which for a
knowledgebase\ and a clain essentially delineates the subset of the knowledgebase
that may have a role in an argument for the clainor example, forA = {a, —a Vv
f,maNb,=bVe,~nV-m,bVdbVe —eVa,~dVaV-c,—gVm,—qVrVp, -p}

and the clainu we require that the delineated subsefdis—a v b,—b V ¢,b Vv d,b V
e,—eVa,~dV aV —c}. In this way, formulae that cannot possibly be a premise in an
argument will be excluded. This provides the potential for substantially reducing the set
of formulae to be considered for constructing arguments.

So in this section we will formalize the notion of a focal graph, then in the next
section we consider how we can search the focal graph, and in the subsequent section
we provide algorithms for efficiently searching the focal graph so as to return all the
arguments for the claim of interest.

We start by introducing some relations on the elements, @dhat will be used to
determine the links of the connection graphs and how these can be used by the search
algorithms.

Definition 4. TheDisjuncts function takes a clause and returns the set of disjuncts in
the clause

Disjuncts(81 V .. V Bn) = {B1, -, Bn}

Definition 5. Let¢ andy be clauses. TheRyreattacks(¢, 1) = {3 | 3 € Disjuncts(¢)
and—(€ Disjuncts())}.

Example 3.Preattacks(a V =bV —c¢V d,a VbV —~d V e) = {—b,d}, Preattacks(a V
bV-=dVe,aV-bV-cVd) ={b,~d}, Preattacks(a VbV —~d,aV bV c) = 0.

Definition 6. Let ¢ and ¢ be clauses. IPreattacks(¢,v) = {8} for someg, then
Attacks(¢, v) = [otherwiseAttacks(¢, v) = null.

Example 4.Attacks(aV—bV—-cVd, aVbV—dVe) = null, Attacks(aVbV—d, aVbVc) =
null, Attacks(a VbV —d,a V bV d) = —d, Attacks(a VbV —d,e V ¢V d) = —d.

Hence, thePreattacks relation is defined for any pair of clausés:y while the
Attacks relation is defined for a pair of clauseési such thatPreattacks(¢, ¢)| =1

Lemma 1. We can see that for two claus¢snd if Preattacks(¢,) # () then from
the resolution proof rule it follows that3 € Preattacks(¢, v),

{¢,v} + \/((Disjuncts(¢) \ {8}) U (Disjuncts()) \ {=}))

Example 5.For¢ = —aVbVeVdandy = aVbVeV —c, Preattacks(¢,v) = {—a, c}
hence

{¢, 9} = V((Disjuncts(¢) \ {—a}) U (Disjuncts(y) \ {a}))
= V(({=a,b,¢,d} \ {—a}) U ({a,b, ¢, ~c} \ {a}))
=V({b, ¢ d,e,mct)=bVeVvdVeV e

{¢,4} = V((Disjuncts(¢) \ {c}) U (Disjuncts(¢) \ {—c}))
= V(({=a,b,¢,d} \{c}) U ({a, b, e, =} \ {~c}))

=V({~a,b,d,e,a}) =-aVbVvdVeVa.

From Lemma 1 we can see thRteattacks(¢,v) # Attacks(¢,) iff ¢ with ¢
resolve to a tautology.

We now introduce some types of graphs whose nodes correspond to a set of clauses
and the links between each pair of clauses are determined according to the attack rela-
tions defined above. In the following examples of graphs we usk the \ and —
symbols to denote arcs in the pictorial representation of a graph.

Definition 7. Let A be a clause knowledgebase. Tdmmnection graphfor A, denoted
Connect(4), is a graph(N, A) whereN = A and A = {(¢,v¢) | thereisag ¢
Disjuncts(¢) such thats € Preattacks(¢,v)}.

Example 6.The following is the connection graph far = {k, -k Vi, -, =kV—-m, kV
mVd,—d,—eVcV—d,—cVd,eV—ccV f,afVg —e—f fV-og,aVqVn,~nVv
—g,—n,aVr,aVt,—rV -t}

k—-kv-m—kVvmVvVd—-d aVvVqgVvn—-nV-q
| | | |
-k VI —eVeV-ad—-cVd -n
| | |
=l eV-c — cVf—-fVg avr aVt
| | | NS
—e —|f f\/—\g —\T\/—\t

We now need to go beyond Kowalski’s idea of a connection graph and introduce the
following types of graph. The attack graph defined below is a subgraph of the connec-
tion graph identified using th&ttacks function.

Definition 8. Let A be a clause knowledgebase. Tagack graph for A, denoted
AttackGraph(4), is a graph(V, A) whereN = A and A = {(¢,v) | thereis as
€ Disjuncts(¢) such thatAttacks(¢, ¢) = 5}.

Example 7.Continuing Example 6, the following is the attack graph for

k—-kVvV-m kvmvVvd—-d avVgVvn —nV-q
| | | |
-kVI —eVeV-ad -—ceVd -n
| |
-l eV-c — cVf—-fVyg aVvr aVt
| | NS
—e —\f f\/—|g —\’["\/—|t

The following definition of closed graph gives a kind of connected subgraph of the
attack graph where connectivity is determined in terms of the attack relation among its
nodes.

Definition 9. Let A be a clause knowledgebase. Ttlesed graphfor A, denoted
Closed(A), is the largest subgrapliN, A) of AttackGraph(A), such that for each
¢ € N, for each € Disjuncts(¢) there is ap € N with Attacks(¢,) = .

The above definition assumes that there is a unique largest subgraph of the attack
graph that meets the conditions presented. This is justified because having a node from
the attack graph in the closed graph does not exclude any other node from the attack
graph also being in the closed graph. Any subset of nodes is included when each of
the disjuncts is negated by disjuncts in the other nodes. Moreover, we can consider the
closed graph being composed of components where for each componand for
each nodeb in Y, and for each disjungt in ¢, there is another nodg in Y such that
there is a disjunct:5 in . So the nodes in each component work together to ensure
each disjunct is negated by a disjunct in another node in the component, and the largest
subgraph of the attack graph is obtained by just taking the union of these components.

Example 8.Continuing Example 7, the following is the closed graphfor

k -d

| |

| |

=l eV-c — cVf
| |
—e —|f

The focal graph (defined next) is a subgraph of the closed graph fahich is
delineated by a clausg from A and corresponds to the part of the closed graph that
containsg. In the following, we assume a component of a graph means that each node
in the component is connected to any other node in the component by a path.

Definition 10. Let A be a clause knowledgebase apde a clause inA. Thefocal
graph of ¢ in A denotedFocal(A, ¢) is defined as follows: If there is a componéit
in Closed(A) containing the node, thenFocal(4, ¢) = X, otherwiseFocal(A4, ¢) is
the empty graph.

Example 9.Continuing Example 8, i€ = (N1, A;) is the component of the closed
graph forA with Ny = {k, -k Vv [,-l} andCy = (Na, As) is the component of the
closed graph forA with Ny = {—d, ~cV d,eV —¢,cV f,—e, —f} then the focal graph
of pin Ais C, for ¢ € {k,—k Vv I,~l}, anditisCs for ¢ € {—~d,~cV d,eV —¢,cV
f,—e,—f}. For any othew, the focal graph of in A corresponds to the empty graph.

The query graph of a literak in a clause knowledgebasé defined below is the
graph whose elements, as we will see, determine all the literal argumentsifdinere
are any.

Definition 11. Let A be a clause knowledgebase amdbe a literal. Thequery graph
of a in A, denotedQuery(A, «), is the focal graph of-a in A U {-«a}. Hence,
Query(4A, o) = Focal(A U {—a}, -a).

Example 10.For knowledgebase\ given in Example 6, the following is the query
graph of-m in A,

k—-kV-m

| |

-k VI m

|
-l

and the following is the query graph et in A.

The query graph of a literal in a clause knowledgebas# delineates the subset
of the A that contains formulae that may be a premise in a literal argument.for
Furthermore, the query graph contains information about how the formulae relate to
each other in the sense of how they can potentially form proofs for the claim. Now, in
order to determine whether there are any arguments that can be obtained from these
formulae and to determine the support for these arguments, we need to search the query
graph. This is the subject of the next section.

5 Searching query graphs

The set of nodes of the query graphoiin A contains all the subsets of the knowledge-
base that can be used as supports for literal arguments. fbhe appropriate subsets
can be obtained by selecting the nodes of the query graphifA that obey certain
conditions. For this we will use the notion of a support tree which represents the support
set for a literal argument fax together with the negation ef in a tree structure where

-« is the root. Essentially a support tree is constructed from a subgraph of the query
graph ofa in A.

In order to define the notion of a support tree we will first introduce the notion of the
presupport tree which is a tree withy as the root and some clauses frQuery (A, «)
as nodes on its branches. Then we will introduce some additional constraints that define
a support tree as a special kind of a presupport tree.

Definition 12. Let A be a clause knowledgebase anddebe a literal. Apresupport
tree for A anda is tuple(N, A, f) where(N, A) is a tree, andf is a mapping fromV
to A such that

(1) if z is the root of the tree, thefi(x) = -« and there is exactly one chilgof z s.t.
Attacks(f(y)., f(2)) = a,
(2) for any nodes:, y in the same branch, if # y, thenf(z) # f(vy) ,
(3) for any noder in the tree, ify is a child ofz,
then there is a-3; € Disjuncts(f(x)) s.t. Attacks(f(y), f(z)) = 05;
and for eachs; € Disjuncts(f(y)) \ {8},
i) either there is exactly one childof y s.t. Attacks(f(2), f(y)) = —0;,
ii) or there is an arc(w, w’) in the branch containing s.t.
Attacks(f(w), f(w')) = ; andw’ is the parent ofv.

The first condition of the definition initialises the tree structure of the presupport tree
by setting the negated claim as the clause identifying the root and ensures that it will
be attacked by some other clause from the presupport tree otherwise the tree will be
empty. The fact that the root can only have one child guarantees that the width of the
first level of the tree will be minimized. The second condition of the definition ensures
that for a finiteA there can only be presupport trees of finite depth. A clause ffom

can have its value assigned to exactly one node in a branch ensuring that no repetitions
of the same clause will be allowed in this branch. The third condition of the definition

is the equivalent of condition 1 for the general case of non-root nodes. It ensures that all
the disjuncts of the clause identifying a node are attacked by a node of the same branch.
Each node has as many children as the number of its disjuncts that do not appear as
attack values on the branch earlier, ensuring that only the necessary number of children
will be in the tree at each level.

Example 11.Going back to Example 10, fed = {k, -k V [,=l,—k V -m,kV m V
d,—d,—eVcV—d, -eVd,eNV—e, eV f,-fVg, —e, —f, fVag,aVqVn,—-nV-oq,n,aV
r,a Vt,—rV -t} anda = —c there are two presupport trees fdranda.

c c
T 7
eV c —cVd
T 7

—e -d

Example 12.The following is a presupport tree fak = {-d,7a VbV ¢,=bV —e,a V
—e, e, e,eVd, eV -a,a} anda = c.

-c
i
—aVbVe
/ AN
ﬁb\/ﬁe aV —e
T T
eV a e

1

a

Example 13.The following is a presupport tree fat = {a, —¢, =bVeV-a, —~d, b, —e, dV
bV -f,-b, f}anda = c.

—c
1
bV eV -a
/N
dVv bV —f a
/N

Example 14.The following is a presupport tree fat = {-eVd,eVa,~aVbVe, ¢V
f,imbvevdV-a,~fVe —aVg,—gVh}anda =d.

—d
T
—-eVd

1

eVa

1
—aVbVe

/ N
—cV f =bVeVdV-a

T
-fVe

Proposition 1. If (N, A, f) is a presupport tree for a finite clause knowledgebase
anda then(N, A) is a finite tree.

We will now introduce two special cases of presupport trees each of which amounts
to the notions of minimal entailment and consistent entailment.

Definition 13. Let A be a clause knowledgebase and detbe a literal. A consis-
tent presupport tree for A and « is a presupport tred N, A, f) for A and a such
that for any nodest and y wherez’ is the parent ofr and ¢ is the parent ofy,

Attacks(f (), f(z')) # —Attacks(f (y), f(y'))-

So, a presupport tree is consistent if does not contain any pair ofares, (v, y’)
such thatAttacks(f(z), f(z)) = -0 andAttacks(f(y), f(y')) = B for some—j €
Disjuncts(f(z)) and(€ Disjuncts(f(y)).

Example 15.The following is a consistent presupport tree foe= {—d, =aVbVc, —bV
—e,aV —e,—e, e eVd,~d} anda = c.

—c
1
—aVbVe
/! AN
-bV —e aV e
T T
eVd e
T
-d

Example 16.The following is not a consistent presupport tree for= {-d, —a Vv
bVe,—bVe,aV—e-ee}landa = c for f(z') = -bVe, f(x) = —e, f(y) =
aV —e, f(y) = e we getAttacks(f(z), f(z")) = —e andAttacks(f(y), f(v)) = e.

—c
T
-aVbVe

/ AN
-bVe aV —e
7 7
—e e

Definition 14. Let A be a clause knowledgebase andddie a literal. Aminimal pre-
support tree for A and« is a presupport tre¢ N, A, f) for A and« such that:

(1) for any nodes:, y in the same branch where
7' is the parent ofr andy/’ is the parent of;
Attacks(f (x), f(x')) # Attacks(f(), f(y'))
(2) if for two nodesr andy, wherez’ is the parent
of z andy’ is the parent ofy,

Attacks(f(x), f(z')) = Attacks(f(y), f(v))

thenSubtree(xz) C Subtree(y’) or Subtree(y) C Subtree(z’)

WhereSubtree(x) is the set of formulae in the subtree rootedcat

The first condition of this definition ensures that nodes that are not necessary for the
entailment of the given claim cannot be added on the branches of a minimal presupport
tree. The second condition ensures that if two nadarsdy need to be attacked on the
same disjunct then common nodes will be used to attack both, ensuring that there will
be no more than one set of nodes contributing to the entailment of the claim in the same
way.

Example 17.The presupport tree of Example 16 is a minimal presupport tree\for
anda. The presupport tree of Example 15 is not a minimal presupport tred famd

« because it violates the second condition of Definition 14. If in the presupport tree
of Example 15 we replacgubtree(zs) by a copy ofSubtree(z1) for z1, z2 such that
f(z1) = eV dandf(xzs) = e then both conditions of the definition will be satisfied
and we will obtain the following minimal presupport tree faranda:

—c
T
-aVbVe
/ AN
—bV —e aV —e
T T
eVd eVd
T T
-d -d

Definition 15. A presupport treg N, A, f) is a support tree iff it is a minimal and
consistent presupport tree.

Example 18.Each of the presupport trees of Examples 11, 13 and 14 is a support tree.

We will now introduce some theoretical results illustrating why support trees can be
useful for our purposes in seeking arguments for a claim from a knowledgebase. First
we give the definition of a minimal inconsistent subset of a knowledgeliaasd then
we give a proposition illustrating how these sets can be used in argumentation and how
they relate to support trees.

Definition 16. For a set of formulag), a minimal inconsistent subset of A is such

that:
(I)or L
(2) Forallw C A, if & C @, then? I/ L.

Proposition 2. For a literal «, (@, «) is a literal argument ifid U {—-a} is a minimal
inconsistent subset af U {—a}.

Proposition 3. If (N, A, f) is a support tree forA anda, andI” = {f(x) | * € N},
then'+ Landforanyl” C I T t/ L.

From proposition 3 we get that the clause knowledgebase that corresponds to a sup-
port tree forA andca is a minimal inconsistent set and hence the following proposition
holds.

Proposition 4. If (N, A, f) is a support tree forA and a, then{f(z) | = € N} \
{—a} F a.

According to the following proposition, the clause knowledgebase that corresponds
to the nodes of a support tree fdranda cannot contain another knowledgebase that
can be arranged is a support tree structureX@mdc.

Proposition 5. If (N, A, f) is a support tree fordA and« and (N, A’, f') is a support
treeforAanda , then{f(z) |z € N} & {f'(«') | 2’ € N'}.

From the last four propositions it follows that for any minimal inconsistent set of
clauses that contains a literadv there is a support tree fat anda.

Proposition 6. Let A be a clause knowledgebase anddetC A. (@, «) is a literal
argument iff there is a support tréev, A, f) for A anda such thatt = {f(x) | z €
N}.

Therefore, given a clause knowledgebaseand a literala, we can find all the
arguments foev by finding all the subgraphs of the query graplaoh A whose clauses
can be arranged in a support tree foanda. This helps reduce the computational cost
of the process in two ways. First, the search space used when searching for arguments
is reduced: instead of an algorithm searching through the whole knowledgebase it can
search through the part of the knowledgebase that corresponds to the query graph of
in A. Potentially this offers very substantial savings since the query graph may involve a
relatively small subset of the formulae in the knowledgebase. Second, the query graph
also provides useful information on the attack relation among the clauses its nodes
contain. The existence of links among the clauses of the knowledgebase motivates the
use of algorithms that follow the paths in the query graph rather than searching through
arbitrary subsets of the graph.

The algorithms for searching a query graph are introduced below. The links of the
query graph are used to trace paths when searching for arguments and the attack values
to which they correspond are used to identify the arcs on the branches of a presupport
tree or a support tree.

6 Algorithms

In this section we present the algorithms that can be used to construct and search a
query graph in order to find all the literal argumentsddirom A.

6.1 Algorithm for building the query graph

First we will give a brief description of th@etFocal(A, ¢) algorithm which retrieves
the focal graph of a clausgin a clause knowledgebasgk and therefore can be used
to retrieve the query graph afin A.

The GetFocal(A, ¢) algorithm finds the focal graph gfin A by doing a depth-first
search which follows the links of the component of the attack graphfthrat is linked
to ¢. Initially all the clauses fromA are considered as candidates for being clauses in
the focal graph ofp in A and then during the search they can be rejected if they do
not satisfy the conditions of the definition of the focal graph. The algorithm chooses the
appropriate nodes by using the boolean meikGadnnected(C,) which tests whether
a clause) of the attack graplt’ is such that each liter@ € Disjuncts(t) corresponds
to at least one arc to a clause frafnthat has not been rejected . Given the adjacency
matrix for the attack graph for\, the algorithm locates which clauses of the attack

graph need to be visited. Only those that are linke@ teither directly or indirectly

with a sequence of arcs from the attack graphdowill be visited. From the set of the
visited clauses only the ones that satisfy the condition of being connected according to
theisConnected function will be clauses in the focal graph.

The algorithm starts by locating claugein the attack graph. IH ¢ A or the
functionisConnected(C, ¢) returns false, the algorithm returns the empty graph. Oth-
erwise the algorithm, starting frogh follows in a depth-first way all the possible paths
through clauses from\, indicated by the links of the attack graph and tests whether
theisConnected function returns true for the visited nodes. If the function returns false
for some clause, then this clause is marked as rejected and the algorithm backtracks to
retest whether the rest of the clauses in this path remain connected after this clause has
been rejected.

6.2 Algorithm for finding the formulae for each presupport tree (Algorithm 1)

The GetPresupports Tree algorithm constructs a search tree representing an exhaustive
search of the query graph afin A in order to find all the different subsets df that

can be arranged in a presupport tree structure. Each branch of the search tree is a linked
list of nodes which can be accepted or rejected according to the conditions of definition
12. Each of the accepted branches identifies a unique subgetratt can be arranged

in a presupport tree foA anda.

Each node of the search tree denolégie contains a set of candidates for a pre-
support tree where each candidate is identified by a clause from the query graph of
in A. The set of candidates in a node, denoted.didates, corresponds to a level of a
presupport tree forA anda. Apart from the valueCandidates eachNode contains the
value Parent as a pointer to its previouSode on the branch, and the valugicestors
which is the set of all the nodes that appear on the same branch above this node.

Each element irCandidates is of the formCandidate, = (¢, Attacked) S.t.¢ €
A andAttacked, C Disjuncts(¢) whereg represents a potential node of a presupport
tree for A anda. So each such candidate contains a clati$em the query graph
of in A and a subset dDisjuncts(¢) denotedAttacked, which keeps track of the
disjuncts on whichy is attacked by clauses of other candidates from the same branch of
the search tree. Eadfundidatey is in the Candidates of a Node if there is at least one
Candidate,, in the Candidates of the parent of the giveWode such thatp attacks) on
a disjunct that has not been already attacked by clauses of candidates in the preceding
levels (i.e. ancestor nodes).

The root of the search tree, which also represents the root of each of the pre-
support trees generated by the algorithm, containsas its valu@dfedidates the set
{Candidate_,}. The algorithm then proceeds in a depth-first way in order to construct
each branch. Each step of this search corresponds to retrieving all the possible different
¢ s.t. Candidate, can be in theCandidates of a node. A stack is used to store tem-
porarily eachNode which will then be replaced by all the possible children nodes for
that Node. The branch continues being expanded until there is no possible new level,
which is either the case when the formulae in the nodes in the branch satisfy all the
conditions of being a presupport tree fdrand« or the case when this set of formulae

Algorithm 1 GetPresupportsTreg(«)

Let S be an empty Stack

Let QueryGraph = GetFocal(A U {-a}, -a)
Let AcceptedBranches = ()

Let rootNode = Node({—a}, null)
pushrootNode onto S

while S is not emptydo
Let topNode be the top of S
Let newNodes = getNewNodes(QueryGraph, topNode)
if newNodes = () then
if there isbranch € AcceptedBranches s.t. branch = getFormulae(Node) then
pop S
else
AcceptedBranches = AcceptedBranches | J{getFormulae(topNode)}
pop S
end if
else
pop S
for all Node € newNodes do
UpdateAttackValues(Node)
pushNode onto S
end for
end if
end while
return AcceptedBranches

violates some of the conditions of definition 12. In the first case, when the formulae on

the current branch can be arranged in a presupport tred fand «, the formulae of

this set excluding-« is stored, as long as the same set of formulae has not been stored
previously. It is in the last two cases when the algorithm reaches the end of a branch
that it moves to the next branch.

In order to control the number of nodes that need to be created, the algorithm
is using the subsidiary functiodpdateAttackValues(Node) which updates the value
Attacked s of eachCandidate, Of a newly createdVode by testing the attack relation
of ¢ with the clauses contained in the rest of Hiendidates of its Ancestors nodes.

In order to facilitate the search of the query graphvah A denotedQueryGraph,
the algorithm is using the functigretNewNodes(QueryGraph, N ode) which retrieves
from the QueryGraph the clauses that attack each candidate of the given node on a
disjunct that is not already attacked by candidates of previous nodes and combines
them to get all the possible sets of candidates in a way that there is a 1-1 correspon-
dence between the elements of each given candidate and these non-attacked disjuncts.
If the Candidates of the updated node contains at least one n6dedidate, with
Disjuncts(¢) # Attacked, then thegetNewNodes function returns a non-empty set of
all the possible next levels of the givé¥vde, otherwise it returns the empty set.

Finally, the getFormulae(Node) function is used when a leaf node is found and
returns the set of formulae on the branch where the given leaf node belongs.

Hence, each of the accepted branches of the algorithm introduced above gives
us the set of formulae that can be arranged as a presupport trek dod «. Each
node of an accepted branch is selected so as to represent a level of a presupport tree.
Each Candidate,, in a node’sCandidates is such that there is &andidatey in the
Candidates of its parent withAttacks(v, ') # null and(z, ') defines an arc of the
presupport tree.

TheUpdateAttackValues(Node) algorithm updates each of the candidated/ofle
according to their attack relation with the candidates of the previous nodes on the
same branch in order to ensure that geeNewNodes algorithm will return a set of
children nodesChildren = {Node,, ..., Node,} such that for eactiNode, from the
set Children if Candidates; is the set of candidates iVode, and Candidate,, €
Candidates; and @ € Disjuncts(v)), then there is a no ancestdiode, of Node; s.t.
Candidate, is in the candidates dVode, andAttacks(t,1') = 3. This ensures that
conditions 1) and 3) of the definition of the presupport tree are satisfied. The fact that
the candidates of a newly created node cannot be from the candidates that appear on the
branch before ensures that condition 2) of the definition of the presupport tree will be
satisfied. As a result, all the conditions for an accepted branch to be a presupport tree
are met by the algorithm.

Example 19.ForA = {aVb,—b,aVecVd,—cV f,~dVe,~f,—e,~dV g,~gV h,cV
J,~kVmVn,—nV-j g} anda = a, following is the query graph af in A:

\
a—aVeVd—-dVe
| | |

aVvVb -—-cVf —e

| |

The GetPresupportsTree(A, «) algorithm generates the following search tree from
the above query graph.

(—a)
/ AN
(aVb) (aV cVvd)
7 VAN
(—b) (ﬁcvf%—\d\/e) (meV f,—dV g)
i
(_‘f7 _|6) (_'fa _‘g)

Hence, for the branches (numbered from left to right) we have the following sets of

formulae:
From branch 1{a V b, —b}

From branch 2{a V ¢V d,—cV f,=d V e,~f, —e}
From branch 3{a V¢V d,—cV f,~dV g,—f, g}

So each of these sets of formulae can be arranged as a presupport tree.

Since we require arguments farfrom A, we need to take the output of the al-
gorithm GetPresupportsTree(A, «) and determine whether each set of formulae corre-
sponding to a presupport tree can be arranged as a support tree. That is the role of our
next algorithm in the next section.

6.3 Algorithm for checking support tree conditions

We now describe th&etSupports algorithm which, using the output of the algorithm
presented in section 6.2 (i @etPresupportsTree(A, «)), tests whether the set of clauses
from each of the accepted branches of the search tree can be arranged as a support tree
for A anda.

Let Branches denote the output of th6etPresupportsTree(A,). So Branches
is a set of sets of formulae. TH&tSupports(Branches) algorithm uses the function
hasSupport(I', o) to test each sef’ € Branches individually. Given a set of clauses
I", thehasSupport (I, «) function generates the presupport tréds A, f) whereN =
U{z | f(z) € I'} and—« is the root. The algorithm keeps track of the attack values
among the clauses in each presupport tree it generates and these are then used to test
whether the additional conditions that differentiate a support tree from a presupport tree
are satisfied. When the first such presupport tree that satisfies the conditions of being

minimal and consistent is found; is stored with the set of the accepted supports for
literal arguments forv and the next set fronBranches is tested. If no such presupport
tree exists, thed” is rejected for being a support for a literal argumentdand the al-
gorithm proceeds by testing with thasSupport function the next set fronBranches.

Example 20.Given the results of example 19, Hfranches is the output given by the
GetPresupportsTree(A, «) algorithm, then for each of the seffs, I, I's € Branches
that correspond to to branches 1,2 and 3 respectiveliafipport (1,), i =1...3
function returns true and therefore the output of@eSupports(Branches) algorithm
is the setl, Iy, I's. Hence, there are three literal argumentsdor 7y, a), (Is, o),
and(Is, o).

7 Experimental results

This section covers a preliminary experimental evaluation of the algorithms presented
in Section 6 using a prototype implementation programmed in java running on a modest
PC (Core2 Duo 1.8GHz).

The experimental data were obtained using randomly generated clause knowledge-
bases according to the fixed clause length model K-SAT ([22,16]) where the chosen
length (i.e. K) for each clause was 3 literals. The 3 disjuncts of each clause were chosen
out of a set of NV distinct variables (i.e. atoms). Each variable was randomly chosen
out of the N available and negated with probability 0.5. For a fixed number of clauses,
the number of distinct variables that occur in the disjuncts of all the clauses determines
the size of the query graph which in turn determines the size of the search space and
hence influences the perfomance of the system. For this reason, 10 different clauses-
to-variables ratios were used for each of the different cardinalities tested (where this
ratio varied from 1 to 10). For the definition of the ratio we take the integer part of the
division of the number of clauses it by the number of variabled (i.e. ||A|/|N]]).

The evaluation was based on the time consumed by the system when searching for
all the literal arguments for a given literal and the randomly generated knowledgebases
of 15 to 30 clauses. Hence, for the results presented the smallest number of variables
used was 1 and so for the case of a 15 clause knowledgebase, the clauses-to-variables
ratio is 10. The largest number of variables used was 30 and so for the case of a 30
clause knowledgebase, and clauses-to-variables ratio is 1.

The preliminary results are presented in Table 1 which contains the median time
consumed in milliseconds for 100 repetitions of running the system for each different
cardinality and each ratio from 1 to 10. In other words, each field of the table is the
median time obtained from finding all the arguments in 100 different knowledgebases
of fixed cardinality where the cardinality is determined by the column of the table and
the different clauses-to-variables ratios is determined by the row.

From the preliminary results in Table 1, we see that for a low clauses-to-variables
ratio (< 2) the number of variables is large enough to allow a distribution of the vari-
ables amongst the clauses such that it is likely for a literal to occur in a clause without its
opposite occurring in another clause from the set. As a result, the query graph tends to
contain a small subset of the knowledgebase and the system perfoms relatively quickly.

Table 1. Experimental data

clauses-to-variables ratig|A| = 15 |A| = 20 |A| = 25 |A] = 30
3.000 6.000 9.000 13.00
3.000 6.000 11.00 17.00
2.000 6.000 1250 238.
2.000 5.000 14.00 466.9
2.000 4.000 8.000 178.0
1.000 3.000 6.500 71.00
1.000 5.000 4.000 9.000
0.000 1.000 4.000 6.000
1.000 1.000 2.000 6.000
1.000 2.000 2.000 7.000

Boo~NwouarwNk

The query graph tends also to be small in the case when a relatively small number of
variables is distributed amongst the clauses of the knowledgebase (i.e. when the ratio is
high) and this makes the occurrence of a variable and its negation in different clauses
more frequent. As a result, it is likely for a pair of clauges) from A to be such that
|Preattacks(¢, 1)| > 1 which will then allow theAttacks relation to be defined among

a small number of clauses and therefore the attack graph will involve only a small subset
of the knowledgebase. Hence, a large clauses-to-variables ratio also makes the system
perform quickly. From these preliminary results the worst case occurs for ratio 4, and
this appears to be because the size of the query graph tends to be maximized. This in-
dicates that the clauses-to-variables ratio, rather than the cardinality of the knowledge-
base is the dominant factor determining the time perfomance for the system. In future
experiments we want to further characterize this worst case perfomance. In particular,
we want to better understand the effect of increasing the value for K and so consider
clauses with more literals, and we want to better understand the relationship between
the number of arguments for a claim that can be obtained from a knowledgebase and
the time taken.

8 Discussion

Classical logic has many advantages over defeasible logic for representing and reason-
ing with knowledge including syntax, proof theory and semantics for the intuitive lan-
guage incorporating negation, conjunction, disjunction and implication. However, for
argumentation, it is computationally challenging to generate arguments from a knowl-
edgebase using classical logic. If we consider the problem as an abduction problem,
where we seek the existence of a minimal subset of a set of formulae that implies the
consequent, then the problem is in the second level of the polynomial hierarchy [13].

In this paper, we have proposed the use of a connection graph approach as a way
of ameliorating the computation cost. The framework we have presented focuses the
search for arguments in way that ensures that formulae that have no role as a premise
in an argument will not be considered. We have provided theoretical results to ensure
the correctness of the proposal, and we have provided provisional empirical results to

indicate the potential advantages of the approach. In furture work, we will extend the
empirical evaluation, and extend the theory and algorithms for dealing with arbitrary
formulae as claims of arguments.

References

o Ol

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

L. Amgoud and C. Cayrol. A model of reasoning based on the production of acceptable
argumentsAnnals of Mathematics and Artificial Intelligenc#4:197—-216, 2002.

. S.Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and inconsistent

knowledge bases. IRroceedings of the 9th Annual Conference on Uncertainty in Artificial
Intelligence (UAI 1993)pages 1449-1445. Morgan Kaufmann, 1993.

. Ph. Besnard and A. Hunter. A logic-based theory of deductive arguméntificial Intelli-

gence 128:203-235, 2001.

. Ph Besnard and A Hunter. Practical first-order argumentatioRrda. of the 20th National

Conference on Atrtificial Intelligence (AAAI'2005)ages 590-595. MIT Press, 2005.

. Ph. Besnard and A. HunteElements of ArgumentatioMIT Press, 2008.
. W. Bibel. Deduction: Automated LogicAcademic Press, 1993.
. D. Bryant, P. Krause, and G. Vreeswijk. Argue tuProlog: A lightweight argumentation engine

for agent applications. I€omputational Models of Argument (Comma’0pages 27-32.
I0S Press, 2006.

. C. Cayrol, S. Doutre, and J. Mengin. Dialectical proof theories for the credulous preferred

semantics of argumentation frameworks. Quantitative and Qualitative Approaches to
Reasoning with Uncertaintyolume 2143 oLNCS pages 668—679. Springer, 2001.

. C. Chefevar, A. Maguitman, and R. Loui. Logical models of argumeX€M Computing

Surveys32:337-383, 2000.

C. CheBevar, G. Simari, and L. Godo. Computing dialectical trees efficiently in possibilistic
defeasible logic programming. Proceedings of the 8th Interntational Logic Programming
and Non-monotonic Reasoning Conferenoecture Notes in Computer Science. Springer,
2005.

Y. Dimopoulos, B. Nebel, and F. Toni. On the computational complexity of assumption-
based argumentation for default reasoniAgificial Intelligence 141:57-78, 2002.

P. Dung, R. Kowalski, and F. Toni. Dialectical proof procedures for assumption-based ad-
missible argumentatiorArtificial Intelligence 170:114-159, 2006.

T. Eiter and G. Gottlob. The complexity of logic-based abductidournal of the ACM
42:3-42, 1995.

M. Elvang-Ggransson, P. Krause, and J. Fox. Dialectic reasoning with classically inconsis-
tent information. InProceedings of the 9th Conference on Uncertainty in Artificial Intelli-
gence (UAI 1993)pages 114-121. Morgan Kaufmann, 1993.

A. Gar¢a and G. Simari. Defeasible logic programming: An argumentative apprddeh.

ory and Practice of Logic Programming(1):95-138, 2004.

I. P. Gent and T. Walsh. Easy problems are sometimes Watdicial Intelligence 70(1-
2):335-345, 1994,

A. Kakas and F. Toni. Computing argumentation in logic programmigirnal of Logic

and Computation9:515-562, 1999.

R. Kowalski. A proof procedure using connection graglesirnal of the ACM22:572-595,

1975.

R. Kowalski.Logic for problem solvingNorth-Holland Publishing, 1979.

H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logic#:25-75, 1997.

21. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D. Gabbay,

editor,Handbook of Philosophical Logi&luwer, 2000.

22. B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability problems.
Artificial Intelligence 81(1-2):17-29, 1996.

23. G. Vreeswijk. An algorithm to compute minimally grounded and admissible defence sets
in argument systems. I@omputational Models of Argument (Comma’0Ogages 109-120.

10S Press, 2006.

