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Abstract. It is common for people to remark that a particular argument
is a strong (or weak) argument. Having a handle on the relative strengths
of arguments can help in deciding on which arguments to consider, and
on which to present to others in a discussion. In computational models
of argument, there is a need for a deeper understanding of argument
strength. Our approach in this paper is to draw on confirmation theory
for quantifying argument strength, and harness this in a framework based
on probabilistic argumentation. We show how we can calculate strength
based on the structure of the argument involving defeasible rules. The in-
sights appear transferable to a variety of other structured argumentation
systems.

Keywords: Argument strength · Probabilistic argumentation · Deduc-
tive argumentation · Defeasible logic.

1 Introduction

In real-world argumentation, it is common for arguments to be considered in
terms of their strength. Yet in computational models of argument, we lack for-
malisms that adequately measure strength in arguments. Some variants of ab-
stract argumentation touch on the notion of strength such as rankings (e.g. [6,
21, 1, 4, 2]), and probabilities (e.g. [11, 20, 34, 15, 30, 18]). However, these do not
capture a notion of argument strength in terms of the quality of the contents of
the premises and/or claim, rather they either assume that some kind of strength
value is given for each argument and/or they calculate strength in terms of
attacking and supporting arguments.

Using logical (i.e. structured) arguments allows the quality of the contents
of the premises and claim to be directly considered. Some proposals assume
strength is an input to the system (e.g. [8]). Others assess the strength of an
argument in terms of the belief in it, often in terms of belief in the premises
and claim (e.g. [14, 15, 29], and in terms of the conditional probability of the
claim given the premises of the argument (e.g. [28, 36, 16]). So these draw on
uncertainty in argumentation to quantify the strength. But as we shall see, these
only give us an incomplete picture of the strength of an argument.

The use of defeasible logic is well-established in argumentation (see for ex-
ample [27, 33, 13]), and key approaches to structured argumentation incorporate
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various kinds of defeasible rules [3]. There are also some proposals for probabilis-
tic quantification of uncertainty in argumentation systems based on defeasible
logic (e.g. [31, 11, 32]), but quantifying notions of strength have not been sys-
tematically considered in these formalisms.

To formalize argument strength for defeasible logic, we draw on measures
from confirmation theory. These were originally proposed to determine the de-
gree to which scientific evidence supports a hypothesis. They can capture how
uncertainty associated with premises can impact a claim. To use these, we adapt
the epistemic approach to probabilistic argumentation [34, 15, 18].

The proposal in this paper could be used in various ways. However, to il-
lustrate and motivate, we focus on the following audience scenario: Someone
presents us with an argument graph and the knowledgebase from which it has
been constructed. The knowledge represents patterns that normally hold in the
world (e.g., if it is bird, then it is capable of flying). As the audience, we are
at liberty to identify a probability distribution over the possible worlds (in the
following sections we make this precise) that represent our beliefs about the
propositions in the language, and then we can use this probability distribution
to analyze the strength of the arguments presented to us.

2 Defeasible logic

We assume a finite set of atoms A. We form a set of literals L(A) = A∪{¬φ |
φ ∈ A}. A defeasible rule is of the form ψ1∧. . .∧ψn → φ where ψ1, . . . , ψn, φ ∈
L(A). For a rule ρ of the form ψ1 ∧ . . .∧ψn → φ, let Tail(ρ) = {ψ1, . . . , ψn} and
Head(ρ) = φ. The set of rules is R(A) and the set of formulae is F(A) =
L(A) ∪R(A). A knowledgebase is a subset of F(A).

Example 1. Consider b for bird, p for penguin, and f for capable of flying. Then
∆ = {b, p, b→ f, p→ ¬f} ⊆ F(A) is a knowledgebase.

Next, we present a variant of defeasible logic, incorporating ex falso quodlibet,
to build arguments, and a semantics to analyze arguments.

Definition 1. Let ∆ be a knowledgebase and φ, ψ ∈ L(A). The consequence
relation, denoted `, is defined as follows: (1) ∆ ` φ if φ ∈ ∆; (2) ∆ ` φ if
there is a ψ1∧ . . .∧ψn → φ ∈ ∆ and ∆ ` ψ1 and . . . and ∆ ` ψn; and (3) ∆ ` φ
if ∆ ` ψ and ∆ ` ¬ψ. Let Closure(∆) = {φ ∈ A | ∆ ` φ}.

Example 2. For ∆ = {b, b→ f}, Closure(∆) = {b, f}.

The Tarskian properties (widely regarded as requirements for a logic) are
satisfied (though for reflexivity, it is restricted to literals): (Reflexivity) (∆ ∩
L(A)) ⊆ Closure(∆); (Monotonicity) Closure(∆) ⊆ Closure(∆′) if ∆ ⊆ ∆′; and
(Idempotency) Closure(∆) ⊆ Closure(Closure(∆)).

A model is an assignment of true or false to the literals of the language.
We represent each model by a subset of A. The set of models of the language,
denoted M(A), is the power set of A. For m ∈M(A), φ ∈ A, the satisfaction
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relation, denoted |=, is: (1) m |= φ iff φ ∈ m; And (2) m |= ¬φ iff φ 6∈ m. We
define the models for a set of formulae using the following fixpoint function.

Definition 2. For ∆ ⊆ F(A), and i ∈ N, the inference operators, denoted
Infi, are defined as: Inf1(∆) = ∆ ∩ L(A) and Infi+1(∆) = Infi(∆) ∪ {Head(ρ) |
ρ ∈ ∆ ∩ R(A) and for all ψ ∈ Tail(ρ), ψ ∈ Infi(∆)}. Let Infer(∆) = Infk(∆)
where k is the smallest value s.t. Infk(∆) = Infk+1(∆).

Definition 3. The satisfying models for ∆ ⊆ F(A), is Models(∆) = {m ∈
M(A) | m |= φ for all φ ∈ Infer(∆)}.

Example 3. For ∆ = {b,¬o, b→ f, p→ ¬f}, where A = {b, p, f, o}, Infer(∆) =
{b,¬o, f}, and Models(∆) = {{b, f}, {b, p, f}}.

Definition 4. For ∆ ⊆ F(A), φ ∈ L(A), the entailment relation holds,
denoted ∆ |= φ, iff Models(∆) ⊆ Models(φ).

Example 4. For knowledgebase ∆ = {b, p, b→ f}, ∆ |= f.

A knowledgebase is consistent iff it does not imply an atom and its negation.
So Example 1 (respectively Example 4) is inconsistent (respectively consistent).
Obviously, ∆ is consistent iff Models(∆) 6= ∅.

Proposition 1. For ∆ ⊆ F(A), φ ∈ L(A), ∆ ` φ iff ∆ |= φ.

When ∆ is consistent, this correctness result can be shown via the notion of a
proof tree where φ is at the root, each leaf is a literal in ∆, and each non-leaf node
φ′ is such that there is a rule ψ1∧ . . .∧ψn → φ′ ∈ ∆ and each ψi ∈ {ψ1, . . . , ψn}
is a child of φ′. So ∆ ` φ holds iff there is such a tree where each branch is
finite. We can use the same tree to consider entailment. So ∆ |= φ holds iff the
leaves and inferences are satisfied by all the models of ∆, and hence all these
models satisfy φ. When ∆ is inconsistent, the consequence relation entails any
literal (Proof rule 3), and similarly the entailment relation for defeasible logic
is trivializable in the sense that any literal is entailed by inconsistency. This is
because when ∆ is inconsistent, Models(∆) = ∅, and therefore for any β ∈ L,
Models(∆) ⊆ Models(β).

3 Probabilistic argumentation

In this section, we adapt the epistemic approach to probabilistic argumentation
for use with defeasible logic. To present models, we use a signature, denoted S,
which is the atoms of the language L given in a sequence 〈a1, ..., an〉, and then
each model m ∈ M(A) is a binary number b1...bn where for each digit bi, if bi
is 1, then ai is true in m, and if bi is 0, then ai is false in m. For example, for S
= 〈a, b, c〉, M(A) is {111, 110, 101, 100, 011, 010, 001, 000}. So for m = 101, a is
true, b is false, and c is true.

Definition 5. A probability distribution P over M(A) is a function P :
M(A)→ [0, 1] s.t.

∑
m∈M(A) P (m) = 1.
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Definition 6. The probability of literal φ ∈ L(A) w.r.t. probability distribu-
tion P is P (φ) =

∑
m∈M(A) s.t. m|=φ P (m).

Next, for an argument: (1) the premises imply the claim; (2) the premises
are consistent; and (3) the premises are minimal for entailing the claim.

Definition 7. For Φ ⊆ F(A), and α ∈ L(A), 〈Φ, α〉 is an argument iff (1)
Φ ` α; (2) Φ is consistent; and (3) there is no Φ′ ⊂ Φ such that Φ′ ` α.

Example 5. For ∆ = {b, p, b → f, p → ¬f}, the arguments are 〈{b, b → f}, f〉,
〈{p, p→ ¬f},¬f〉, 〈{b}, b〉, and 〈{p}, p〉.

A reflexive argument is of the form A = 〈{α}, α〉. For argument A = 〈Φ, α〉,
Support(A) returns Φ, Claim(A) returns α, Facts(A) returns the literals in Φ,
Rules(A) returns the rules in Φ, and Frame(A) returns Facts(A) ∪ {Claim(A)}.

The probability of an argument being acceptable is based on the facts in the
premises and the claim of the argument. So returning to the audience scenario,
if the audience has been presented with an argument graph, they can use their
probability distribution to calculate the probability of each argument.

Definition 8. The probability of argument A being acceptable is denoted
P (A), where P (A) =

∑
m∈Models(Frame(A)) P (m).

Example 6. Continuing Ex. 1, with probability distribution P below, and signa-
ture S = 〈b, p, f〉, P (〈{b, b→ f}, f〉) = 0.95 and P (〈{p, p→ ¬f},¬f〉) = 0.01.

〈b, p, f〉 110 101 100
P 0.01 0.95 0.04

Definition 9. For φ, φ′ ∈ L(A), let φ ≡ φ′ denote Models(φ) = Models(φ′) and
let ¬¬φ = φ. For arguments A and B, A is a direct undercut of B if there
is φ ∈ Support(B) s.t. Claim(A) ≡ ¬φ. A is a rebuttal of B if Claim(A) ≡
¬Claim(B). A attacks B iff A is a direct undercut or A is a rebuttal of B.

The following coherence property holds because the sum of belief in comple-
mentary literals is less than or equal to 1.

Proposition 2. For probability distribution P , if B attacks A, then P (A) +
P (B) ≤ 1.

We use the usual notion of an argument graph, where each node is an ar-
gument, and each arc denotes an attack by one argument on another [10]. For
a knowledgebase, a complete argument graph contains all arguments and
attacks (e.g. Figure 1). However, we are not using the argument graph to deter-
mine which arguments are acceptable. Rather, we use a probability distribution
to determine the acceptable arguments as explained below. So the role of the
argument graph is to provide a presentation of the arguments.

When P (A) > 0.5, then the argument is believed to be acceptable, whereas
when P (A) ≤ 0.5, then it is not believed to be acceptable. The epistemic ex-
tension for a graph G, denoted Extension(P,G), is the set of arguments that are
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Fig. 1. The following is a complete argument graph (excluding reflexive arguments)
from ∆ = {b, p, b ∧ n → f, p → ¬f, p → ¬n} where b is bird, p is penguin, f is capable
of flying, and n is a normality atom. Argument A3 has the claim that negates n, and
so represents an attack on the use of the rule with n as condition in A1.

A1 = 〈{b, n, b ∧ n→ f}, f〉 A2 = 〈{p, p→ ¬f},¬f〉A3 = 〈{p, p→ ¬n},¬n〉

believed to be acceptable (i.e. A ∈ Extension(P,G) iff A is in G and P (A) > 0.5).
For example, for graph G in Figure 1, with P (A1) = 0.95, and P (A2) = P (A3) =
0.15, Extension(P,G) = {A1}. As shown in [15], for any probability distribution
P and graph G, Extension(P,G) is conflict-free.

The epistemic approach provides a finer-grained assessment of an argument
graph than given by the definitions for Dung’s extensions. By adopting con-
straints on the distribution, the epistemic approach subsumes Dung’s defini-
tions [34, 18, 26]. The epistemic approach also provides alternatives to Dung’s
approach. For instance, we may wish to represent disbelief in arguments even
when they are unattacked [25].

4 Modelling normality

Defeasible rules are normally correct, but sometimes are incorrect, and so we
need to attack them. To address this, we use normality atoms as illustrated in
Figure 1. We assume the set of atoms A is partitioned into normality atoms,
denoted N , and ordinary atoms, denoted Q. So A = Q∪N and Q∩N = ∅. We
read the normality atom in the condition as saying that the context for applying
the rule is normal. If there are reasons to believe that it is not a normal context,
then a counterargument attacks this assumption of normality.

We will use the following normality modelling convention: Each rule has
at most one normality atom as a condition, and if a normality atom appears as
condition in a rule, it is unique to that rule. No other rule in the knowledge-
base has the same normality atom as a condition. However, multiple rules in
the knowledgebase can have the same negated normality atom as head. This
convention helps us to specify an appropriate probability distribution over a set
of atoms that includes normality atoms. We quantify the probability of a nor-
mality atom in terms of the unique rule that contains it as an antecedent: For a
defeasible rule β1 ∧ . . . ∧ βn ∧ γ → α with normality atom γ, the probability of
γ is P (β1 ∧ . . . ∧ βn ∧ α).

Example 7. Consider probability distribution P , with the rules in ∆ being b ∧
n1 → f and p ∧ n2 → ¬f. So P satisfies our constraints that P (n1) = P (b ∧ f)
and P (n2) = P (p ∧ ¬f).

〈b, p, f, n1, n2〉 11001 10110 10000
P 0.01 0.95 0.04
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The use of normality propositions to disable rules is analogous to the use of
abnormality predicates in formalisms such as circumscription [22]. Furthermore,
we can use normality atoms to capture the specificity principle where a more
specific rule is preferred over a less specific rule.

5 Argument strength

Given an argument A and probability distribution P , we let SP (A) be an as-
signment in the [−1, 1] interval to denote the strength of A. If SP (A) ≤ 0, then
the support of the argument does not provide a good reason for the claim. As
SP (A) rises above zero, then the support of the argument gives an increasingly
good reason for the claim.

In the rest of this paper, we will focus on arguments that involve relation-
ships between observations. We will assume that all the atoms, apart from the
normality atoms, are observations. These are atoms that can ultimately be veri-
fied as true or false, though at any specific time, there may be uncertainty about
which observations are true or false. Examples of observations include b = bird,
d = duck, p = penguin, e = eagle, and f = fly-thing. Given an argument A, the
evidence in A, denoted Ev(A), is the set of observations in the support of A that
are not normality atoms. (i.e. Ev(A) = Facts(A)∩L(Q)). So when we investigate
strength, we want to quantify some aspect of how believing the evidence in the
premises supports the claim.

There are various ways of defining SP . To clarify some of the issues consider
the simple situation of an argument A of the form 〈{b, b → a}, a〉. For this,
consider the four models for signature 〈a, b〉. Mass on 11 indicates positive cor-
relation between a and b, and mass on 10 and 01 indicates negative correlation.
On this basis, the conditional probabilities P (a|b) and P (b|a) indicate positive
correlation, and the conditional probabilities P (a|¬b), P (¬a|b), P (b|¬a), and
P (¬b|a), indicate negative correlation.

So there are multiple dimensions to connecting the evidence and claim. We
will draw some of these out in the following seven properties that capture desir-
able, though not mandatory, features of argument strength. For a set of literals
Γ , ∧Γ is the conjunction of the literals. We extend the definition for the proba-
bility of a literal so that if λ is a Boolean combination of literals in L(A), then
P (λ) is the sum of the probability of the models that classically satisfy λ. Also
P (λ|λ′) is P (λ ∧ λ′)/P (λ′), and if P (λ) = 0, then we let P (λ|λ′) = 0.

(X1) If Claim(A) ≡ ∧Ev(A) and P (Claim(A)) > 0, then S(A) < 1
(X2) If ∧Ev(A) ≡ ∧Ev(B) and Claim(A) = Claim(B), then S(A) = S(B)
(X3) If S(A) > 0, then P (Claim(A)| ∧Ev(A)) > 0
(X4) If P (Claim(A)| ∧Ev(A)) = P (Claim(A), then S(A) = 0
(X5) If P (∧Ev(A)|Claim(A)) = P (∧Ev(A)|¬Claim(A)), then S(A) = 0
(X6) If P is a uniform probability distribution, then S(A) = 0
(X7) If P (Claim(A)| ∧Ev(A)) = P (Claim(A)|¬ ∧Ev(A)), then S(A) = 0

We explain these properties as follows: (X1) If the evidence and claim are
logically equivalent, and there is non-zero belief in the claim, then the argument
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is not providing a good reason for the claim because the reason is just the claim
reiterated, and hence the strength is below 1; (X2) If two arguments are logically
equivalent with respect to support and claim, then they provide equivalent rea-
sons for equivalent claims, and so they are equally strong; (X3) Positive strength
requires the probability of the claim conditional on the evidence to be non-zero;
(X4) If the probability of the claim conditional on the evidence equals the prob-
ability of the claim, then the argument has zero strength as the premises are
not giving a useful reason for the claim; (X5) If the probability of the evidence
conditional on the claim equals the probability of the evidence conditional on
the negation of the claim, then the argument has zero strength; (X6) If there is a
uniform distribution, there is no material relationship between the evidence and
claim and so the argument has zero strength; And (X7) If the probability of the
claim conditional on the evidence equals the probability of the claim conditional
on the negation of the evidence, then the argument has zero strength.

The first strength function we consider is the plausibility strength function
which is the probability of the claim conditional on the evidence.

Definition 10. The plausibility of an argument A w.r.t. probability distribu-
tion P , denoted SpP , is P (Claim(A)| ∧Ev(A)).

Example 8. Continuing Example 7, the plausibility of argument A = 〈{b, b ∧
n1 → f}, f〉 is SpP (A) = 0.95.

Proposition 3. The plausibility measure SpP satisfies X2 and X3, but it does
not satisfy X1, X4, X5, X6, or X7.

Proof. For counterexamples for X4, X5 and X7, consider the signature 〈a, b〉 with
argument 〈{b, b→ a}, a〉. (X1) Assume Claim(A) ≡ ∧Ev(A) and P (Claim(A)) >
0. So P (Claim(A) ∧ Ev(A))/P (Claim(A)) = 1. So SpP (A) 6< 1. (X2 and X3)
Direct from definition. (X4) Let P (11) = 0.2, P (10) = 0.3, P (01) = 0.2, and
P (00) = 0.3. (X5) Let P (11) = 0.2, P (10) = 0.2, P (01) = 0.3, and P (00) = 0.3.
(X6) If P is uniform, then P (Claim(A) ∧ Ev(A))|P (∧Ev(A)) 6= 0. So SpP (A) 6= 0.
(X7) Let P (11) = 0.2, P (10) = 0.3, P (01) = 0.2, and P (00) = 0.3.

The failure of the X1, X4, X5, X6, and X7 properties suggests that there
may be useful alternatives to the plausibility for measuring the strength of an
argument. We are not suggesting that there is a single measure that tells us
everything we need to know about the strength of a probabilistic argument
based on defeasible rules, but we do expect that different measures can tell us
different useful things about the strength of arguments.

6 Confirmation theory

For an alternative perspective on the strength of an argument, we turn to con-
firmation measures. Originally, confirmation measures were developed in the
philosophy of science to investigate the development of scientific hypotheses [9].
The aim of a confirmation measure C(E,H) is to capture the degree to which



8 A. Hunter

evidence E supports hypothesis H. Confirmation measures have been proposed
as a measure of argument strength in [24] but only in the restricted context of
an argument that is a conditional probability statement. For our purposes, we
assume that the evidence is a set of literals ∆ and the hypothesis is a literal φ.
We review some well-known confirmation measures next.

Definition 11. For ∆ ⊆ L(A), φ ∈ L(A), and probability distribution P , the
CdP [5], CsP [7], and CkP [19] confirmation measures are defined as follows.

– CdP (∆,φ) = P (φ| ∧∆)− P (φ)
– CsP (∆,φ) = P (φ| ∧∆)− P (φ|¬(∧∆))

– CkP (∆,φ) = P (∧∆|φ)−P (∧∆|¬φ)
P (∧∆|φ)+P (∧∆|¬φ) when P (∧∆|φ)+P (∧∆|¬φ) > 0 and 0 otherwise.

We explain these measures as follows: (CdP ) the increase in belief in the claim
that can be attributed to believing the evidence to be true, i.e. for it to be
positive, P (φ) < P (φ | ∧∆) holds; (CsP ) the difference in belief in the claim
conditioned on the evidence being true and belief in the claim conditioned on
the evidence being untrue, i.e. for it to be positive, P (φ | ¬(∧∆)) < P (φ |
∧∆) holds; and (CkP ) the difference in belief in the evidence conditioned on
the claim being true and belief in the evidence conditioned on the claim being
untrue, normalized by the maximum range for the value, i.e. for it to be positive,
P (∧∆ | ¬φ) < P (∧∆ | φ) holds.

Example 9. Consider S = 〈a, b〉 with the following the distribution (left) and
strength measures (right) for ∆ = {b} and φ = a. Here, the conditional prob-
ability gives a quite high score, whereas the confirmation measures give lower
scores, reflecting the mass assigned to the models 10 and 01.

〈a, b〉 11 10 01 00
P 0.5 0.1 0.2 0.2

P (.) SpP SdP SsP SkP
A 0.5 0.71 0.11 0.38 0.25

We can harness confirmation theory for argumentation (where arguments
concern relationships between observations) as below, where the greater the
value, the stronger the argument. In order to focus on the evidence, we consider
the ordinary facts (i.e. observations) in the support of the argument.

Definition 12. The confirmation strength of argument A w.r.t. probability
distribution P and confirmation measure CxP , for x ∈ {d, s, k}, denoted SxP (A),
is SxP (A) = CxP (Ev(A),Claim(A)).

Example 10. Consider the following probability distribution (left), with signa-
ture 〈d, p, f〉, for an insectarium, where d is dragonfly, p is pollinator, and f is
flying insect.

〈d, p, f〉 101 011
P 0.2 0.8

P (.) SpP SdP SsP SkP
A1 0.00 0.00 -0.80 -1.00 -1.00
A2 0.20 1.00 0.80 1.00 1.00
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For arguments A1 = 〈{d, d → p}, p〉 and A2 = 〈{d, d → ¬p},¬p〉, the values
for argument strength are given in the table on the right above where P (.)
is the probability of the argument being acceptable. Since dragonflies are not
pollinators (as shown by the probability distribution), A1 has low scores, and
A2 has high scores, for confirmation strength.

Example 11. Consider the probability distribution P , with signature 〈b, p, f, n〉,
where b is bird, p is penguin, f is capable of flying, and N = {n}, for a zoo with
a large aviary.

〈b, p, f, n〉 1100 1011 1000 0000
P 0.01 0.75 0.04 0.2

P (.) SpP SdP SsP SkP
A1 0.75 0.94 0.19 0.94 0.67
A2 0.01 1.00 0.75 0.76 1.00
A3 0.01 1.00 0.75 0.76 1.00

For the arguments A1 = 〈b, b ∧ n → f}, f〉, A2 = 〈p, p → ¬f},¬f〉, and A3 =
〈{p, p→ ¬n},¬n〉, the strengths are given in the table on the above right. So A1

has a high probability of acceptability, and some good scores for confirmation
strength, and A2 and A3 have a low probability of acceptability but are quite
strong arguments.

Proposition 4. The table captures satisfaction X, or non-satisfaction ×, of the
X1 to X7 properties.

X1 X2 X3 X4 X5 X6 X7
SdP X X X X X X X
SsP × X X × X X X
SkP × X X × X X X

Proof. For counterexamples, consider the signature 〈a, b〉 with 〈{a, a → a}, a〉
for X1, and 〈{b, b → a}, a〉 for X4 and X7. (SdP ) (X1) Assume ∧Cn(Ev(A)) =
∧Cn(Claim(A)) = φ. So S(A) = P (φ|φ)−P (φ) = 1−P (φ). So if P (φ) > 0, then
S(A) < 1. (X2) Direct from definition. (X3) If SdP (A) > 0, then P (Claim(A)| ∧
Ev(A))−P (Claim(A)) > 0. So P (Claim(A)|∧Ev(A)) > 0. (X4) Direct from defini-
tion. (X5) From the assumption P (∧Ev(A)|Claim(A)) = P (∧Ev(A)|¬Claim(A)),
we can show P (Claim(A)| ∧ Ev(A)) = P (Claim(A)). (X6) If P is uniform, then
P (Claim(A)| ∧ Ev(A)) = 0.5 and P (Claim(A)) = 0.5. So SdP (A) = 0. (X7) From
the assumption P (Claim(A)| ∧ Ev(A)) = P (Claim(A)|¬ ∧ Ev(A)) we can show
P (Claim(A)| ∧ Ev(A)) = P (Claim(A)). (SsP ) (X1) Let P (11) = 0.5 and P (00) =
0.5. (X2) Direct from definition. (X3) If SsP (A) > 0, then P (Claim(A)|∧Ev(A))−
P (Claim(A)|¬ ∧ Ev(A)) > 0. So P (Claim(A)| ∧ Ev(A)) > 0. (X4) Let P (11) = 1.
(X5) Follows from the fact that P (Claim(A)| ∧Ev(A)) = P (Claim(A)|¬∧Ev(A))
holds iff P (∧Ev(A)|Claim(A)) = P (∧Ev(A)|¬Claim(A)) holds. (X6) If P is uni-
form, then P (Claim(A)| ∧ Ev(A)) = 0.5 and P (Claim(A)|¬ ∧ Ev(A)) = 0.5. So
SsP (A) = 0. (X7) Direct from definition. (SkP ) (X1) Let P (11) = 0.5 and P (00) =
0.5. (X2) Direct from defn. (X3) If SpP (A) > 0, then P (Claim(A)|∧Ev(A)) > 0. So
P (Ev(A)|Claim(A)) > 0. (X4) Let P (11) = 1. (X5) Direct from definition. (X6) If
P is uniform, then then P (∧Ev(A)∧Claim(A)) = P (∧Ev(A))/2 and P (∧Ev(A)∧
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¬Claim(A)) = P (∧Ev(A))/2. Hence P (∧Ev(A)|Claim(A)) = ((P (∧Ev(A))/2)/0.5
= P (∧Ev(A)) and P (∧Ev(A)|¬Claim(A)) = ((P (∧Ev(A))/2)/0.5 = P (∧Ev(A)).

So P (∧Ev(A)|Claim(A))−P (∧Ev(A)|¬Claim(A)
P (∧Ev(A)|Claim(A))+P (∧Ev(A)|¬Claim(A) = P (∧Ev(A))−P (∧Ev(A))

P (∧Ev(A))+P (∧Ev(A)) = 0 (X7) Same as

for SsP X5.

Recall that the plausibility measure SpP only satisfies X2 and X3. So SdP , SsP
and SkP offer potentially valuable alternatives to SpP as they satisfy most/all of
the properties. Note, four of these properties concern what zero strength means,
and so in future work, we will consider further properties to explore what positive
and negative strength mean, and to differentiate the measures.

7 Multiple defeasible rules

We now consider the question of the strength of an argument with multiple
defeasible rules in the premises. To illustrate some of our concerns, consider the
following arguments where b denotes bird, w denotes has wings, y denotes yellow,
f denotes capable of flying.

– A1 = 〈{b, b→ f}, f〉
– A2 = 〈{b, b→ w, w→ f}, f〉
– A3 = 〈{b, b→ y, y→ f}, f〉

Intuitively, A1 is a reasonably strong argument since most birds have the capa-
bility to fly. But does A2 have the same strength as A1 since it starts from the
same fact (i.e. bird) or is it stronger because it makes the intermediate point
concerning having wings? And does A3 have the same strength as A1 or is it
weaker because it makes the intermediate point (i.e. being yellow) that is irrel-
evant (and unlikely to be correct)? Assuming the probability distribution over
the atoms b and f is the same for each argument, then the strength of each
argument is the same since it is based on b and f. However, taking the rules into
account, we might expect the following: (A2) A strong confirmation by birds for
has wings, and by has wings for capable of flying; and (A3) A weak confirmation
by birds for yellow, and a weak confirmation by yellow for capable of flying. To
capture this, we consider how the assessment of the strength of an argument can
depend on its intermediate steps.

Definition 13. Argument B is an intermediate of argument A iff Rules(B) ⊆
Rules(A). Let Intermediates(A) = {B | B is an intermediate of A}.

Example 12. For A1 = 〈{b, b→ w, w→ f}, f〉, the intermediates are A1, B1 =
〈{b, b→ w}, w〉, and B2 = 〈{w, w→ f}, f〉,

If B is a strict intermediate of A (i.e. Rules(B) ⊂ Rules(A)), and Claim(B) 6=
Claim(A), then there is defeasible rule β1 ∧ . . . ∧ βn → φ ∈ Support(A) where
Claim(B) ∈ {β1, . . . , βn} (e.g. B1 in Example 12). This is because arguments
are minimal, and so if the claim of the intermediate differs from that of the
argument, then it is also a condition in a defeasible rule. Also, if B is a strict
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intermediate of A, it is not necessarily the case that Support(B) ⊂ Support(A)
(e.g. B2 in Example 12). In order to consider the intermediates in the derivation
of a claim from its premises, we use the following definition that judges not just
the argument but also the intermediates.

Definition 14. An argument A is compositionally strong with respect to
strength measure SP and threshold τ ∈ [−1, 1] iff for all B ∈ Intermediates(A),
SP (B) ≥ τ .

We now return to the arguments A2 and A3 from the introduction of this
section, and analyze them in the following two examples.

Example 13. For A2 = 〈{b, b→ w, w→ f}, f〉, with the following probability dis-
tribution for a zoo, where S = 〈b, w, f〉, then A2 and its strict intermediates have
high strength.

〈b, w, f〉 111 110 001 000
P 0.09 0.01 0.02 0.88

SpP SdP SsP SkP
〈{b, b→ w, w→ f}, f〉 0.90 0.79 0.88 0.97
〈{b, b→ w}, w〉 1.00 0.90 1.00 1.00
〈{w, w→ f}, f〉 0.90 0.79 0.88 0.97

Example 14. For A3 = 〈{b, b→ y, y→ f}, f〉, with the following probability dis-
tribution for a zoo, where S = 〈b, y, f〉, then A3 has the same high strength as
A2 in the previous example (because the marginals involving b and f are the
same) but low strength for the strict intermediates.

〈b, y, f〉 111 101 100 010 001 000
P 0.01 0.08 0.01 0.02 0.02 0.86

SpP SdP SsP SkP
〈{b, b→ y, y→ f}, f〉 0.90 0.79 0.88 0.97
〈{b, b→ y}, y〉 0.10 0.07 0.08 0.56
〈{y, y→ f}, f〉 0.33 0.22 0.23 0.60

In the same way that we consider the strength of an argument, we can con-
sider the strength of a defeasible rule.

Definition 15. The strength of rule ψ1 ∧ . . . ∧ ψn → φ is SxP (A) where A =
〈{ψ1, . . . , ψn, ψ1 ∧ . . . ∧ ψn → φ}, φ〉 and P is a probability distribution and
x ∈ {p, d, s, k}.

The following result says that if we want compositionally strong arguments,
then we only need to consider strong defeasible rules.

Proposition 5. If argument A is compositionally strong w.r.t. strength measure
SxP and threshold τ , then the strength of any rule ρ ∈ Support(A) is greater than
or equal to τ .

Proof. An argument A is compositionally strong with respect to strength mea-
sure SxP and threshold τ ∈ [−1, 1] iff for all B ∈ Intermediates(A), SxP (B) ≥ τ . So
for all B ∈ Intermediates(A) of the form B = 〈{ψ1, . . . , ψn, ψ1∧ . . .∧ψn → φ}, φ〉,
SxP (B) ≥ τ . So for all rules ρ = ψ1 ∧ . . .∧ ψn → φ ∈ Support(A), the strength of
ρ is greater than or equal to τ .
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The above result means that if we do select strong defeasible rules for our
knowledgebase, then we do not risk missing strong arguments. In other words,
by rejecting weak defeasible rules, rules that are not going to lead to strong
arguments are eliminated from the knowledgebase.

8 Discussion

Returning to the audience scenario given in the introduction, the confirmation
measures give us different ways to judge the arguments, and decide which we
regard as strong arguments. For those arguments that we identify as weak, we
may argue with the person who provided the arguments in order to question
those arguments. Possibly, they may provide supporting arguments to back-up
the arguments under question, and if we are convinced by those supporting
arguments, we have the option to then update our probability distribution. The
protocol for this, the criteria for being convinced by the supporting arguments,
and the method for updating the probability distribution, are beyond the scope
of this paper, but this expanded scenario indicates how being able to analyze
the strength of the arguments presented by others is potentially useful as part
of an argumentation process.

Another application is in a persuasion scenario (for a review of persua-
sion see [17]). Assume we have a knowledgebase from which we can construct
arguments. In a dialogue with another agent, we may want to select the best
arguments to present in order to maximize the likelihood that they will be per-
suaded. For this, we can construct a probability distribution that reflects what
we think the other agent believes about the world. Then using that probability
distribution, we could select the stronger arguments to present.

A third example of an application is an analytical scenario. If we have
acquired knowledge (perhaps from multiple sources), we may want to analyze
the quality of the arguments generated from that knowledge. We can construct
multiple probability distributions in order to investigate the arguments. Each
probability distribution could reflect a possible modelling of the world, and so
the change in strength for specific arguments could be investigated. Robustness
could be investigated by identifying how extreme the modelling would be for
arguments to be substantially weakened or strengthened. We leave the framework
for undertaking robustness analysis to future work.

So there are potential applications for measuring argument strength, but it
is an insufficiently understood notion in the literature on computational models
of arguments. To address this, we consider a very simple defeasible logic with
a clear semantics. This is so that we can get a clear understanding of the key
concepts. We could have used an existing proposal for argumentation, but then
the underlying issues we wanted to explore would be less clear in a more com-
plex framework (e.g. defeasible logic programming [12]). Nonetheless, we believe
this paper provides insights relevant for other argumentation systems, and so
in future work, we will adapt existing proposals for structured argumentation
systems (e.g. [12, 23, 35]) to quantify strength in a probabilistic context.
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