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Abstract. Inconsistency is a usually undesirable feature of many kinds of data
and knowledge. But altering the information in order to make it less inconsistent
may result in the loss of information. In this paper we analyze this trade-off. We
review some existing proposals and make new proposals for measures of incon-
sistency and information. We prove that in both cases the various measures are
all pairwise incompatible. Then we introduce the concept of stepwise inconsis-
tency resolution and show what happens in case an inconsistency resolution step
applies a deletion, a weakening, or a splitting operation.

1 Introduction

Inconsistency, and deciding how to deal with it, is a well-recognized problem in many
areas of computer science including data and knowledge engineering, software engi-
neering, robotics, and natural language. Often it is not possible to determine with high
confidence which items of data or knowledge are incorrect. It might be that to find this
out would cost more than the information is actually worth. Or it might be that it is just
not possible to acquire this information. In these situations, it may however be useful to
delete or update items of information that are involved in inconsistencies based on the
nature of those inconsistencies. But since it is often unclear which items of information
should be changed, the process of inconsistency resolution can result in a gain in the
degree of consistency, but at the price of a loss of information.

In this paper, we propose the use of inconsistency and information measures to take
account of this trade-off. We start by investigating what are essential properties of in-
consistency and information measures. We propose three requirements in both cases
and consider various definitions, mostly ones previously proposed. Each proposal has
some rationale, so it is worthwhile to investigate their compatibility with one another.
We will show that in a well-defined sense each measure is incompatible with every
other measure, and this goes both for inconsistency measures and information measures.
These results suggest that there does not exist a single inconsistency measure or infor-
mation measure that coincides with intuition in general. Nonetheless, the framework



for inconsistency and information measures is potentially useful for choosing measures
according to specific applications.

To illustrate some of the key issues in stepwise inconsistency resolution, we con-
sider the following example. Let K = {a,¬a ∧ ¬b ∧ ¬c, b, d}. K has two minimal
inconsistent subsets: M1 = {a,¬a ∧ ¬b ∧ ¬c} and M2 = {¬a ∧ ¬b ∧ ¬c, b}; and two
maximal consistent subsets N1 = {a, b, d} and N2 = {¬a ∧ ¬b ∧ ¬c, d}. As we want
to show how to reduce the inconsistency of K in a stepwise fashion, one formula at a
time, we will apply three inconsistency resolution functions: delete a formula, weaken
a formula, and split a formula.

– Deletion We delete a formula that is in a minimal inconsistent subset. Thus we can
delete either ¬a∧¬b∧¬c or a or b. In the first case, since ¬a∧¬b∧¬c is in both
minimal inconsistent subsets, the result is consistent. This is the most drastic of the
three options because this operation loses the most information.

– Weakening We change a formula to another formula logically implied by it. Typi-
cally, we add a disjunct or change a conjunction to a disjunction. For instance, we
can weaken ¬a ∧ ¬b ∧ ¬c to (¬a ∨ ¬b) ∧ ¬c or ¬a ∨ ¬b ∨ ¬c. We can weaken a
to a ∨ b or even a ∨ ¬a, and so on. While this operation may reduce the number of
minimal inconsistent subsets, the size of the minimal inconsistent subsets may rise,
as seen here, where the first weakening results in one minimal inconsistent subset
{a, (¬a ∨ ¬b) ∧ ¬c, b}.

– Splitting We split a formula into its conjuncts. This may isolate the really prob-
lematic conjuncts. For instance, we can split ¬a ∧ ¬b ∧ ¬c into ¬a, ¬b, and ¬c.
In this case, we get a new knowledgebase {a,¬a, b,¬b,¬c, d} that is still incon-
sistent, though by some inconsistency measures it is less inconsistent. Also, this
allows us at a later step to delete just the portion of the conjunction involved in the
inconsistency.

In an inconsistent knowledgebase, any formula involved in an inconsistency can be
selected for one of the resolution operations (of deletion, weakening or splitting). So
there is a question of how to choose a formula and which operation to apply. In general,
inconsistency and information measures offer possible answers to this question. Our
guiding principle is to minimize information loss while reducing inconsistency as we
resolve an inconsistent knowledgebase by stepwise resolution.

2 Preliminary Definitions

We assume a propositional language L of formulae composed from a set of atoms A
and the logical connectives ∧, ∨, ¬. We use φ and ψ for arbitrary formulae and α
and β for atoms. All formulae are assumed to be in conjunctive normal form. Hence
every formula φ has the form ψ1 ∧ . . . ∧ ψn, where each ψi, 1 ≤ i ≤ n, has the form
βi1 ∨ . . . ∨ βim, where each βik, 1 ≤ k ≤ m is a literal (an atom or negated atom). A
knowledgebase K is a finite set of formulae. We let ` denote the classical consequence
relation, and write K ` ⊥ to denote that K is inconsistent. Logical equivalence is
defined in the usual way: K ≡ K ′ iff K ` K ′ and K ′ ` K. We find it useful to
define also a stronger notion of equivalence we call b(ijection)-equivalence as follows.



Knowledgebase K is b(ijection)-equivalent to knowledgebase K ′, denoted K ≡b K
′

iff there is a bijection f : K → K ′ such that for all φ ∈ K, φ is logically equivalent
to f(φ). For example, {a, b} is logically equivalent but not b(ijection)-equivalent to
{a ∧ b}. We write R≥0 for the set of nonnegative real numbers and K for the set of all
knowledgebases (in some presumed language L).

For a knowledgebaseK, MI(K) is the set of minimal inconsistent subsets of K, and
MC(K) is the set of maximal consistent subsets of K. Also, if MI(K) = {M1, ...,Mn}
then Problematic(K) = M1 ∪ ... ∪ Mn, and Free(K) = K \ Problematic(K). So
Free(K) contains the formulae in K that are not involved in any inconsistency and
Problematic(K) contains the formulae in K that are involved in at least one incon-
sistency. The set of formulae in K that are individually inconsistent is given by the
function Selfcontradictions(K) = {φ ∈ K | {φ} ` ⊥}). In the next section we will
use these functions in definitions for syntactic measures of inconsistency.

α T T T B B B F F F
β T B F T B F T B F

α ∨ β T T T T B B T B F
α ∧ β T B F B B F F F F
¬α F F F B B B T T T

Fig. 1. Truth table for three valued logic (3VL). This semantics extends the classical semantics
with a third truth value, B, denoting “contradictory”. Columns 1, 3, 7, and 9, give the classical
semantics, and the other columns give the extended semantics.

The corresponding semantics uses Priest’s three valued logic (3VL) [11] with the
classical two valued semantics augmented by a third truth value denoting inconsistency.
The truth values for the connectives are defined in Figure 1. An interpretation i is a
function that assigns to each atom that appears in K one of three truth values: i :
Atoms(K) → {F,B, T}. For an interpretation i it is convenient to separate the atoms
into two groups, namely the ones that are assigned a classical truth value and the ones
that are assigned B.

Binarybase(i) = {α | i(α) = T or i(α) = F}

Conflictbase(i) = {α | i(α) = B}

For a knowledgebase K we define the models as the set of interpretations where no
formula in K is assigned the truth value F : Models(K) = {i | for all φ ∈ K, i(φ) =
T or i(φ) = B} Then, as a measure of inconsistency for K we define

Contension(K) = Min{|Conflictbase(i)| | i ∈ Models(K)}

So the contension gives the minimal number of atoms that need to be assigned B in
order to get a 3VL model of K.



Example 1. For K = {a,¬a, a ∨ b,¬b}, there are two models of K, i1 and i2, where
i1(a) = B, i1(b) = B, i2(a) = B, and i2(b) = F . Therefore, Conflictbase(i1) = 2
and Conflictbase(i2) = 1. Hence, Contension(K) = 1.

Finally, we consider some useful definitions based on the notion of implicants. A
consistent set of literals X is an implicant for a knowledgebase K iff for each φ ∈ K,
X ` φ. A minimal implicant is called a prime implicant. For example, for K =
{a,¬b ∨ c}, the prime implicants are X1 = {a,¬b} and X2 = {a, c}. A proxy for K
is a set of literals X such that X is a prime implicant of a maximal consistent subset of
K. Let the set of proxies for K (denoted Proxies(K)) be defined as follows.

Proxies(K) = {X | X is a prime implicant of K ′ ∈ MC(K)}

For example, for K = {a,¬a, b∨ c}, Proxies(K) = {{a, b}, {¬a, b}, {a, c}, {¬a, c}}.
We see that each proxy represents an “interpretation” of the possible literals that

hold, and so the number of proxies rises by increasing the number of disjuncts in any
formula, and by increasing the number of conflicting formulae. The cardinality of each
proxy rises with the amount of information in each alternative, and so adding conjuncts
to a formula will increase the size of one or more proxies (as long as the conjunction is
consistent).

3 Inconsistency and Information Measures

In this section, we study inconsistency and information measures. We consider both ex-
isting and new proposals. Our main result is that for both inconsistency measures and
information measures, the various measures are incompatible with one another. This
result strongly implies that unlike some other intuitive concepts, such as the concept
of effective computability, where different definitions using recursion, λ-calculus, and
Turing machines are equivalent, both inconsistency measure and information measure
are too elusive to be captured by a single definition. Additionally, for information mea-
sures we also consider various plausible constraints and investigate which measures
satisfy them.

3.1 Inconsistency Measures for Knowledgebases

An inconsistency measure assigns a nonnegative real value to every knowledgebase. We
make three requirements for inconsistency measures. The constraints ensure that all and
only consistent knowledgebases get measure 0, the measure is monotonic for subsets,
and the removal of a formula that does not participate in an inconsistency leaves the
measure unchanged.

Definition 1. An inconsistency measure I : K → R≥0 is a function such that the
following three conditions hold:

1. I(K) = 0 iff K is consistent.
2. If K ⊆ K ′, then I(K) ≤ I(K ′).



3. For all α ∈ Free(K), (I(K) = I(K\{α}).

The above requirements are taken from [3] where (1) is called consistency, (2) is
called monotony, and (3) is called free formula independence.

Next we introduce five inconsistency measures: the rationale for each is given below.

Definition 2. For a knowledgebase K, the inconsistency measures IC , IP , IB , IS , and
IR are s.t.

– IC(K) = |MI(K)|
– IM (K) = (|MC(K)|+ |Selfcontradictions(K)|)− 1
– IP (K) = |Problematic(K)|
– IB(K) = Contension(K)

– IQ(K) =
{

0 if K is consistent∑
X∈MI(K)

1
|X| otherwise

We explain the measures as follows: IC(K) counts the number of minimal inconsis-
tent subsets of K; IM (K) counts the sum of the number of maximal consistent subsets
together with the number of contradictory formulae but 1 must be subtracted to make
I(K) = 0 when K is consistent; IP (K) counts the number of formulae in minimal
inconsistent subsets of K; IB(K) counts the minimum number of atoms that need to
be assigned B amongst the 3VL models of K; and IQ computes the weighted sum of
the minimal inconsistent subsets of K, where the weight is the inverse of the size of
the minimal inconsistent subset (and hence smaller minimal inconsistent subsets are
regarded as more inconsistent than larger ones). Each of these measures satisfies the
definition of being an inconsistency measure (i.e. Definition 1).

There is a rationale for each inconsistency measure. We cannot require these dif-
ferently defined measures to give identical numerical values but it would be reasonable
to assume that at least some of them place the knowledgebases in the same order with
respect to inconsistency. Define Ix and Iy to be order-compatible if for all knowledge-
bases K1 and K2, Ix(K1) < Ix(K2) iff Iy(K1) < Iy(K2) and order-incompatible
otherwise. The next theorem shows that order-compatibility doesn’t hold for any pair
of the inconsistency measures we have defined, leading us to think that inconsistency is
too elusive a concept to be captured in a single measure.

Theorem 1. 3 IC , IM , IP , IB , and IQ are pairwise order-incompatible.

Although the five inconsistency measures are quite different, four of them give iden-
tical results on bijection-equivalent knowledge bases.

Proposition 1. If K ≡b K
′ then IZ(K) = IZ(K ′) for Z ∈ {C,M,P,Q}.

Interestingly, b-equivalence does not guarantee equality for IB . The problem is with
self-contradictions. For instance, if K = {a ∧ ¬a} and K ′ = {a ∧ ¬a ∧ b ∧ ¬b}, then
K ≡b K

′, but IB(K) = 1 6= IB(K ′) = 2.

3 All proofs and additional references are given in a technical report available at
www.cs.ucl.ac.uk/staff/a.hunter/papers/stepwise.pdf.



The use of minimal inconsistent subsets, such as IC , IP , and IQ, and the use of
maximal consistent subsets such as IM , have been proposed previously for measures of
inconsistency [2, 4]. The idea of a measure that is sensitive to the number of formulae
to produce an inconsistency eminates from Knight [8] in which the more formulae
needed to produce the inconsistency, the less inconsistent the set. As explored in [4],
this sensitivity is obtained with IQ. Another approach involves looking at the proportion
of the language that is touched by the inconsistency such as IB . Whilst model-based
techniques have been proposed before for measures of inconsistency, IB is a novel
proposal since it is based on three-valued logic, and as such, is simpler than the ones
based on four-valued logic (e.g. [5]).

3.2 Information Measures for Knowledgebases

Another dimension to analysing inconsistency is to ascertain the amount of information
in a knowledgebase. The following novel proposal for an information measure assigns a
nonnegative real number to every knowledgebase. The constraints ensure that the empty
set has measure 0, the measure is subset monotonic for consistent knowledgebases, and
a consistent knowledgebase that does not contain only tautologies has nonzero measure.

Definition 3. An information measure J : K → R≥0 is a function such that the
following three conditions hold:

1. If K = ∅ then J(K) = 0.
2. If K ′ ⊆ K, and K is consistent, then J(K ′) ≤ J(K).
3. If K is consistent and ∃φ ∈ K such that φ is not a tautology, then J(K) > 0.

The above definition is a general definition that allows for a range of possible mea-
sures to be defined. Next we introduce seven information measures; the rationale for
each is given below. We note here that in the definition of JB we will use the concept
of Models as previously defined for 3VL. However, in the case of JL we will need a
model concept using classical 2-valued interpretations. We write 2VModels(K) = {i|
is a 2-valued interpretation and for all φ ∈ K, i(φ) = T}.

Definition 4. For a knowledgebase K, the information measures JA, JS , JF , JC , JB ,
JP , and JL are such that

– JA(K) = |Atoms(K)|
– JS(K) = |K|
– JF (K) = |Free(K)|
– JC(K) = Max{ |M | |M ∈ MC(K)}
– JB(K) = Max{ |Binarybase(i)| | i ∈ Models(K)}
– JP (K) = Max{ |X| | X ∈ Proxies(K)}
– JL(K) = log2

2n

|
⋃
{2VModels(K′)|K′∈MC(K)}| where n = |Atoms(K)| if n ≥ 1, else

JL(K) = 0.

The first two measures do not actually deal with inconsistency at all: JA counts the
number of atoms and JS counts the number of formulae. For the other four measures:



JF counts the number of free formulae; JC finds the size of the largest maximal con-
sistent subset; JB finds the maximum number of atoms that need not be assigned B
in the 3VL models; JP finds the size of the largest proxy; and JL uses an information-
theoretic approach that is discussed further at the end of this section. All seven measures
are information measures according to Definition 3.

In analogy to inconsistency measures, we can define order-compatibility and order-
incompatibility for information measures. Similarly, we find that order-compatibility
does not hold for any pair of information measures, leading us to think that information
is also too elusive a concept to be captured in a single measure.

Theorem 2. JA, JS , JF , JC , JB , JP , and JL are pairwise order-incompatible.

Next we prove some results concerning information measures followed by some
that relate information measures with inconsistency measures.

Proposition 2. If K is consistent, then JS(K) = JF (K) = JC(K).

Proposition 3. If K is a set of literals, then JA(K) = JC(K) = JP (K).

Proposition 4. For any knowledgebase K, JS(K)− JF (K) = IP (K).

Proposition 5. For any knowledgebase K, JA(K)− JB(K) = IB(K).

Proposition 6. No information measure is also an inconsistency measure.

Since our definition of information measure (i.e. Definition 3) is rather weak we
consider additional constraints that can be useful for comparing information measures.
For an information measure J , and for any knowledgebases K,K ′ ⊆ L, we call J :

– (Monotonic) If K ⊆ K ′, then J(K) ≤ J(K ′).
– (Clarity) For all φ ∈ K, J(K) ≥ J(K ∪ {ψ}), where ψ is the cnf of ¬φ.
– (Equivalence) If K is consistent and K ≡ K ′, then J(K) = J(K ′).
– (Bijection-Equivalence) If K ≡b K

′, then J(K) = J(K ′).
– (Closed) If K is consistent, and K ` φ, then J(K) = J(K ∪ {φ}).
– (Cumulative) If K ∪ {φ} is consistent, and K 6` φ, then J(K) < J(K ∪ {φ}).

A monotonic measure is monotonic even for inconsistent knowledgebases. A clar-
ity measure does not increase when the negation of a formula in the knowledgebase
is added. An equivalence measure assigns the same value to logically equivalent con-
sistent knowledgebases. A bijection-equivalence measure (which was first proposed in
[8]) has the same value for a pair of knowledgebases when the formulae are pairwise
equivalent. A closed measure (which was first proposed in [9]) does not have increased
information for a consistent knowledgebase when entailed formulae are added. A cu-
mulative measure (which was first proposed in [9]) has increased information for a
consistent knowledgebase when a non-entailed formula is added that is consistent with
it. We note that if an information measure has the equivalence property then it is closed
because if K ` φ then K ≡ K ∪ {φ}.

Theorem 3. Figure 2 indicates the constraints that hold for each of the information
measures JA, JS , JF , JC , JB , JP , and JL.



JA JS JF JC JB JP JL

Monotonic × × × ×
Clarity × × × × ×

Equivalence × ×
B-Equivalence × × × × ×

Closed × ×
Cumulative × × × × ×

Fig. 2. Summary of constraints that hold (indicated by ×) for particular information measures

Depending on which constraints one considers important, one may choose from
those measures that satisfy them. In particular, JP satisfies all seven constraints.

The JA, JS , JF , and JC measures are simple syntactic measures that have been
considered in some form before (see for example [2] for a discussion)). However, the
JB and JP are novel proposals for information measures. There have also been pro-
posals for measures of information for propositional logic based on Shannon’s infor-
mation theory (see for example [6]). Essentially, these measures consider the number
of models of the set of formulae (the less models, the more informative the set), and
in case the set of formulae is consistent, the result is intuitive. However, when the set
is inconsistent, the set is regarded as having null information content. To address the
need to consider inconsistent information, Lozinskii proposed a generalization of the
information-theoretic approach to measuring information [9] that we called JL earlier.

4 Stepwise Inconsistency Resolution

Generally, when a knowledgebase is inconsistent, we would like to reduce its inconsis-
tency value, preferably to 0. The problem is that a reduction in inconsistency may lead
to a corresponding reduction in information. Consider, for instance, JS . This measure
counts the number of formulae in the knowledgebase. Hence any deletion reduces it.
Our goal is to reduce inconsistency with as little information loss as possible, a task
that depends on the choice of both the inconsistency measure and the information mea-
sure.

We start by formally defining the three functions that we allow in the process of in-
consistency resolution. They appear to be representative of all options. These operations
will be applied to inconsistent knowledgebases.

Definition 5. An inconsistency resolution function irf, is one of the following three
functions d(φ) or w(φ, ψ) or s(φ) where φ ∈ K:

– (Deletion) d(φ) = K \ {φ}.
– (Weakening) w(φ, ψ) = (K \ {φ}) ∪ {ψ} where φ ` ψ.
– (Splitting) s(φ) = (K \ {φ}) ∪ {φ1, . . . , φn} where φ1, . . . , φn are the conjuncts

in φ.

Then irf(K) is the knowledgebase obtained by applying irf to K. Also irf(K) = K in
case φ 6∈ K.



In the stepwise inconsistency resolution process we will usually have multiple ap-
plications of such functions. A stepwise resolution function sequence (abbr. function
sequence) F = 〈irf1, . . . , irfn〉 is a sequence of such functions. A stepwise incon-
sistency resolution knowledgebase sequence (abbr. knowledgebase sequence) KF =
〈K0, . . . ,Kn〉 is a sequence of knowledgebases obtained by usingF such thatK0 is the
initial knowledgebase and irfi(Ki−1) = Ki for 1 ≤ i ≤ n. We also writeF(K0) = Kn

and observe that Kn = irfn(. . . irf1(K0) . . .).
The goal of stepwise inconsistency resolution is to reduce the inconsistency of the

knowledgebase. Next we define a simple way to measure the reduction . We will be
interested in applying this definition to the case where F(K) = K ′ for some function
sequence F .

Definition 6. Given an inconsistency measure I , an inconsistency resolution measure
RI : K ×K → R is defined as follows:

RI(K,K ′) = I(K)− I(K ′)

For illustration we give two examples. The example given in Figure 3 corresponds
to deletion, and Example 2 corresponds to splitting a formula.

α
a ¬a ∧ b ¬b ∨ c ¬c c ∨ d ¬d

RIC (K,K \ {α}) 1 2 1 2 1 1
RIM (K,K \ {α}) 1 3 0 4 3 3
RIP (K,K \ {α}) 1 3 1 4 2 2
RIB (K,K \ {α}) 1 1 0 1 0 0
RIQ(K,K \ {α}) 3/6 5/6 2/6 4/6 2/6 2/6

Fig. 3. Illustration of resolution measures applied to knowledgebases obtained by deleting a for-
mula from the knowledgebaseK = {a,¬a∧b,¬b∨c,¬c, c∨d,¬d}. Here we see that according
to IP , ¬c is the optimal choice for deletion, while for IQ, it is ¬a ∧ b.

Example 2. Let K = {a,¬a ∧ ¬b, b}. Splitting K by applying s(¬a ∧ ¬b) we obtain
K ′ = {a,¬a, b,¬b}. Here we see that splitting does not reduce inconsistency according
to any of the five inconsistency measures. Indeed, for several measures it causes an
increase in inconsistency .

RIC
(K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0

RIM
(K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = −2

RIP
(K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = −1

RIB
(K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0

RIQ
(K, (K \ {¬a ∧ ¬b}) ∪ {¬a,¬b}) = 0

Some simple observations concerning the RI measure are the following: (1) If φ 6∈
K, then RI(K,K \ {φ}) = 0 and (2) If φ ∈ Free(K) then RI(K,K \ {φ}) = 0.



In the stepwise resolution process we try to minimize the loss of information as
well. For this reason we now define a way to measure the loss of information.

Definition 7. Given an information measure J , an information loss measure RJ : K×
K → R is defined as follows.

RJ(K,K ′) = J(K)− J(K ′)

Our general goal is to simultaneously maximize RI and minimize RJ . In the fol-
lowing subsections we consider some of the issues for each of the options we have (i.e.
for deletion, for weakening, and for splitting).

4.1 Inconsistency Resolution by Deletion

Deletion is the simplest, and yet most drastic, of the options we have for dealing with
inconsistency. In terms of deciding of how to proceed, if deletion is the only function
used, it is just a matter of choosing a formula to delete at each step. The following result
describes the possibilities for both RI and RJ when K ′ is obtained from K by a single
deletion.

Theorem 4. Let K ′ be obtained from an inconsistent K by deleting a single formula.
(a) For all 5 inconsistency measures RI(K,K ′) ≥ 0.
(b) For the information measures JF , JB and JL, RJ(K,K ′) may be negative; in the
other cases RJ(K,K ′) is a nonnegative integer.

The following result follows immediately from the second constraint of an infor-
mation measure and will be useful in narrowing the knowledgebases that need to be
considered for minimal information loss when inconsistency resolution is done by dele-
tions.

Proposition 7. If K is consistent then RJ(K,K \ {φ}) ≥ 0.

This result shows that once we delete enough formulae from an inconsistent knowl-
edgebase to make it consistent (and thereby make any inconsistency measure 0), we
might as well stop because additional deletions may only cause information loss. This
gives the following result.

Corollary 1. Suppose that stepwise inconsistency resolution is done by deletions only.
To find a consistent knowledgebase with minimal information loss (i. e. whereRJ(K,K ′)
is minimal) it suffices to consider only those function sequences F where F(K) ∈
MC(K).

4.2 Inconsistency Resolution by Weakening

In this subsection we investigate the case where the inconsistency of a knowledgebase is
resolved by using weakenings only. Thus we start with an inconsistent knowledgebase
K and by applying one or more weakenings we obtain a consistent K ′. Our concern
here is what happens to the information measure during this process. In order to analyze



this situation we will exclude the case where a formula is weakened by using an atom
not in K such as by applying a disjunction with such an atom. We do this because
it does not seem reasonable to change the language of the knowledgebase when our
purpose is to weaken it for consistency. Also, by excluding this case we make sure that
the information measure cannot become arbitrarily large by simply taking bigger and
bigger disjuncts with new atoms.

Our result is summarized in the following theorem.

Theorem 5. Let K be an inconsistent knowledgebase that is transformed to a consis-
tent knowledgebase K ′ by one or more weakenings without introducing any atom not
already in K. Then

1. JA(K ′) ≤ JA(K).
2. JS(K ′) ≤ JS(K).
3. JF (K ′) ≥ JF (K).
4. JC(K ′) ≥ JC(K).
5. No inequality holds between JB(K ′) and JB(K).
6. JP (K ′) ≤ JP (K).
7. JL(K ′) ≥ JL(K).

4.3 Inconsistency Resolution using Splitting

Here we consider what happens when splitting is applied. First we note that unlike dele-
tion and weakening, splitting by itself cannot resolve inconsistencies. Hence splitting
must be used in conjunction with deletion or weakening. We start by considering what
happens when just splitting is applied. Just as in the case of deletions and weakenings,
we split only formulae in Problematic(K).

Theorem 6. Let K ′ be obtained from an inconsistent knowledgebase K by splitting a
single formula in Problematic(K). Then

(a) 1. IC(K ′) ≥ IC(K),
2. IM (K ′) ≥ IM (K),
3. IP (K ′) ≥ IP (K),
4. IB(K ′) = IB(K),
5. No inequality holds between IQ(K ′) and IQ(K).

(b) 1. JA(K ′) = JA(K),
2. JS(K ′) > JS(K),
3. JF (K ′) ≥ JF (K),
4. JC(K ′) ≥ JC(K),
5. JB(K ′) = JB(K),
6. JP (K ′) = JP (K)
7. No inequality holds between JL(K ′) and JL(K).

This theorem shows that splitting decreases neither inconsistency nor information
(except possibly for IQ and JL), and for some measures it increases both. Anyway,
as pointed out earlier, splitting must be combined with another operation to eliminate
inconsistency.



5 Discussion

In general, inconsistency resolution should be guided by the aim of decreasing incon-
sistency without excessive loss of information. However, there is a trade-off between
the amount to which inconsistency is decreased and the amount of information loss that
can be accepted. Futhermore, there can be numerous choices over what resolution steps
to take at any state of the knowledgebase.

A common criterion is that some or all operations are not permitted on some formu-
lae. Alternatively, there may be a preference ordering over the formulae such that the
less preferred formulae should be considered for being subject to a resolution operation
before the more preferred formulae. However, in situations, where two or more formu-
lae can be subjected to a resolution operation, the use of inconsistency and information
measures may help in making a choice.

Turning to the question of which measures to use, this depends on the application
and the users involved. If they all agree to use specific measures in advance, then that
could be their prerogative. However, in general, when agents discuss specific options for
stepwise resolution, they may also need to discuss on a stepwise basis which measures
to take into account and why.

In this paper, we have clarified the space of inconsistency and information measures
and then shown how a wide variety of proposals conform to these general definitions.
It is surprising that all different measures are incompatible with one another. We have
also shown how inconsistency and information measures can be used to direct stepwise
resolution of inconsistency so that inconsistency can be decreased whilst minimising
information loss.
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