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Abstract. There have been a number of proposals for using deductive
arguments for instantiating abstract argumentation. These take a set of
formulae as a knowledgebase, and generate a graph where each node is
a logical argument and each arc is a logical attack. This then raises the
question of whether for a specific logical argument system S, and for
any graph G, there is a knowledgebase such that S generates G. If it
holds, then it can be described as a kind of “structural” property of the
system. If it fails then, it means that there are situations that cannot be
captured by the system. In this paper, we explore some features, and the
significance, of such structural properties.

1 Introduction

Abstract argumentation provides a clear and precise approach to formalizing
aspects of argumentation. However, in the approach, arguments are treated as
atomic. If we want to understand individual arguments, we need to provide con-
tent for them. This leads to the idea of “instantiating” abstract argumentation
with logical arguments, such as proposed by Cayrol [1].

There are various ways that logical arguments can be defined. A simple kind
is a deductive argument which is a tuple 〈Φ, α〉 where Φ is a set of premises,
and α is a claim such that for a consequence relation `i, Φ `i α holds. Further
constraints include consistency (i.e. Φ 6`i ⊥) and minimality (there is no Ψ ⊂ Φ
s.t. Ψ `i α). Pollock was perhaps the first proponent of deductive arguments [2].
Subsequently, deductive arguments for classical logic [1, 3–5], description logic
[6], and defeasible logic [7, 8] have been proposed.

In this paper, we consider how deductive argument systems generate constel-
lations of arguments and counterarguments, and in particular, we are interested
in the class of argument graphs they can induce. As we will see, some deductive
argument systems only generate certain subclasses of graph. This is, however,
not necessarily bad news. In fact, it is known that the computational complexity
of evaluating argumentation frameworks (when considered as abstract frame-
works following Dung [9]) can be decreased if the class of graphs is restricted,
for instance to acyclic, bipartite or symmetric graphs or to graphs which have
certain parameters (like treewidth) fixed (see e.g. [10–13]).



2 Preliminaries

In this section we review some established definitions for graph theory, for logical
languages and inference, and for logical argumentation.

A graph G is a tuple of the form (N,E) where N is a set of nodes and E
is a set of edges. If a graph has no nodes and no edges, then it is the empty
graph, denoted G∅. We consider various graph types including the following:
A graph (N,E) is weakly connected iff for all nodes n, n′ ∈ N there is an
undirected path (i.e. ignoring the direction of the arrows) in E from n to n′; A
graph (N ′, E′) is a component of a graph (N,E) iff (N ′, E′) is the maximum
subgraph of (N,E) that is weakly connected; A graph (N,E) is a self-loop
graph iff there is a node n ∈ N such that there is an edge (n, n) ∈ E; A
graph (N,E) is a rooted graph iff (N,E) is acyclic and there is a node n
in N , called the root, such that for all other nodes m in N , there is a path
from m to n; A graph (N,E) is a tree iff (N,E) is a rooted graph and for
each non-root node n in N , there is a unique path from n to the root; A graph
(N,E) is complete bipartite iff there is a partition N1 and N2 of N such
that E = {(n1, n2), (n2, n2) | n1 ∈ N1 and n2 ∈ N2}. And a graph (N,E) is a
rational graph iff (N,E) is a component and (N,E) is not a self-loop graph.
The set of all graphs is denoted Graphs, with various subsets including the
following: Components which is the set of all connected graphs; Trees which is the
set of all trees; AcyclicGraphs which is the set of all acyclic graphs; Bipartites
which is the set of all complete bipartite graphs; RootedGraphs which is the set
of rooted graphs; and RationalGraphs which is the set of rational graphs.

In general, we use Formulae to denote the set of formulae of a language. In
this paper, we focus on two languages. The language of defeasible formulae,
denoted DefFormulae, is the set of literals and the set of rules of the form
α1∧ · · ·∧αn → β where α1, . . . , αn are literals, and β is a literal. The language
of propositional formulae, denoted PropFormulae, is the usual language for
classical propositional logic that can formed from the logical connectives of ∨, ∧,
¬ and →. We consider the classical consequence relation, denoted `, which
is defined as usual, and the defeasible consequence relation, denoted `d,
which is defined as follows: For ∆ ⊆ DefFormulae, if α1 ∧ · · · ∧ αn → β ∈ ∆,
and for each αi ∈ {α1, . . . , αn}, either αi ∈ ∆ or ∆ `d αi, then ∆ `d β.

We consider two types of deductive argument. For Φ ⊆ DefFormulae, and a
literal α ∈ DefFormulae, 〈Φ, α〉 is a defeasible argument iff Φ `d α and there
is no proper subset Φ′ of Φ such that Φ′ `d α. For Φ ⊆ PropFormulae, and a
formula α ∈ PropFormulae, 〈Φ, α〉 is a classical argument iff Φ ` α, Φ 6` ⊥ and
there is no proper subset Φ′ of Φ such that Φ′ ` α. For an argument A = 〈Φ, α〉,
the function Support(A) returns Φ and the function Claim(A) returns α.

For defeasible arguments A and B, we consider the following type of defeasi-
ble attack: A is a defeasible undercut of B if (1) there is a rule α1∧· · ·∧αn →
β in Support(B) and Claim(A) is the complement of β (i.e. if Claim(A) is an atom
ψ, then β is ¬ψ, and if β is an atom ψ, then Claim(A) is ¬ψ); Or (2) Claim(A) is
the complement of a literal in Support(B). We have a wider range of options for
defining attack for classical logic, such as rebuttals [2, 14], direct undercuts [15,



16, 1], and canonical undercuts [3]. For classical arguments A and B, we consider
the following type of classical attack in this paper: A is a classical direct un-
dercut of B if ∃φ ∈ Support(B) s.t. Claim(A) ≡ ¬φ; A is a classical canonical
undercut of B if Claim(A) ≡ ¬

∧
Support(B); And A is a classical rebuttal

of B if Claim(A) ≡ ¬Claim(B). We give some examples of logical attack in the
following.

〈{e, e→ ¬b},¬b〉 is a defeasible undercut of 〈{c, d, c→ b, b ∧ d→ a}, a〉
〈{¬a ∧ ¬b},¬a〉 is a classical direct undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{¬a ∧ ¬b},¬(a ∧ b ∧ c)〉 is a classical canonical undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{a, a→ b}, b ∨ c〉 is a classical rebuttal of 〈{¬b,¬c},¬(b ∨ c)〉

3 Logical argument systems

In this paper, we consider a variety of logical argument systems based on deduc-
tive arguments using either defeasible logic or classical logic.

Definition 1. A logical argument system is a tuple 〈Kbs, Arg, Att, Con〉,
denoted Sys, where for some language of formulae Formulae, we have Kbs =
℘(Formulae), Arguments = {〈Φ,ψ〉 | Φ ∈ Kbs and ψ ∈ Formulae}, and Attacks
= Arguments× Arguments and

Arg : ℘(Formulae)→ ℘(Arguments)
Att : ℘(Formulae)→ ℘(Attacks)
Con : ℘(Formulae)× Arguments→ Graphs

This is a general definition that can be instantiated by a wide variety of
logical argument systems. We give examples in Section 3.1. The sets Arguments
and Attacks are given as types for the functions Arg, Att, and Con. We explain
the parameters 〈Kbs, Arg, Att, Con〉 of the definition as follows. The Kbs set is
the set of knowledgebases that can be used by the system. In this paper, we
focus on the knowledgebases given by the languages of defeasible formulae and
classical formulae. The Arg function gives the set of arguments that can be
generated from a knowledgebase. In this paper, we focus on defeasible arguments
and classical arguments. The Att function gives the set of attacks that can be
generated from a knowledgebase, and so (A,B) ∈ Att(∆) means that A attacks
B (e.g. defeasible undercut or classical rebuttal). The Con function (called the
constructor function) that, given a knowledgebase ∆ and a specified argument
A, called the focal argument, returns a graph s.t. if A ∈ Arg(∆), then the
construction starts with A as a node in the graph and then builds the graph
using a subset of the attacks relation (i.e. a subset of Att(∆)) as the edges, and
if A 6∈ Arg(∆), then the graph is the empty graph G∅.

The constructor function encodes the method by which we generate an ar-
gument graph from a set of logical arguments and attacks between those argu-
ments. In this paper, we consider the four constructor functions that we define
and illustrate in the rest of this subsection.



Definition 2. Let 〈Kbs, Arg, Att, Con〉 be a logical argument system.

– Con is a trivial constructor iff for any knowledgebase ∆, and for any
argument A ∈ Arg(∆), Con(∆,A) is the graph (Arg(∆), Att(∆)).

– Con is a simple constructor iff for any knowledgebase ∆, and for any argu-
ment A ∈ Arg(∆), Con(∆,A) is the component in the graph (Arg(∆), Att(∆))
containing A.

We can regard the simple constructor as starting with the focal argument A,
and adding all the arguments that attack the argument (by adding the node and
arc(s) for each of these counterarguments). Then it repeats this step iteratively
until no more arguments can be added.

Example 1. For ∆ = {a, b, c, d, e, a → ¬a, b → ¬a, a → ¬b, d ∧ e → ¬c, c ∧ e →
¬d}, let Arg(∆) = { A1, A2, A3, A4, A5 }, where A1 is 〈{a, a→ ¬a},¬a〉, A2 is
〈{a, a→ ¬b},¬b〉, A3 is 〈{b, b→ ¬a},¬a〉, A4 is 〈{c, e, c∧ e→ ¬d},¬d〉, and A5

is 〈{d, e, d∧e→ ¬c},¬c〉, and Att(∆) = { (A1, A1), (A1, A2), (A2, A3), (A3, A1),
(A3, A2), (A4, A5), (A5, A4) }. For this, the trivial constructor Con(∆,A) returns
the following graph, where any of A1 to A5 is the focal argument A. Furthermore,
the simple constructor Con(∆,A) returns the component below containing A1

to A3, where any of A1 to A3 is the focal argument A. Likewise, if the focal
argument A would be A4 or A5, the simple constructor would return the other
component.

〈{a, a→ ¬a},¬a〉 〈{a, a→ ¬b},¬b〉 〈{b, b→ ¬a},¬a〉

〈{c, e, c ∧ e→ ¬d},¬d〉 〈{d, e, d ∧ e→ ¬c},¬c〉

The recursive constructor (defined next) is related to proposals for construct-
ing trees in classical logic [3] and in defeasible logic programming [7]. For the
following definition, the constructor starts with the focal argument as the root,
and all attackers are added as children. Then by recursion, for each argument
in the graph, all the attackers of the argument are added as children. The only
restriction to this is the so called “no recycle” condition, which says that when
adding an attacker to the graph, it should contain at least one formula in the
support that has not been used as a premise in any ancestor argument (i.e.
an argument that is on the branch to the root). Consequently, the recursive
constructor always yields a (directed) acyclic graph.

Definition 3. Let 〈Kbs, Arg, Att, Con〉 be a logical argument system. Let ∆ be a
knowledgebase, and let A be an argument. Con is a recursive constructor iff
for any knowledgebase ∆, and for any argument A ∈ Arg(∆), Con(∆,A) is the
directed graph G constructed by adding exactly the arguments as follows:

1. A is the root of G



2. if (B,A) ∈ Att, then B is a child of A in G
3. by recursion, for each node C in G, if (D,C) ∈ Att, and the support of

D contains at least one premise that does not appear in the support of any
argument on the branch from C to A, then D is a child of C in G.

Example 2. For ∆ = {b, b → a, c, c → ¬b, d, d → ¬b, e, e → ¬c, f, f → ¬c},
let (Arg(∆) = {A1, A2, A3, A4, A5}, where A1 is 〈{b, b → a}, a〉, A2 is 〈{c, c →
¬b},¬b〉, A3 is 〈{d, d→ ¬b},¬b〉, A4 is 〈{e, e→ ¬c},¬c〉, A5 is 〈{f, f → ¬c},¬c〉,
A6 is 〈{b, c→ ¬b},¬c〉, A7 is 〈{c, e→ ¬c},¬e〉, A8 is 〈{c, f → ¬c},¬f〉, and A9

is 〈{b, d → ¬b},¬d〉, and Att(∆)) = { (A2, A1), (A2, A6), (A3, A1), (A3, A9),
(A4, A2), (A4, A7), (A4, A8), (A5, A2), (A5, A8), (A6, A2), (A6, A7), (A6, A8),
(A7, A4), (A8, A5), (A9, A3) }. For this, the recursive constructor returns the
following graph containing arguments A1 . . . A5, where A1 is the focal argument.
Note that arguments A6 . . . A9 do not appear in the graph, due to the third
condition of Definition 3.

〈{b, b→ a}, a〉

〈{c, c→ ¬b},¬b〉 〈{d, d→ ¬b},¬b〉

〈{e, e→ ¬c},¬c〉 〈{f, f → ¬c},¬c〉

The rebuttal constructor (defined next) is similar to proposals for reasoning
with pros and cons. Given the focal argument, all arguments with a logically
equivalent claim or with a contradictory claim are included. The rebuttal con-
structor always yields a complete bipartite graph.

Definition 4. Let 〈Kbs, Arg, Att, Con〉 be a logical argument system. Let ∆ be
a knowledgebase, and let A be an argument. Con is a rebuttal constructor iff
for any knowledgebase ∆, and for any argument A ∈ Arg(∆), Con(∆,A) is the
graph obtained by taking the nodes to be the arguments that either have a claim
that is logically equivalent to Claim(A) or a claim that is logically equivalent to
¬Claim(A) and by taking the edges to be the rebuttals between these nodes.

Example 3. For ∆ = {a, a → b, c, c → b, d, d → ¬b, d, d → ¬c, c, c → ¬d}, let
(Arg(∆) = { A1, A2, A3, A4, A5 }, where A1 is 〈{a, a → b}, b〉, A2 is 〈{c, c →
b}, b〉, A3 is 〈{d, d → ¬b},¬b〉, A4 is 〈{d, d → ¬c},¬c〉, and A5 is 〈{c, c →
¬d},¬d〉, and Att(∆)) = { (A1, A3), (A2, A3), (A3, A1), (A3, A2) }. For this, the
rebuttal constructor returns the following graph, where any of A1 to A3 is the
focal argument.

〈{a, a→ b}, b〉 〈{c, c→ b}, b〉〈{d, d→ ¬b},¬b〉

In general, we do not impose constraints on a logical argument system. In this
paper, we only consider instances of Arg, Att, and Con that are monotonic. How-
ever, it would be reasonable to consider non-monotonic versions of the functions,
but we leave that to future work.



3.1 Examples of logical argument systems

To illustrate the idea of logical argument systems, we present some instances,
denoted System 1 to System 5, next, and then in the following section, we will
consider properties of these systems.

System 1 The tuple 〈Kbs, Arg, Att, Con〉 is a system based on defeasible logic
where Kbs is ℘(DefFormulae), Arg(∆) is the set of defeasible arguments from
∆ such that if B ∈ Arg(∆), then Support(B) ⊆ ∆, Att(∆) is {(B,C) | B,C ∈
Arg(∆) and B is a defeasible undercut of C}, and Con(∆,A) is the simple con-
structor.

Example 4. Consider System 1 with ∆ = {a, b, a → ¬a, b → ¬a, a → ¬b, d →
¬c, c → ¬d}. For the focal argument 〈{a, a → ¬a},¬a〉, Con(∆,A) gives the
constructed graph that is the component with three arguments in Example 1.

From the directed graph obtained by the next system, it is simple to obtain
the argument tree of Besnard and Hunter3 [3].

System 2 The tuple 〈Kbs, Arg, Att, Con〉 is a system based on classical logic
where Kbs is ℘(PropFormulae), Arg(∆) is the set of classical arguments such
that if B ∈ Arg(∆), then Support(B) ⊆ ∆, Att(∆) is {(B,C) | B,C ∈ Arg(∆)
and B is a canonical undercut of C}, and Con(∆,A) is the recursive constructor.

So the constructor function returns the smallest graph obtained by starting
with A, adding all the canonical undercuts to A, and by recursion adding all the
canonical undercuts An to each of the canonical undercuts An−1 subject to the
condition that each canonical undercut An has a premise that does not appear
in any support on the path of arguments An−1, ..., A1 where A1 is A.

Example 5. Consider System 2 with ∆ = {b, c, a∧¬b, a∧¬c,¬a∧f,¬f∧e, b∧c→
d}. For the focal argument 〈{b, c, b ∧ c → d}, d〉, Con(∆,A) gives the following
constructed graph which is an example of a rooted graph.

〈{¬f ∧ e},¬(¬a ∧ f)〉

〈{¬a ∧ f},¬(a ∧ ¬b)〉 〈{¬a ∧ f},¬(a ∧ ¬c)〉

〈{a ∧ ¬b},¬(b ∧ c ∧ (b ∧ c→ d))〉 〈{a ∧ ¬c},¬(b ∧ c ∧ (b ∧ c→ d))〉

〈{b, c, b ∧ c→ d}, d〉

3 A rooted graph is translated to an argument tree of Besnard and Hunter as follows:
Start from the bottom of the graph working upwards. For each node with multiple
parents, a copy is made of the node and its offspring for each of its parent, so that
each copy has exactly one parent. For Example 5, the bottom node is copied so the
argument occurs in two leaf nodes



The next system is based on the idea of exhaustively generating all arguments
from a knowledgebase and all attacks (according to a particular definition of
attack) and using the resulting graph without restriction (as first proposed in
[1], and further explored in [5]).

System 3 The tuple 〈Kbs, Arg, Att, Con〉 is a system based on classical logic
where Kbs is ℘(PropFormulae), Arg(∆) is the set of classical arguments such
that if B ∈ Arg(∆), then Support(B) ⊆ ∆, Att(∆) is {(B,C) | B,C ∈ Arg(∆)
and B is a direct undercut of C}, and Con(∆,A) is the simple constructor.

Note, here we use the classical direct undercut. But, we could use the classical
defeater, classical direct defeater, classical undercut, classical canonical under-
cut, or classical literal undercut, as an alternative (see definitions in [5]). Hence,
we have a range of systems based on the choice of attack.

Example 6. Consider System 3 with ∆ = {a,¬a∨¬b, b}. For the focal argument
A = 〈{b}, b〉, Con(∆,A) gives the following constructed graph. For this, each
argument with a claim with an asterisk, i.e. a claim of the form α∗, denotes any
argument with the same premises and a claim that it is implied by α.

〈{a}, a∗〉 〈{b,¬a ∨ ¬b},¬a〉

〈{¬a ∨ ¬b}, (¬a ∨ ¬b)∗〉 〈{a, b},¬(¬a ∨ ¬b)〉

〈{a,¬a ∨ ¬b},¬b〉〈{b}, b∗〉

The following system is the same as the previous system but restricts consid-
eration to classical rebuttals rather than direct undercuts [5]. As an alternative
we could consider classical direct defeating rebuttals (see definition in [3]).

System 4 The tuple 〈Kbs, Arg, Att, Con〉 is a system based on classical logic
where Kbs is ℘(PropFormulae), Arg(∆) is the set of classical arguments such
that if A ∈ Arg(∆), then Support(B) ⊆ ∆, Att(∆) is {(B,C) | B,C ∈ Arg(∆)
and B is a rebuttal of C}, and Con(∆,A) is the rebuttal constructor.

Example 7. Consider System 4 with ∆ = {a,¬a ∨ ¬b, b, c,¬b → ¬c,¬(e ∨ b)}.
For argument A = 〈{b}, b〉, Con(∆,A) gives the following constructed graph.

〈{b}, b〉 〈{a,¬a ∨ ¬b},¬b〉

〈{c,¬b→ ¬c}, b〉〈{¬(e ∨ b)},¬b〉

Finally, we give an example of a new logical argument system that is very
constrained with respect to the kinds of arguments that are allowed. Essentially,
this system allows us to avoid the symmetrical relationships that usually hold
for attack for a classical argument system.



System 5 The tuple 〈Kbs, Arg, Att, Con〉 is a system based on classical logic
where ConForm = { α∧β1∧ ...∧βn | α is a positive literal and β1, ..., βn are neg-
ative literals }, Kbs is ℘(ConForm), Arg(∆) is the set of tuples of the form 〈{φ}, ψ〉
where φ ∈ ∆ and {φ} ` ψ and ψ is the conjunction of negative literals occurring
in φ, Att(∆) is {(B,C) | B,C ∈ Arg(∆) and B is a classical undercut of C},
and Con(∆,A) is the simple constructor.

Example 8. Consider System 5 with ∆ = {a ∧ ¬b ∧ ¬c, b ∧ ¬c, c ∧ ¬a}. For the
focal argument A = 〈{a ∧ ¬b},¬b〉, Con(∆,A) gives the following graph.

〈{a ∧ ¬b ∧ ¬c},¬b ∧ ¬c〉 〈{b ∧ ¬c},¬c〉 〈{c ∧ ¬a},¬a〉

In this section, we have presented a non-exhaustive range of logical argument
systems. Most are based on well-known approaches. The last system is a new
proposal for studying structural properties rather than being useful in its own
right.

4 Induced graphs

The following definition captures the relationships that we will consider between
a logical argument system and a class of graphs. The more general the class
of graphs that a logical argument system can cover, the wider the range of
argumentation situations the logical argument systems can capture.

Definition 5. Let Sys = 〈Kbs, Arg, Att, Con〉 be a logical argument system and
let X be a graph type.

– Sys constructively covers X iff for all G ∈ X, there is a ∆ ∈ Kbs, and
there is an A ∈ Arg(∆), such that Con(∆,A) = G.

– Sys is constructively covered by X iff for all ∆ ∈ Kbs, and for all A ∈
Arguments, if Con(∆,A) = G, then G ∈ X.

– Sys is constructively complete for X iff Sys constructively covers X and
Sys is constructively covered by X.

Since the constructor function returns a graph, by definition, any logical
argument system is constructively covered by Graphs. We now consider in more
detail the systems from the previous section starting with System 1. Note, if we
use the trivial constructor instead of the simple constructor, it is straightforward
to show it is constructively complete for Graphs.

Proposition 1. System 1 is constructively complete for Components.

Turning to System 2, Example 5 illustrates that it is not constructively com-
plete for Trees.



Proposition 2. System 2 is constructively complete for RootedGraphs.

System 3 does not correspond to any of the classes of graphs presented earlier.
In particular, it does not constructively cover RootedGraphs, AcyclicGraphs,
RationalGraphs, Bipartites, or Components. Furthermore, it is not covered
by RootedGraphs, AcyclicGraphs, and Bipartites. However, we do show next
that as System 3 does not allow inconsistent premises, it excludes self-cycles,
and so it is covered by RationalGraphs.

Proposition 3. System 3 is constructively covered by RationalGraphs.

To illustrate the difficulty in identifying a tighter bound on the set of graphs
that System 3 is covered by, we consider the problem of constructing a component
with two arguments attacking each other. We indicate by the following example
that this is not possible. Note, this is not a pathological example as there are
many simple graphs that cannot be generated by System 3.

Example 9. For System 3, let ∆ = {a,¬a}. Hence, there are two classical ar-
guments 〈{a}, a〉 and 〈{¬a},¬a〉 that are direct undercuts of each other. Plus,
there are two further kinds of argument, 〈{a}, a∗〉 and 〈{¬a}, (¬a)∗〉, where a∗ is
strictly weaker than a (i.e. {a} ` a∗ and {a∗} 6` a). and (¬a)∗ is strictly weaker
than ¬a.

〈{a}, a〉 〈{¬a},¬a〉〈{¬a}, (¬a)∗〉 〈{a}, a∗〉

For System 4, the definition of the rebuttal constructor renders it straight-
forward to show that the system is constructively complete for Bipartites.

Proposition 4. System 4 is constructively complete for Bipartites.

The restrictions on the form of the arguments arising in System 5 allow us
to show that even with classical logic, we can get almost the same completeness
results as with defeasible logic. What are missing are the self-loop components.

Proposition 5. System 5 is constructively complete for RationalGraphs.

In this section, we have shown how restricted systems such as those based on
defeasible logic (e.g. System 1), or those based on very restricted arguments (e.g.
System 5) are constructively complete for rational graphs, or even components,
whereas unrestricted use of classical logic means these properties do not hold.

5 Local and global constructors

To get completeness results for components, graphs, or rational graphs, the log-
ical argument system needs to be restricted in some way. For example, the proof
theory of System 1, for generating arguments is weak (it is modus ponens) and
for System 5, the arguments are restricted to having a single premise and the



claim being a conjunction of negative literals. From the systems we have consid-
ered so far, we see a trade-off with regard to how restricted the system is and the
completeness results that hold for it. We investigate this issue in this section by
classifying constructors. For this we need the subsidiary notion of a characteristic
function Test which is a function from sets of attacks to {“yes”, “no”}.

Definition 6. A constructor function Con is local iff there is a characteristic
function Test s.t. for all ∆, A, if Con(∆,A) = (N,E), and (N,E) is a compo-
nent, and Bi ∈ N , and (Bj , Bi) ∈ Att(∆), and Test((Bj , Bi)) = “yes”, then
(Bj , Bi) ∈ E and Bj ∈ N . A constructor function Con is global iff Con is not
local.

A local constructor function thus constructs a component by adding nodes
and arcs incrementally starting with A. The local constructor makes a local
decision on whether to add a node or arc based on the nature of the attack. It
does not take into account any other aspect of the graph. In other words, no
global view is taken into account when constructing the graph.

Proposition 6. The trivial constructor function, simple constructor function
and the rebuttal constructor function are local, whereas the recursive constructor
function is global.

The following results show that unless a system is highly restricted, it is not
possible to generate every graph with a local constructor function. In order to
directly compare defeasible and classical logics, we have used a restricted version
of the defeasible logic system considered earlier.

Theorem 1. Let Sys = 〈Kbs, Arg, Att, Con〉 be a logical argument system such
that Kbs is the set of defeasible knowledgebases, Arg is the set of non-self attack-
ing defeasible arguments from ∆ (i.e. for each argument A ∈ Arg(∆), A does
not attack A), and Att is defeasible undercut. There is a constructor Con such
that Con is local and Sys is constructively complete for RationalGraphs.

Theorem 2. Let Sys = 〈Kbs, Arg, Att, Con〉 be a logical argument system such
that Kbs is the set of classical knowledgebases, Arg is the set of classical argu-
ments from ∆, and Att is classical defeater, classical direct defeater, classical
undercut, classical canonical undercut, or classical direct undercut. If Sys is con-
structively complete for RationalGraphs, then Con is global.

The main ramification of the above result is that if we want to use richer
logics such as classical logic, then we need to use global constructors. In other
words, to reflect any abstract argument graph in a logical argument system
based on a richer logic, we need to be selective in the choice of arguments taken
from Arg(∆) and the choice of attacks taken from Att(∆) for any given ∆ and
A. Therefore, these results in a sense justify the need to better understand the
notion of global constructors.

Furthermore, this is not just for theoretical interest. Practical argumenta-
tion often seems to use richer logics such as classical logic, and often the pre-
sentation of arguments and counterarguments is not exhaustive. Therefore, we



need to better understand how the arguments presented are selected. For ex-
ample, suppose agent 1 posits A1 = 〈{b, b → a}, a〉, and agent 2 then posits
A2 = 〈{c, c → ¬b},¬b〉. It would be reasonable for this dialogue to stop at this
point even though there are further arguments that can be constructed from the
public knowledge such as A3 = 〈{b, c → ¬b},¬c〉. So in terms of constructing
the constellation of arguments and counterarguments from the knowledge, we
need to know what the underlying principle is for ascertaining that just the two
arguments are sufficient given the public knowledge, and that this means we
need to know more about the global constructor function. It may also mean that
we need to better understand how meta-knowledge (about the premises and/or
about the participants) is used to select arguments and counterarguments.

6 Discussion

In this paper we have provided: (1) A general framework for describing diverse
logical argument systems; (2) A classification scheme for logical argument sys-
tems in terms of the class of graphs that they induce; (3) An analysis of local and
global methods of constructing argument graphs from a knowledgebase which
has ramifications for using richer logics in argumentation.

There are further options that we may consider for logical argument systems
by for instance changing the definition of attack or changing the choice of base
logic: (i) defeasible logic with annotations for truth values (such as for Belnap’s
four-valued logic) [17] and for possibility theory [18], (ii) temporal reasoning
calculi [19, 20], (iii) minimal logic [21], and (iv) modal logic [22]. Indeed, any
logic could be potentially used as a base logic [8].

Whilst, the focus of the paper has been on deductive arguments, the issues
raised may also have ramifications for further argumentation systems such as
ASPIC+ [23] and ABA [24]. We leave investigation of this to future work.
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