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Abstract. There have been a number of proposals for measuring incon-
sistency in a knowledgebase (i.e. a set of logical formulae). These include
measures that consider the minimally inconsistent subsets of the knowl-
edgebase, and measures that consider the paraconsistent models (3 or 4
valued models) of the knowledgebase. In this paper, we present a new
approach that considers the amount each formula has to be weakened
in order for the knowledgebase to be consistent. This approach is based
on ideas of knowledge merging by Konienczny and Pino-Perez. We show
that this approach gives us measures that are different from existing
measures, that have desirable properties, and that can take the signifi-
cance of inconsistencies into account. The latter is useful when we want
to differentiate between inconsistencies that have minor significance from
inconsistencies that have major significance. We also show how our mea-
sures are potentially useful in applications such as evaluating violations
of integrity constraints in databases.

1 Introduction

Understanding the nature of inconsistency is an important topic if we are to
develop autonomous systems that are able to behave intelligently with conflicting
information. Although the early work of Grant in [1] showed more than 30 years
ago that it is possible to compare inconsistent sets of formulae, the great amount
of research on measuring inconsistency occurred in the past decade. It turns out
that there are different reasonable ways of measuring the inconsistency of a
knowledgebase; these measures tend to be incompatible with one another in the
sense that one measure assigns a larger inconsistency value to knowledgebase ∆
than to ∆′ while another does not.

The purpose of this paper is to introduce several inconsistency measures
based on model distance. We work in propositional logic and assume that a
knowledgebase contains only consistent formulae. This is a reasonable assump-
tion as portions of conflicting information are typically consistent. However, we
note that every inconsistent formula (other than the special case ⊥) requires a
conjunction; such a formula can always be split into consistent fragments. Every
consistent formula has at least one model. We think of each model as a point
in Euclidean space. The models of a knowledgebase are exactly the intersection



of the set of models for each formula. When the knowledgebase is inconsistent,
this intersection is empty.

In our method we use distance measures to measure the distances between
models (points in space). The idea of our method is to dilate the points repre-
senting the models to regions of space in a minimal way so that the intersection
of these regions is no longer empty. Our various proposals count different as-
pects of these dilations to come up with measures of inconsistency. Furthermore,
this approach lends itself to assigning weights to atoms thereby capturing better
the significance of inconsistencies and provides new insight into the nature of
inconsistency. For applications, it offers a better account for distances in the sig-
nificance of parts of the knowledge that may be inconsistent. We illustrate how
the new measures are potentially valuable tools for applications by considering
violations of integrity constraints in databases.

2 Preliminaries

We assume a propositional language L of formulae composed from a set of atoms
A and the logical connectives ∧, ∨, ¬. We use φ and ψ for arbitrary formulae
and α and β for atoms. All formulae are assumed to be in conjunctive normal
form. Hence every formula φ has the form ψ1∧. . .∧ψn, where each ψi, 1 ≤ i ≤ n,
has the form βi1 ∨ . . . ∨ βim, where each βik, 1 ≤ k ≤ m is a literal (an atom or
negated atom). A knowledgebase ∆ is a finite set of formulae. We let ` denote
the classical consequence relation. Logical equivalence is defined in the usual
way: ∆ ≡ ∆′ iff ∆ ` ∆′ and ∆′ ` ∆. We find it useful to define also a stronger
notion of equivalence we call b(ijection)-equivalence as follows. Knowledgebase
∆ is b(ijection)-equivalent to knowledgebase ∆′, denoted ∆ ≡b ∆

′ iff there is
a bijection f : ∆ → ∆′ such that for all φ ∈ ∆, φ is logically equivalent to
f(φ). For example, {a, b} is logically equivalent but not b(ijection)-equivalent to
{a∧ b}. We write R≥0 for the set of nonnegative real numbers and K for the set
of all knowledgebases (where K = {∆ | ∆ ⊆ L}).

Given a language L, the set of models (i.e. interpretations) of the language
is denotedML. Each model in L is an assignment of true or false to the atoms
of the language from which an assignment is generated for all formulae of the
language defined in the usual way for classical logic. For φ ∈ L, Models(φ)
denotes the set of models of φ (i.e. Models(φ) = {m ∈ ML | m |= φ}), and for
∆ ⊆ L, Models(∆) denotes the set of models of ∆ (i.e. if ∆ = {φ1, ..., φn}, then
Models(∆) = Models(φ1) ∩ .. ∩Models(φn)).

To represent modelsML of the language L, we declare a signature, denoted
SL, which is the atoms of the language L given in a sequence (a1, ..., an), and
then each model is given as a binary number b1, ..., bn where for each digit bi, if
bi = 1, then ai is true in the model, otherwise bi = 0 and ai is false in the model.

Example 1. Let the atoms of L be {a, b, c}, and so L contains the usual propo-
sitional formulae that can be formed from these three atoms. Let the signature
SL be (a, b, c), and so the modelsML are {111, 110, 101, 100, 011, 010, 001, 000}.



Consider m = 101 which means that a is true, b is false, and c is true. This can
equivalently be represented by the formula a ∧ ¬b ∧ c.

We introduce a couple of subsidiary functions to analyse models. For a model
m, let Digiti(m) return the ith digit of the model m (e.g. for the model 1010,
Digit2(1010) = 0), and let Atomi(m) return the atom corresponding to the ith
digit of the model m (e.g. for the signature SL = (a,b,c,d), Atom2(1010) = b).

Next, we define the concept of an inconsistency measure for knowledgebases.
We use the terminology that for a knowledgebase ∆, Free(∆) is the set of for-
mulae not in any minimal inconsistent subset of ∆.

Definition 1. An inconsistency measure I assigns a nonnegative real value to
every knowledgebase ∆. We assume three requirements for inconsistency mea-
sures as proposed in [2] where (1) is called consistency, (2) is called monotony,
and (3) is called free formula independence.

1. I(∆) = 0 iff ∆ is consistent.
2. If ∆ ⊆ ∆′, then I(∆) ≤ I(∆′).
3. For all α ∈ Free(∆), (I(∆) = I(∆\{α}).

The constraints 1 to 3 ensure that all and only consistent knowledgebases get
measure 0, the measure is monotonic for subsets, and the removal of a formula
that does not participate in an inconsistency leaves the measure unchanged.

3 Distance measures

Given a set of models for a language ML, a distance measure, as defined next,
is an assignment of a real number to each pair of models in ML. This is a very
general notion that we will constrain in various ways in this paper.

Definition 2. For a set of models ML, a distance measure, denoted d, is a
function d :ML ×ML → R+ satisfiying the following conditions.

1. d(m,m′) = 0 iff m = m′

2. d(m,m′) = d(m′,m)
3. d(m,m′) + d(m′,m′′) ≥ d(m,m′′)

For example, the function that assigns distance 1 between any two distinct
models is a distance measure.

Definition 3. For a set of modelsML, a distance measure d is a drastic mea-
sure iff d(m,m′) = 1 if m 6= m′ and d(m,m′) = 0 if m = m′.

We introduce the contrary function to define the Dalal (Hamming) measure.

Definition 4. The contrary function, denoted Contrary : {0, 1} × {0, 1} →
{0, 1}, is defined as follows: Contrary(1, 1) = 0; Contrary(1, 0) = 1; Contrary(0, 1) =
1; and Contrary(0, 0) = 0.



Definition 5. Let L be composed from n atoms, and so ML contains models
with n digits. A distance measure d is a Dalal measure iff

d(m,m′) =
n∑

i=1

Contrary(Digiti(m),Digiti(m
′))

A distance measure d is a Dalal measure [3] when d(m,m′) is the number of
digits that differ between m and m′. For a fixed n the Dalal measure is unique.

Example 2. Consider the following measure which is a Dalal measure

d(11, 11) = 0 d(11, 10) = 1 d(11, 01) = 1 d(11, 00) = 2
d(10, 11) = 1 d(10, 10) = 0 d(10, 01) = 2 d(10, 00) = 1
d(01, 11) = 1 d(01, 10) = 2 d(01, 01) = 0 d(01, 00) = 1
d(00, 11) = 2 d(00, 10) = 1 d(00, 01) = 1 d(00, 00) = 0

We use the following notion of a weighting function to assign a weight to
each atom in a model. We write w(i) for the weight of the ith atom. The idea is
that the weight represents the significance of the atom.

Definition 6. Given an n digit model, a weighting function is function w :
{1, ...., n} → R+. Special cases of weighting function w : {1, ...., n} → R+ in-
clude:

– w is uniform iff for all i ∈ {1, ...., n}, w(i) = r for some r ∈ R+

– w is positive iff for all i ∈ {1, ...., n}, w(i) > 0
– w is discounting iff there exists i ∈ {1, ...., n}, w(i) < 1
– w is binary iff for all i ∈ {1, ...., n}, w(i) = 1 or w(i) = 0

Example 3. LetML = {11, 10, 01, 00}. So w(1) = 0.5 and w(2) = 3 is a positive
weighting function.

Definition 7. A distance measure is a weighted measure when there is a
weighting function that weights each atom in the model.

Next we will define two types of weighted measures: Manhattan measure and
Euclidean measure.

Definition 8. Let L be composed from n atoms, so that ML contains models
with n digits. A distance measure d is a Manhattan measure iff there is a
weighting function w such that

d(m,m′) =
n∑

i=1

w(i)× Contrary(Digiti(m),Digiti(m
′))

Example 4. Consider the following measure which is a Manhattan measure with
the positive weighting function w where w(1) = 3 and w(2) = 2.

d(11, 11) = 0 d(11, 10) = 2 d(11, 01) = 3 d(11, 00) = 5
d(10, 11) = 2 d(10, 10) = 0 d(10, 01) = 5 d(10, 00) = 3
d(01, 11) = 3 d(01, 10) = 5 d(01, 01) = 0 d(01, 00) = 2
d(00, 11) = 5 d(00, 10) = 3 d(00, 01) = 2 d(00, 00) = 0



So a Dalal measure is a Manhattan measure with a uniform weighting func-
tion w where w(i) = 1 for each i. Another type of distance measure is the
Euclidean distance, which treats space geometrically, as follows.

Definition 9. Let L be composed from n atoms, and so ML contains models
with n digits. A distance measure d is a Euclidean measure iff there is a
weighting function w such that

d(m,m′) =

√√√√ n∑
i=1

[w(i)× Contrary(Digiti(m),Digiti(m′))]2

Example 5. Consider the following Euclidean measure where w(1) = 3 and
w(2) = 2.

d(11, 11) = 0.0 d(11, 10) = 2.0 d(11, 01) = 3.0 d(11, 00) =
√

13
d(10, 11) = 2.0 d(10, 10) = 0.0 d(10, 01) =

√
13 d(10, 00) = 3.0

d(01, 11) = 3.0 d(01, 10) =
√

13 d(01, 01) = 0.0 d(01, 00) = 2.0
d(00, 11) =

√
13 d(00, 10) = 3.0 d(00, 01) = 2.0 d(00, 00) = 0.0

Suppose we represent our n-digit models as points in n-dimensional space,
then we can see that the Manhattan distance (which involves following the edges
of the hypercube) gives a greater distance between two points than the Euclidean
distance (which takes the direct line between the two points). The Manhattan
distance treats each side of the hypercube equally and adds the traversal of all
of them. This means that each atom of the model has to be taken additively. In
contrast, the Euclidean distance discounts the distance with each further atom
under consideration. Consider the models 11 and 10. The Manhattan distance
and Euclidean distance is the same. Now consider the models 11 and 00. The
Euclidean distance in effect “discounts” the effect of the second digit being dif-
ferent between the models. In other words, let dd be the Manhattan distance
(i.e. the Dalal distance), and let de be the Euclidean distance, then

dd(11, 11) = de(11, 11) < dd(11, 10) = de(11, 10) < de(11, 00) < dd(11, 00)

We note that the Manhattan distance and the Euclidean distance are compatible
with one another in the sense that dd(m1,m2) < dd(m3,m4) iff de(m1,m2) <
de(m3,m4) and dd(m1,m2) = dd(m3,m4) iff de(m1,m2) = de(m3,m4).

4 Dilation of a formula

In order to define our new class of inconsistency measures we turn to the notion of
dilation. Bloch and Lang, in [4], explore how some operations from mathematical
morphology translate into a logical framework. One of the most basic operations
is the dilation of a set, which translates into the dilation of a formula (or its
set of models). Essentially, for a formula φ, and a distance measure d, a dilation



returns the models (or equivalently the formula specified by those models) that
are at most a certain distance from φ. The Dalal measure is a simple choice of
distance measure to illustrate the idea. Suppose that φ is a ∧ b, and so the set
of models is {11}. Using the Dalal distance, the set of dilations of distance 1
would be {11, 01, 01}, and so the resulting formula would be a∨ b. Then, the set
of dilations of distance 2 would be {11, 01, 01, 00}, and so the resulting formula
would be >. Note how each dilation possibly weakens the previous formula in
the sense that if φ is dilated to φ′ then φ ` φ′.

Definition 10. Let φ ∈ L be a propositional formula, let k ∈ R, and let d be
a distance measure. The set of k-dilations of φ with respect to d is Mk

d (φ) as
follows: Mk

d (φ) = {m ∈ML | ∃m′ ∈M(φ) such that d(m′,m) ≤ k}.

Hence, Mk
d (φ) is the set of models whose distance (using d) is not more

than k from some model of φ. Next, we extend Definition 10 to apply to sets
of formulae. For this purpose it will be convenient to assume an arbitrary or-
dering, called the standard ordering, over the formulae in L. This could be,
for instance, alphabetical ordering, but the ordering has no significance. It just
gives a standard way to put formulae into a sequence. For any ∆ ⊆ L, we can
then represent ∆ as a tuple (φ1, . . . , φn), which we call the standard form of
∆, where ∆ = {φ1, . . . , φn} and < is the standard ordering, and for each i, if
1 ≤ i < n, then φi < φi+1.

Definition 11. Let (φ1, . . . , φn) be the standard form of ∆, where each φi ∈ ∆
is consistent, and let d be a distance measure. The set of k-dilation profiles
with respect to d is Pd(∆) = {(k1, ..., kn) |Mk1

d (φ1) ∩ ... ∩Mkn

d (φn) 6= ∅}.

Here is what happens. We start with the sequence (φ1, . . . , φn) of formulae,
or equivalently, the sequence of their sets of models. Pd(∆) is a sequence of
numbers (k1, . . . , kn) such that the ki-dilations of all the φi for 1 ≤ i ≤ n have a
nonempty intersection. If we think of each ki-dilation as the formula represented
by the models, say ψi, then the nonempty intersection means that {ψ1, . . . , ψn}
is consistent. We minimize Pd(∆) and use it to measure inconsistency.

Example 6. For ∆ = {a ∧ b,¬a ∧ b}, and using the Dalal measure d,

Pd(∆) = {(x, y) | x+ y ≥ 1}

Proposition 1. Let ∆ = {φ1, ..., φn} ⊆ L be a set of propositional formulae
where each φi ∈ ∆ is consistent, and (φ1, . . . , φn) is the standard form of ∆. Let
d be a weighted measure with weighting w.

(a) If w is positive, then (0, ..., 0) ∈ Pd(∆) iff ∆ is consistent.
(b) If ∆′ = {φ′1, ..., φ′n}, and (φ′1, . . . , φ

′
n) is the standard form of ∆′, and φ1 ≡

φ′1, and ... and φn ≡ φ′n, then Pd(∆) = Pd(∆′)

The following result shows that the drastic measure is not sufficiently dis-
criminating for our purposes since just a dilation of 1 will return all the models.



Proposition 2. Let φ ∈ L be a consistent propositional formula and let d be
the drastic measure. For k ≥ 1, Mk

d (φ) = ML.

In the next section, we will see examples of using dilation with the weighted
measure. We will use minimal dilations defined next.

Definition 12. A k-dilation (k1, . . . , kn) ∈ Pd(∆) is called minimal if and only
if there is no k-dilation (k′1, . . . , k

′
n) ∈ Pd(∆) such that (k1, . . . , kn) 6= (k′1, . . . , k

′
n)

and k′i ≤ ki for all i, 1 ≤ i ≤ n. We write Pmin
d (∆) for the set of minimal

dilations.

So in Example 6, Pmin
d (∆) = {(0, 1), (1, 0)}.

5 Using dilation to measure inconsistency

Now we can use the set of k-dilation profiles of a knowledgebase to assign it a
measure of inconsistency. We define three measures. The first one sums a minimal
sequence; the second picks the maximum value of a minimal sequence; while the
third counts the number of nonzero values in a minimal sequence.

Definition 13. Let ∆ ⊆ L be a set of propositional formulae where each φi ∈
∆ is consistent, and let d be a distance measure. The d-sum inconsistency
measure is Isum

d (∆) = Min{x | (k1, ..., kn) ∈ Pd(∆) and k1 + ...+ kn = x}.

Definition 14. Let ∆ ⊆ L be a set of propositional formulae where each φi ∈
∆ is consistent, and let d be a distance measure. The d-max inconsistency
measure is Imax

d (∆) = Min{x | (k1, ..., kn) ∈ Pd(∆) and Max{k1, ..., kn} = x}.

It is clear from the definitions that for all ∆, Imax
d (∆) ≤ Isum

d (∆).
The third measure is somewhat different from the first two as it takes into

account the number of formulae that need to be dilated (hit) in order to make
the set consistent. Intuitively, the more hits, the more inconsistency there is in
the set of formulae. Note, for this definition, the only information used for the
calculation is whether the distance measure is zero or greater than zero. Hence,
the magnitude of the distance measure is not taken into account.

Definition 15. Let ∆ ⊆ L be a set of propositional formulae where each φi ∈
∆ is consistent, and let d be a distance measure. The d-hit inconsistency
measure is defined as follows.

Ihit
d (∆) = Min{x | (k1, ..., kn) ∈ Pd(∆) and Hit(k1, . . . , kn) = x}

where Hit(k1, . . . , kn) = Σn
i=1z(ki) where z(ki) = 1 if ki > 0 and z(ki) = 0 if

ki = 0.

Before showing that these three definitions really define inconsistency mea-
sures, we give four examples. In these examples we use the Dalal measure.



Example 7. Let ∆1 = {a ∧ b,¬a ∧ ¬b}. Pd(∆1) includes (1, 1), (2, 0), and (0, 2).
Hence, Isum

d (∆1) = 2, Imax
d (∆1) = 1, and Ihit

d (∆1) = 1.

k a ∧ b ¬a ∧ ¬b
0 { 11 } { 00 }
1 { 11,10,01 } { 10,01,00 }
2 { 11,10,01,00 } { 11,10,01,00 }

Example 8. Let ∆2 = {a,¬a ∨ ¬b, b}. Pd(∆2) includes (1, 0, 0), (0, 1, 0), and
(0, 0, 1). Hence, Isum

d (∆2) = 1, Imax
d (∆2) = 1, and Ihit

d (∆2) = 1.

k a ¬a ∨ ¬b b
0 { 11,10 } { 01,10,00 } { 11,01 }
1 { 11,10,01,00 } { 11,10,01,00 } { 11,10,01,00 }

Example 9. Let ∆3 = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c}. Pd(∆3) includes (1, 2), (2, 1),
(3, 0), and (0, 3). Hence, Isum

d (∆3) = 3, Imax
d (∆3) = 2, and Ihit

d (∆3) = 1.

k a ∧ b ∧ c ¬a ∧ ¬b ∧ ¬c
0 { 111 } { 000 }
1 { 111,110,101,011 } { 010,001,100, 000 }
2 { 111,110,101,011,100,010,001 } { 110,101,011,010,001,100, 000 }
3 { 111,110,101,011,100,010,001,000 } { 111,110,101,011,010,001,100, 000 }

Example 10. Let ∆4 = {a, b, c,¬a,¬b,¬c}. Pd(∆) contains profiles including
(1, 1, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1), (1, 0, 0, 0, 1, 1), etc. Hence, Isum

d (∆) = 3, Imax
d (∆) =

1, and Ihit
d (∆) = 3. We omit the table here because the second of the two rows

is too long to include.

Next, we show that the three inconsistency measures defined above satisfy
the consistency, monotony, and free formula independence properties.

Proposition 3. The d-sum inconsistency measure, the d-max inconsis-
tency measure, and the d-hit inconsistency measure, each satisfy condi-
tions 1 to 3 of Definition 1, and therefore all three are inconsistency measures.

The d-sum inconsistency measure and the d-max inconsistency measure have
been influenced by the definition for model-based merging operators by Konieczny
and Pino Perez [5], and the dilation-based reformalization of them [6].

Next we show that a useful property for inconsistency measures, called dom-
inance, holds for all of these measures.

Proposition 4. If {α} ` β, and α is consistent, then

1. Isum
d (∆ ∪ {α}) ≥ Isum

d (∆ ∪ {β})
2. Imax

d (∆ ∪ {α}) ≥ Imax
d (∆ ∪ {β})

3. Ihit
d (∆ ∪ {α}) ≥ Ihit

d (∆ ∪ {β})

In order to compare two inconsistency measures, we define Ix and Iy to
be order-compatible if for all knowledgebases ∆1 and ∆2, Ix(∆1) < Ix(∆2) iff
Iy(∆1) < Iy(∆2) and order-incompatible otherwise.



Proposition 5. The d-sum inconsistency measure, the d-max inconsis-
tency measure, and the d-hit inconsistency measure are pairwise order-
incompatible.

In [7], we reviewed the main proposals in the literature for measuring incon-
sistency, such as measures based on 3 or 4 valued models and measures based
on minimal inconsistent subsets of knowledge, and we showed that they were
pairwise order-incomparable. We can also show that these three new measures
are pairwise incomparable with the existing proposals. This means we cannot
use existing measures to substitute for these new proposals. Hence, these new
measures offer new tools for analysing inconsistency.

We can use a geometric interpretation of dilation using Euclidean distance
in n-dimensional space. So take the case with n atoms and weighting function
w. For model b1...bn assign the point (b1 · w(1), ...bn · w(n)). For example, let
n = 3 and weight function w(1) = 2, w(2) = 5, w(3) = 4. Then the model
101 is mapped to the point (2,0,4) and the model 110 is mapped to the point
(2,5,0) (all points are in 3-dimensional space). For the distance between points
(the models) we are using the Manhattan distance of moving along the edges
of a hypercube, whereas the Euclidean distance is the “straight line” distance
between the points. Looking at the models this way as points in n-dimensional
space using Euclidean distance, the k-dilation of a model is the set of points
that represent models in a hypersphere of radius k with center at that point.
As the k-dilation of a formula is the k-dilations of its models, geometrically,
the k-dilation of a formula becomes the set of points that represent models in
a union of hyperspheres. For the Manhattan distance substitute “hypercube”
for “hypersphere”. It is possible for two such hypersheres or hypercubes to have
a nonempty intersection that does not contain any models. Suppose that in
the given example (1, 4, 2) is a point in the intersection. Such a point does not
represent a model for the given weights. However, if we were using fractional
truth values, the point would represent a model, namely with fractional truth
values .5, .8, and .5 respectively for the atoms. We do not pursue this matter
further in this paper.

6 Significance

There are two reasons for presenting the distance-based measures of inconsis-
tency in this paper. The first is to extend our understanding of the nature of
inconsistency and how it can be measured. The second is to develop techniques
for taking the significance of inconsistency into account.

A simple way of taking significance into account is to assume a weighting
function, and use a distance measure that can take this weight into account such
as the Manhattan distance or the Euclidean distance, as illustrated next.

Example 11. Consider the atoms a = “rain in my city” and b = “rain in a city
100Km from my city”. Consider the set of 2-digit models with the signature
(a, b) (i.e. the first digit refers to a, the second digit to b). Let w(1) = 1 and
w(2) = 0.1 be the weighting function, and let d be the Manhattan distance.



∆ {a ∧ b,¬a ∧ ¬b} {a ∧ b,¬a ∧ b} {a ∧ b, a ∧ ¬b} {¬a ∧ b,¬a ∧ ¬b}
Isum
d (∆) 1.1 1 0.1 0.1
Imax
d (∆) 1 1 0.1 0.1
Ihit
d (∆) 1 1 1 1

Using weights allows us to reduce inconsistency by applying a resolution
function (see [7]) that has maximal impact. For example, if ∆ = {a,¬a, b,¬b}
and w(1)=1, w(2) = 10, then deleting b or ¬b reduces the inconsistency far better
than deleting a or ¬a.

Whilst Example 11 shows how we can have different degrees of inconsistency
based on significance, it does not take the context of the inconsistency into
account. To illustrate what we mean by this, consider the following example
where the measure is not a weighted measure.

Example 12. Consider the atoms a = “earthquake” and b = “electricity fails”.
In this situation, some assumptions we may have about the significance of in-
consistency is as follows.

– if we have an inconsistency about whether or not there is an earthquake,
then we have a very significant inconsistency.

– if we have an inconsistency about whether or not the electricity fails, then
we have a moderate inconsistency.

– however, if we know that there is an earthquake, and there is an inconsistency
about the electricity failing, then the significance of the inconsistency is low.

Consider the set of 2-digit models with the signature (a, b) (i.e. the first digit
refers to a, the second digit to b). We can capture this significance using the
following distance measure.

d(11, 11) = 0 d(11, 10) = 1 d(11, 01) = 9 d(11, 00) = 9
d(10, 11) = 1 d(10, 10) = 0 d(10, 01) = 9 d(10, 00) = 9
d(01, 11) = 9 d(01, 10) = 9 d(01, 01) = 0 d(01, 00) = 2
d(00, 11) = 9 d(00, 10) = 9 d(00, 01) = 2 d(00, 00) = 0

We illustrate the use of this distance measure with the following examples of
knowledgebases.

∆ {a ∧ b,¬a ∧ ¬b} {a ∧ b,¬a ∧ b} {a ∧ b, a ∧ ¬b} {¬a ∧ b,¬a ∧ ¬b}
Isum
d (∆) 9 9 1 2
Imax
d (∆) 9 9 1 2
Ihit
d (∆) 1 1 1 1

The difference between a weighted measure and a non-weighted measure is
that for a weighted measure the atoms are independent of one another. That
is not the case for non-weighted measures. So in Example 12 we can think of
the 4 models as being in 2 groups: the group {11, 10} and the group {00, 01}.
Models within a group are close to one another but models in different groups
have a larger distance. In that example the first atom is more important than
the second atom; however the second atom does not have a unique weight: its



weight depends on the truth value of the first atom. However, if the groups are
{11, 00} and {01, 10} then they are based on the sameness of the truth values of
the atoms. With more atoms more groups can be formed.

7 Measuring violations of integrity constraints

In this section we consider measuring violations of integrity constraints in knowl-
edgebases. As integrity constraints must be satisfied, we slightly revise our def-
initions so that only the data is dilated and not the integrity constraints. We
assume that relational data is represented by a set of ground predicates ∆, and a
set of integrity constraints Γ . We treat both ∆ and Γ as propositional formulae.

Definition 16. Let ∆ ⊆ L be a set of ground predicates (atomic formulae), and
(φ1, . . . , φn) be the standard form of ∆. Let Γ ⊆ L be a consistent set of ground
formulae, and let d be a distance measure. The set of k-dilation profiles with
respect to d is Pd(∆) as follows.

Pd(∆,Γ ) = {(k1, ..., kn) |Mk1
d (φ1) ∩ ... ∩Mkn

d (φn) ∩M(Γ ) 6= ∅}

The weights could be chosen so that the significance of the inconsistency rises
as the difference in the values taken by the data deviate. In order to assign the
weights, we may choose to use an equation, as we illustrate in the following ex-
ample where we consider weight to be a linear function of the difference between
the value and the median value.

Example 13. Let ∆ be the six literals in the following table and Γ the integrity
constraints obtained from the axiom scheme salary(bob,X1)→ ¬salary(bob,X2),
where X1 6= X2. Here we assume that the weight is dependent on the range of
values for the salary for Bob. So the most extreme values for the salary (i.e.
1000 and 2000) have highest significance, whereas the least extreme value (i.e.
1400 and 1600) have the lowest significance. We capture this by the following
equation where X∗ is the mid-point between the minimum and maximum value
for the salary.

w(salary(bob,X)) =
| X −X∗ |

100
+ 1

Using this equation, we get the following weight for the example.

w
salary(bob,1000) 6
salary(bob,1100) 5

w
salary(bob,1400) 2
salary(bob,1600) 2

w
salary(bob,1900) 5
salary(bob,2000) 6

Here the inconsistency measures are Isum
d (∆) = 20, Imax

d (∆) = 6, and Ihit
d (∆) =

5 using the Manhattan distance with the above weights.

Taking significance into account using these measures means that we consider
how “incorrect” or how extreme the literals are. Smaller ranges of values in the
data have lower weights than wider ranges of values in the data. So we can define



these weights in the form of any kind of equation that is appropriate for the
application. Furthermore, it is straightforward to define equations for obtaining
the weights that consider multiple dimensions of inconsistency in the data. For
instance, the tuple salary(bob,1000,45) might be inconsistent with regard to any
combination of name, or salary, or age.

8 Discussion

In future work, we plan to further develop the application features of this frame-
work in context-sensitive approaches to dealing with inconsistency (e.g. [8]). We
also plan to address some of the shortcomings of using the Hamming distance,
as discussed by Lafage and Lang [9], by using distances based on Choquet in-
tegrals. These can avoid the assumption of independence between propositional
variables, and ameliorate problems of syntax sensitivity. Finally, we plan to es-
tablish connections with measures of inconsistency for probabilistic knowledge
[10] and fuzzy knowledge [11].
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