
A default logic based framework

for context-dependent reasoning

with lexical knowledge

Anthony Hunter

Department of Computer Science

University College London

Gower Street

London WC1E 6BT, UK

Email:a.hunter@cs.ucl.ac.uk

December 1, 1999

Abstract

Lexical knowledge is increasingly important in information systems | for example in

indexing documents using keywords, or disambiguating words in a query to an information

retrieval system, or a natural language interface. However, it is a di�cult kind of knowledge

to represent and reason with. Existing approaches to formalizing lexical knowledge have used

languages with limited expressibility, such as those based on inheritance hierarchies, and

in particular, they have not adequately addressed the context-dependent nature of lexical

knowledge. Here we present a framework, based on default logic, called the dex framework,

for capturing context-dependent reasoning with lexical knowledge. Default logic is a �rst-

order logic o�ering a more expressive formalisation than inheritance hierarchies: (1) First-

order formulae capturing lexical knowledge about words can be inferred; (2) Preferences over

formulae can be based on speci�city, reasoning about exceptions, or explicit priorities; (3)

Information about contexts can be reasoned with as �rst-order formulae formulae; and (4)

Information about contexts can be derived as default inferences. In the dex framework, a

word for which lexical knowledge is sought is called a query word. The context for a query

word is derived from further words, such as words in the same sentence as the query word.

These further words are used with a form of decision tree called a context classi�cation tree

to identify which contexts hold for the query word. We show how we can use these contexts in

default logic to identify lexical knowledge about the query word such as synonyms, antonyms,

specializations, meronyms, and more sophisticated �rst-order semantic knowledge. We also

show how we can use a standard machine learning algorithm to generate context classi�cation

trees.

Keywords: Knowledge representation; Lexical knowledge; Non-monotonic logic; De-

fault logic; Reasoning under uncertainty

1

1 Introduction

There is a need for more sophisticated lexical knowledge in information systems. In particular, there

is a need for richer semantic knowledge about words. Consider for example indexing documents

using keywords, or dismbiguating words in a query to an information retrieval system, or a natural

language interface.

Simple forms of semantic knowledge include semantic relations such as synonyms, related terms,

antonyms, and specializations for a word [Cru86]. Semantic knowledge can also be used to identify

meronymic relations, such as engine is part-of a car, and parts-of-speech such as relating actors

with actions: For example, for the actor terrorist an appropriate action is terrorism.

However, formalizing semantic knowledge about words is challenging. Most words are ambiguous

[Spa86, Hir87, Gut93, Gre96]. Obvious examples are bank, plane, and train. This includes am-

biguity about category, e.g. bank is both a noun and a verb, and ambiguity about word meaning,

e.g. for bank, a dictionary entry might be:

bank n (1) raised shelf of ground, slope; (2) ground at edge of river; (3) mass of cloud;

(4) establishment for custody of money; (5) money before keeper of gaming-table.

Di�culties with such a dictionary entry arise if we want to use automated reasoning since for-

malization is not straightforward. Each of the numbered statements gives a di�erent meaning, or

word sense, for the word. Furthermore, we may wish to sub-divide the de�nition. For example,

sense (4) could be divided into (4a) a building you go to cash a cheque, and (4b) a company that

holds your savings. This then means sense (4) is both a type of company and a type of building.

Another di�culty is that the meaning of the word is partly dependent on the overlaps between

the di�erent senses of the word. So for example, (1) and (2) overlap and intuitively reinforce each

other. Similarly for (4) and (5).

These problems call for a logic-based approach to representing and reasoning with lexical knowl-

edge. In a logic-based approach, intermediate concepts can be de�ned as logical formulae, and

used to formalize a range of inter-related word senses for a given word. This range of word senses

may include more general, more speci�c, and overlapping wordsenses.

However, classical logic is not appropriate for lexical knowledge, as lexical knowledge is a form of

context-dependent knowledge. For example, normally we can infer that petroleum is a synonym

of oil, but in the context of cooking, this inference is defeated. Given the uncertainty involved

in this context-dependent reasoning, we need to handle lexical knowledge using a form of default

reasoning.

In this paper, we use default logic to provide a framework, called the dex framework, for context-

dependent reasoning with lexical knowledge. The aim of the framework is to provide lexical knowl-

edge, in particular semantic knowledge, for applications in information systems. The framework

is a development of [Hun97].

2 Overview of default logic

Default logic was proposed by Reiter [Rei80], and good reviews are available (see for example

[Bes89, Bre91, Ant97, BDK97, Sch98]).

In default logic, knowledge is represented as a default theory, which consists of a set of �rst-order

2

formulae and a set of default rules for representing default information. A default rule is of the

following form, where �, � and are classical formulae,

� : �

The inference rules are those of classical logic plus a special mechanism to deal with default rules:

Basically, if � is inferred, and :� cannot be inferred, then infer . For this, � is called the pre-

condition, � is called the justi�cation, and is called the consequent. Informally, an extension

is a maximally consistent set of inferences (classical formulae) that follow from a default theory.

Default logic is an extension of classical logic. Hence, all classical inferences from the classical

formulae in a default theory are derivable (if there is an extension). The default theory then

augments these classical inferences by default inferences derivable using the default rules.

More formally, we introduce the operator � that indicates what conclusions are to be associated

with a given set E of formulae, where E is some set of classical formulae. Let (D;W) be a default

theory, where D is a set of default rules andW is a set of classical formulae. Let Cn be the function

that for a set of formulae returns the set of classical consequences of those formulae. For this, �(E)

is the smallest set of classical formulae such that the following three conditions are satis�ed.

1. W � �(E)

2. �(E) = Cn(�(E))

3. For each default in D, where � is the pre-condition, � is the justi�cation, and is the

consequent, the following holds:

if � 2 �(E) and :� 62 E then 2 �(E)

Let us call E the satisfaction set, and �(E) the putative extension. Once �(E) has been identi�ed,

E is an extension of (D;W) i� E = �(E). If E is an extension, then the �rst condition ensures that

the set of classical formulaeW is also in the extension, the second condition ensures the extension

is closed under classical consequence, and the third condition ensures that for each default rule,

if the pre-condition is in the extension, and the justi�cation is consistent with the extension, then

the consequent is in the extension.

We can view E as the set of formulae for which we are ensuring consistency with the justi�cation

of each default rule that we are attempting to apply. We can view �(E) as the set of putative

conclusions of a default theory: It contains W , it is closed under classical consequence, and for

each default that is applicable (i.e. the precondition is in �(E) and the justi�cation is satis�able

with E), then the consequent is in �(E). We ask for the smallest �(E) to ensure that each default

rule that is applied is grounded. This means that it is not the case that one or more default

rules are self-supporting. For example, a single default rule is self-supporting if the pre-condition

is satis�ed using the consequent. The test E = �(E) ensures that the set of formulae for which

the justi�cations are checked for consistency coincides with the set of putative conclusions of the

default theory. If E � �(E), then not all applied rules had their justi�cation checked with �(E).

If �(E) � E, then the rules are checked with more than is necessary.

To illustrate the context-dependent reasoning with default logic, consider the default theory com-

posed of the following set of default rules,

bird(x) : :(ostrich(x)_ penguin(x))

fly(x)

3

penguin(x) : :fly(x))

:fly(x)

ostrich(x) : :fly(x))

:fly(x)

and the following set of atoms,

bird(fred)

bird(sid)

ostrich(sid)

From this default theory, we obtain just one extension which contains fly(fred) and :fly(sid).

Basing the dex framework on default logic brings advantages. Default logic provides a rich (expres-

sive) and lucid representation for context-dependent reasoning and handling of exceptions. It is an

e�cient representation in terms of space. Also, it is a well-understood formalism for representing

uncertain information, and it has strong theoretical foundations. In addition, there are prototype

implementations of inference engines for default logic that can be used for developing default logic

knowledge-bases [Nie94, LS95, Sch95, NS98].

Other examples of using default logic in handling language include for reasoning about presup-

positions [Mer91, Ger95], anaphoric resolution [Qua93], and for reasoning about the notion of

\aboutness" [Hun96].

3 The dex framework

In the dex framework (for default lexical framework), we can represent morphological, gram-

matical, and semantic knowledge using default logic. The system is queried to �nd knowledge

about a word. The knowledge can include synonyms, generalizations, specializations, de�nitions,

meronyms, related terms, di�erent lexical categories of the word, and so on.

A key feature of the dex framework is the identi�cation of the context for a word being queried.

The context is identi�ed from words in the same text as the word being queried, such as the words

in the same sentence.

In the dex framework, the use of a lexical knowledgebase, called a dex knowledgebase, can be

summarized as follows.

Input: A query word plus a source, de�ned as follows:

Query word. A word for which further information is required. So if the lexical knowledge-

base is being used to help index a document, then the query word would be a word in

the document. Similarly, if the lexical knowledgebase is being used to help understand

a query to a natural langauge interface, then the query word would be a word in the

query.

Source. A set of words including the query word that is used to identify the contexts for a

query word. A source may be obtained in a number of ways. For example, it could be

obtained from a sentence containing the query word. So if the lexical knoweldgebase is

being used to help index a document, then the source would be some of the words in

the document. Similarly, if the lexical knowledgebase is being used to help understand a

query to a natural langauge interface, then the source would be the words in the query.

4

Output: Set of formulae providing lexical knowledge about the query word.

A dex knowledgebase is composed of the following two sets of knowledge that are used to provide

the output from the system.

1. A set of context classi�cation trees: Given a source S containing the query word q, the

context classi�cation trees are used to identify contexts that hold for S. Consider a tree T

that tests whether S is in context �: If the test is positive, then S is in context �.

2. A default theory:This is based around a set of default rules representing context-dependent

lexical knowledge. Given a query word and a set of contexts identi�ed using the context clas-

si�cation trees, these default rules are used to provide lexical knowledge about the query

word.

In the default theory, words and contexts are represented as constant symbols and lexical relations

such as synonym, meronym, etc, are represented by predicate symbols, and so lexical knowledge

about words is captured by �rst-order formulae. The two main types of default rules are:

Default context rules These default rules allow for the inference of further contexts given a set

of contexts.

Default lexical rules These default rules allow for the inference of lexical knowledge according

to which contexts hold.

So, from input to output, reasoning with a dex knowledgebase is a three-stage process.

1. From the source and query word, contexts are found using the set of context classi�cation

trees. These contexts are called primary contexts.

2. From the primary contexts, further contexts are inferred from the default context rules.

These further contexts are called inferred contexts. By reexivity, the inferred contexts

include the primary contexts.

3. From the inferred contexts, lexical knowledge about the query word is identi�ed by reasoning

with the default lexical rules.

As an example, consider the following sentence.

The bank of a river in a flood plain is usually low.

Suppose the query word is bank, and the set of stop words

1

in this sentence is the following.

fThe, of, a, in, isg

This leaves the following set as the source.

1

Stop words are words that usually o�er relatively little semantic information in a sentence, such as for example,

the, a, because, and what. They normally constitute about 50% of the words in a sentence [vR79].

5

A dex knowledgebase

Set of formulae representing lexical knowledge

about the query word

Default theory

Primary contexts identi�ed

Context classi�cation trees

Query word Source

?

?

?

Figure 1: A schematic summary of using the dex framework. The dex knowledgebase is delineated

by the outer box. The input to the dex knowledgebase is the query word and source, and the

output is the set of �rst-order classical formulae representing lexical knowledge about the query

word.

fbank, river, flood, plain, usually, lowg

Assuming that river can be identi�ed as a context by a context classi�cation tree, and that

valley can be identi�ed as a context by a context classi�cation tree, then river and valley are

primary contexts containing bank. As a result, river-bank could be an inferred context.

In the following subsections, we look more closely at how to identify contexts from the source,

how to use default logic to represent lexical and context rules, how to obtain output from a

dex knowledgebase, and how to use a standard machine learning algorithm to generate context

classi�cation trees from sets of training examples.

3.1 Identifying contexts from the source

A context is a setting for a word. If a word is ambiguous, then the word is a member of more than

one context. Di�erent contexts can denote di�erent word senses for a word. In this way, a context

can be viewed as a (non-strict) boundary on the meaning of a word. For example, the word bank

can be described as being a member of contexts including river and financial-institution.

In language, the words surrounding a particular word can indicate the context for the word. For

example, for a word in some text, the words in the same paragraph can usually indicate the context

6

POSITIVE NEGATIVE

POSITIVE airbus

POSITIVE boeing

aircraft NEGATIVE

crash

�

�

�

�	

@

@

@

@R

�

�

�

�	

@

@

@

@R

�

�

�

�	

@

@

@

@R

�

�

�

�	

@

@

@

@R

Figure 2: Classi�cation tree for aircraft-accident.

for the word.

In this section, we show how we can use a classi�cation tree (also called a decision tree) to test

whether a set of words is in a particular context. In a later section, we show how we can use

machine learning techniques to generate such classi�cation trees.

Each classi�cation tree is developed to test for a single classi�cation. In this work, each classi�cation

is a context. Given a set of words, presence or absence of particular words in the set of words is

used by a classi�cation tree to classify the set of words as either a positive or negative example for

the classi�cation. Hence, a classi�cation tree determines whether the set of words is in a particular

context.

A classi�cation tree for a context � is a binary tree, where each node is a word, except the leaves

which are labelled either positive or negative. Given a set of words, start at the root: If the

root is in S, then take the left subtree, otherwise take the right subtree. Upon taking the subtree,

repeat the process, until reaching a leaf. If the leaf is positive, then S is in context �. If the leaf

is negative, then we infer nothing from this tree about S.

Consider the example of a classi�cation tree in Figure 2 for the classi�cation aircraft-accident.

Given the set S = fcrash; boeing;engine;runwayg, the tree classi�es S as being in the context

aircraft-accident.

Given a set of words S, there might be a number of classi�cation trees with di�erent contexts,

and the set S is found to be in each of the contexts using the trees.

The input to a dex knowledgebase is a query word q and a source S. Each primary context that

holds for S is entered into the default theory (D;W) as follows: If S is in context �, then

> : context(�)

context(�)

is a default rule in (D;W). So each primary context is represented by a default rule in the default

7

theory.

Note, if S is not in context � | in other words, if the context classi�cation tree for � classi�es S

as negative | then we do not enter

> : :context(�)

:context(�)

into the default theory. The reason that we do not want this is that we want to maintain an \open

world assumption". Even if we cannot show that S is in context � using a context classi�cation

tree, we may obtain it using default context rules.

3.2 Using default logic to represent context rules

We use default context rules to reason with primary contexts to derive inferred contexts. So

for example, given context(finance) and context(business), and it is consistent to assume

context(corporate-finance), then derive context(corporate-finance).

context(finance)^ context(business) : context(corporate-finance)

context(corporate-finance)

We may also incorporate constraints in the default theory: Suppose for a given source S and a

query word q, we obtain both context(finance) and context(river) using a set of context

classi�cation trees. Normally, we would want to keep these contexts separate: In other words there

is ambiguity about the context for the query word. So it would be useful to generate two extensions

for the query word: the �rst with context(river) and the second with the context(finance).

We can ensure this by assuming the following classical formula in the set W in the default theory.

context(river)$:context(corporate-finance)

This formula prohibits both context(river) and context(corporate-finance) to hold in the

same extension. Now consider the following more complicated default context rule, where the

precondition is a conjunctive normal form formula.

context(trade)^ context(USA)^ (context(Mexico)_ context(Canada)) : :context(GATT)

context(NAFTA)

Another kind of default context rule precludes a context holding when some combination of other

contexts hold:

context(lisp)^ context(functions) : :context(transport)

:context(transport)

We can consider a set of contexts C for a dex knowledgebase as being ordered by a specialization

relation �, where for each (�;) 2 �, � is a more specialized context than . In general, (C;�) is

a directed acyclic graph. For some dex knowledgebases, it may be more restricted such as being a

complete lattice, or a Boolean lattice.

8

?

motorail

motor rail lisp

transport

>

�

�

�

�	

@

@

@

@

@

@

@

@

@R

�

�

�

�	

@

@

@

@R

@

@

@

@R

�

�

�

�	

�

�

�

�

�

�

�

�

�	

@

@

@

@R

Figure 3: A directed acyclic graph of contexts: Each node represents a context, and each arrow

represents a specialization, where the arrow points to the more specialized context, and ? denotes

the empty (inconsistent) context and > denotes the context for everything.

Since, there is some uncertainty involved in identifying the primary contexts for each source,

the context classi�cation trees cannot be guaranteed to be correct | sometimes they give a false

positive and sometimes a false negative. False positives can be viewed as a form of unsoundness

and false negatives as a form of incompleteness.

Default context rules are used to manage this incompleteness by giving further contexts that hold

for a set of primary contexts. In addition, they o�er the opportunity for extending the set of

contexts that can be identi�ed for any source. In this way, the default context rules facilitate

navigation of (C;�), by supporting the inference of more general and more specialized contexts

from a set of primary contexts.

More di�cult are the false positives. Once a context is ascribed to a source, the context cannot

be retracted. However, both the default context rules and the default lexical rules tolerate such

erroneous information | in part by using multiple extensions.

3.3 Using default logic to represent lexical rules

The query word is the word for which further information is sought. Via the relations that hold

for the query word, we also seek information about further words. For example, if the query word

is bank, and the following relation holds, we then seek further information about river-bank.

synonym(bank,river-bank)

The words for which we seek further information are called focus words, and we denote this by

the relation focus.

9

If q is the query word, then we represent this by the classical formula focus(q) in W .

We discuss propagating the focus relation in Section 3.4. In the following, we discuss some alter-

natives for representing lexical rules in default logic. In practice, the choice of default rules, and

classical formulae depends on the application.

We assume some semantic relations as binary relations between pairs of words. Types of relation

include synonymy, antonymy, specialization, and meronymy.We qualify semantic relations accord-

ing to context. For example, in the context of river, bank is a synomyn of river-bank, whereas

in the context of corporate-finance, bank is a synonym of merchant-bank.

focus(bank)^ context(river) : synonym(bank; river-bank)

synonym(bank; river-bank)

focus(bank)^ context(corporate-finance) : synonym(bank; merchant-bank)

synonym(bank; merchant-bank)

We now consider some defaults (represented below) for �nding synonyms for car. The �rst says

that synonym(car,automobile) holds if context(road) holds and that it is consistent to as-

sume synonym(car,automobile) holds. The second says that in the more general situation where

context(transport) holds, we also need context(rail) to not hold. In the dex framework,

we have freedom as to whether we require a particular context (or negation of a context) as a

precondition or justi�cation.

focus(car)^ context(road) : synonym(car; automobile)

synonym(car; automobile)

focus(car)^ context(transport) : :context(rail)

synonym(car; automobile)

In some situations, automobile is not an appropriate synonym for car, such as in the context of

rail.

focus(car)^ context(rail) : :context(road)

synonym(car; wagon)

Another word sense for car is in the context of lisp. Here we consider the specialization

relation as a consequent.

focus(car)^ context(lisp) : specialization(car;lisp-function)

specialization(car,lisp-function)

If the context lisp cannot be determined, then the following default may be appropriate.

focus(car)^ context(computing) : :context(transport)

specialization(car,lisp-function)

As another example, consider the polyseme case. Here we a provide default for the baggage

wordsense.

10

focus(case)^ context(transport) : :context(legal)

synonym(case,baggage)

So far with all these examples, we have handled inclusive lexical rules | i.e. rules for lexical

relations that hold for a given focus in a given context. However, we can also handle exclusive

lexical rules | i.e. rules for lexical relations that do not hold for a given focus in a given context.

This is a form of preclusion. Consider, for example,

focus(car)^ context(rail) : :context(road)

:synonym(car; automobile)

Representing preclusion using defaults means that this could be defeated by other information.

For example, in the context of motorail. Using default rules for preclusion in an alternative to

using a classical formula such as:

synonym(car; wagon)$:synonym(car; automobile)

As another example of preclusion, consider the word water. In a normal context, liquor is not a

synonym of water. However, in the context of a brewery, it is a synonym.

focus(water) : :context(brewery)

:synonym(water,liqour)

focus(water)^ context(brewery) : synonym(water,liqour)

synonym(water,liqour)

We now consider other semantic relations, including located and made-of, that can hold for a

given word.

focus(knife) : context(cooking)

located(knife; kitchen)

focus(hull) : context(ship)

made-of(hull,steel)

focus(hull) : context(sailing-ship)

made-of(hull,wood)

We can draw on a richer taxonomy of meronymic relations in order to develop further semantic

relations | e.g. \member/collection", \portion/mass", \place/area", and \component/integral-

object".

Semantic knowledge is also important in applying morphological and grammatical rules. Consider,

for example, the following rules.

focus(bank) : context(finance)

category(bank; verb)_ category(bank; noun)

focus(bank) : context(river)

category(bank; noun)

Since many morphological and grammatical rules are context-dependent, these can also be usefully

presented in a dex knowledgebase.

11

3.4 Obtaining output from a dex knowledgebase

We now consider how we can reason with a dex knowledgebase in order to derive lexical information

about a query word. We propagate focus words by axioms of the following form that are included

in W in the default theory. These capture the transitivity of focus for particular relations such as

synonym, related-term, and meronym.

focus(x) ^ synonym(x; y)! focus(y)

focus(x)^ related-term(x,y)! focus(y)

focus(x) ^ meronym(x; y)! focus(y)

We can also limit the number of inferences being generated:

focus(x; n)^ synonym(x; y)^ n < m! focus(x; n+ 1)

where m is the upper limit on the size of the network being produced.

We also need to assume some general dex knowledge, represented as a set of classical formulae.

This includes formulae such as the following for generating further useful semantic relations.

synonym(x; y)^ synonym(y; z)! synonym(x; z)

synonym(x; y)! synonym(y; x)

specialization(x;y)^ specialization(y; z)! specialization(x; z)

Lexical relations, such as synonym, are only weakly transitive. In other words, after a few ap-

plications of transitivity, the words are no longer synonyms, and may indeed be quite unrelated.

To address this, we can limit the number of applications of transitivity, as follows where i and j

denote the number of applications of transitivity for each relation, and m is an upper limit.

synonym(x; y; i)^ synonym(y; z; j)^ (i+ j) < m! synonym(x; z; i+ j)

The exact combination of axioms required in W depends on which relations are used in the

knowledgebase.

If (D;W) is a dex knowledgebase and E is an extension of (D;W), then E includes a set of

semantic relations concerning the query word. Abstracting from E, we may obtain a semantic

network where the nodes are words and the arcs are semantic relations. So for example, if E

includes synonym(happy,joyous), then synonym is an arc connecting the nodes happy and joyous

in the corresponding semantic network. In this way, it is possible to de�ne a default theory that

would give an extension from which the semantic network in Figure 4 could be obtained.

As another example, consider the following set of four defaults:

focus(car) : context(road)

synonym(car; automobile)

12

bank river-bank

stream river

water tributary

river-bed

�

�

�

�

@

@

@

@

�

�

�

�

@

@

@

@

�

�

�

�

@

@

@

@

contains

related underneath

synonym

contains contains isa

next-to next-to next-to

Figure 4: A semantic network: nodes denote words and labelled arcs denote binary relations. Note

that this semantic network is restricted to a single (coherent) context. It could be viewed as a

subgraph of a larger semantic network where in the larger semantic network multiple word senses

are represented.

focus(car) : context(road)

uses(car; road)

focus(automobile) : context(road)

synonym(automobile; motor-car)

focus(road) : :context(sea)

synonym(road; street)

Suppose we have the query word car, we can obtain an extension from which we can obtain the

semantic network composed of the following arcs.

synonym(car,automobile)

uses(car,road)

synonym(automobile,motor-car)

synomym(road,street)

Note, the de�nition of a dex knowledgebase does not exclude multiple extensions. For a given

query word and source, the generation of multiple extensions implies that with respect to the

source, the query word is ambiguous. This may be because the context is underdetermined.

3.5 Exploiting the expressibility of default logic

A wider variety of predicates can be used in addition to capture object-level and meta-level infor-

mation about a query word and the situation in which it is used. Object-level information might

include co-locational information such as identi�cation of the word(s) to the left. For example, in

the context of fisheries, the word bed could refer to river-bed, or to oyster-bed. However, if

the word to the left is of the occurence of bed is either river or oyster, then the ambiguity is

resolved. Consider the following default rule, where wordtoleft(hairpin) denotes that hairpin

is the word to the immediate left of the focus word:

focus(bend)^ wordtoleft(hairpin) : context(road)

synonym(bend; switchback)

13

We can use this approach to resolve more problematical ambiguities that arise with noun-noun

phrases such as fruit flies in the sentence.

Fruit flies like plants.

For this, we can use the following default rules.

focus(flies)^ wordtoleft(fruit) : context(biology)

specialization(flies, fruit-flies)

^ category(flies, noun)

^ category(fruit-flies, noun-noun-phrase)

Further relations that can capture co-locational information include the binary relation insamesentence

that can provide more useful information on disambiguation when the identi�ed contexts are too

weak to draw su�cient inferences for a particular source. For example,

focus(plant)^ insamesentence(plant; manufactoring) : context(business)

specialization(plant, manufactoring-plant)

Meta-level information might include the type of article or type of publication so for example an

article in the company reports section of the Financial Times is almost certainly about companies,

business, etc. Similarly, the words in the �rst sentence of a Financial Times article are much

more signi�cant in determining the context of an article than words that occur in later sentences.

As another example, proper nouns are particularly important in determining the context of an

article in publications such as the Financial Times and The Economist.

Richer lexical knowledge, and associated world knowledge, can be captured using the �rst-order

knowledge representation and reasoning available in default logic. Consider for example the fol-

lowing default rule:

focus(sentence)^ context(law) : :context(writing)

9x; y; t [judge(x)^ defendant(y)^ sentences(x; y)^ sentence(y; t)]

Once we consider a richer langauge for inferencing with words in context, we can harness other

formalisms for knowledge representation, such as for example episodic logic [HS93]. In this way,

we can use default logic as a bridge between handling words in text and reasoning with implied

word senses.

4 Learning context classi�cation trees

We have used the ID3 inductive learning algorithm developed by Quinlan [Qui86] for learning

context classi�cation trees.

4.1 Using the ID3 to learn context classi�cation trees

ID3 is an approach to machine learning based on constructing a classi�cation, or decision, tree

for a set of training examples. Training examples are presented as a table | each row is an

14

example and each column is an attribute of the examples. The last attribute is the classi�cation

of the example. For example, in learning a decision tree for determining whether a patient has a

particular disorder, we use a table of patients | some who have the disorder and some who do

not. Each column refers to particular symptoms or tests, and the �nal column states whether the

patient has the disorder. Once a decision tree has been constructed, and then tested successfully

with examples not used in the training, it can be used to classify further examples.

We have used ID3 to classify textual information. The methodology involves taking an item of text,

removing the stop words, and then using the remaining words as a training (learning) example.

The stop list we used was similar to that in [vR79]. Each item of text implies one or more contexts.

Contexts are used as the classi�cations for the examples. Each attribute in the table of training

examples is a word. If a training example contains that word, then \yes" is entered into the

corresponding position in the table, and \no" otherwise.

The ID3 algorithm is a very simple approach to learning classi�cation trees. There are develop-

ments, such as C4.5 [Qui93] that include handling missing or noisy data, and avoiding over�tting

using pruning of classi�cation trees.

4.2 A case study of learning context classi�cation trees

In this case study, we used a set of 139 news summaries taken from The Economist newspaper

in the period 1996-98. We focussed on articles for the contexts of m&a (corporate mergers and

acquisitions), collaboration (collaborative deals, alliances, and joint ventures), military (ter-

rorist activities, peace keeping, military manoeuvres, and wars), and trade (international trade

agreements), business and paramilitary-incident.

The ID3 algorithmwas written in Prolog. For learning context classi�cation trees, the methodology

for the case study is summarized as follows: A training example was generated from each article

by removing proper nouns

2

, stop words, and punctuation. For the remaining words, each was

rewritten into just lower case characters, plural nouns were rewritten as singular nouns, and verbs

were rewritten as base verbs. The resulting set of words was the training example. Each training

example is classi�ed by hand as being either a positive or negative example for each context.

We therefore assume that for each article, the sense of each word in the article is constant | so

multiple occurrences of the word in the article have the same meaning. A context classi�cation

tree was obtained for each of the contexts. Two examples are given in Figures 5 and 6.

Given the context classi�cation trees, we can analyse further articles of the kind found in The

Economist. Consider the following example:

Seagram, the Canadian drinks multinational, has made an agreed bid for the Polygram

records and �lm business that is part-owned by the Dutch electronics group Philips.

It is unlikely that the acquisition will attract any interest from any regulator.

After removing stop words and rewriting the remaining words, we have the following set of words

for the source:

drinks, multinational, make, agreed, bid, record, film, business, part, own,

electronic, group, unlikely, acquisition, attract, any, interest, regulator

2

Proper nouns seem to be a very good indicator of a context. This is particularly so for articles in The Economist.

The main reason they were excluded in this case study was that we wanted to demonstrate the viability of the

approach without the advantage of them. A disadvantage of proper nouns is that they make the classi�cation trees

very specialized | even over specialized.

15

bid

�

��

A

AU

POSITIVE merger

�

��

A

AU

POSITIVE create

�

��

A

AU

POSITIVE world

�

��

A

AU

POSITIVE takeover

�

��

A

AU

POSITIVE deal

�

��

A

AU

POSITIVE value

�

��

A

AU

POSITIVE offer

�

��

A

AU

POSITIVE business

�

��

A

AU

POSITIVE NEGATIVE

Figure 5: A context classi�cation tree for the context m&a. The tree was generated from a training

set of 81, where 51 were positive examples and 30 were negative examples, taken from articles

on business from the Business this week section of The Economist. Each article had around 50

words. The set of articles used over 750 di�erent words after removing stop words. Each example

was tabulated on the basis of the presence or absence of each of 30 attributes. Each attribute is a

word that occurs in 5 or more of the articles. The attributes for this training set were alliance,

airline, agree, bank, business, bid, biggest, buy, company, create, deal, firm, form, group,

high, market, merge, merger, offer, own, pay, plan, purchase, serice, share, takeover, up,

value, venture, and world.

16

kill

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

say

�

�

�

�	

@

@

@

@R

NEGATIVE

bomb

�

�

�

�	

@

@

@

@R

POSITIVEseparatist

�

�

�

�	

@

@

@

@R

POSITIVE

blame

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

bomb

�

�

�

�	

@

@

@

@R

POSITIVE NEGATIVE

peace

�

�

�

�	

@

@

@

@R

POSITIVE NEGATIVE

troops

�

�

�

�	

@

@

@

@R

NEGATIVEguerilla

�

�

�

�	

@

@

@

@R

POSITIVE NEGATIVE

Figure 6: A context classi�cation tree for the context paramilitary-incident. The tree was

generated froma training set of 47, where 16 were positive examples and 31 were negative examples,

taken from articles on military incidents and issues from the Politics this week section of The

Economist. Each article had around 50 words. The set of articles used over 400 words after removing

stop words. Each example was tabulated on the basis of the presence or absence of each of 20

attributes. Each attribute is a word that occurs in 5 or more of the articles. The attributes for

this training set were after, army, blame, bomb, country, government, group, guerilla, kill,

last, military, month, more, peace, people, say, separatist, soldier, talk, and troops.

17

From this set, we obtain the context m&a using the context classi�cation tree in Figure 5.

From this case study, we can see that a relatively large numbers of training examples can be used

to generate the context classi�cation trees and the resulting trees can be quite lucid.

5 Comparison with other approaches to lexical knowledge

The simplest computer-oriented approaches to lexical knowledge are machine-readable lexicons

that may be viewed as relational databases (for reviews see [WSG96, GPWS96]). These are large

repositories of information on words with little or no structure beyond providing some attributes

for each word. These approaches therefore do not harness context-dependent reasoning, default

reasoning, or uncertainty management.

Perhaps the most signi�cant example of a general purpose system for lexical knowledge is WordNet

[BFGM91, Mil95]. This is a semantic network containing lexical knowledge on over 90,000 word

senses and it is now found to be an increasingly important resource on synonyms, generalizations,

and specializations of words, for language engineering applications, such as information retrieval

[Voo94]. In WordNet, each set of words that are regarded as strict synonyms (i.e. the words can

be interchanged in a sentence) is called a synset. The following is an example of a synset.

fMolotov-cocktail, petrol-bomb, gasoline-bombg

Whilst WordNet separates di�erent meanings of the same word by putting the same word in more

than one synset, there is no explicit machinery for determining in which context a particular word

sense should be used. Moreover, there is no logical reasoning with the relations in the semantic

network. This problem led to the notion of plausible inference with WordNet [HM98]. The dex

framework can be directly applied to formalize this notion of plausible inference.

A more sophisticated system being developed with a deeper knowledgebase on several thousand

word senses is FrameNet [FA98]. This is a frame-based representation with logical reasoning limited

to inheritance, where one frame is an elaboration of another, and composition, where one frame

is built-up of other frames as the parts. As with WordNet there is no explicit machinery for

determining in which context a particular word sense should be used,

A richer knowledge representation and reasoning framework is the generative lexicon [PB93,

Pus95]. This is a form of frame-based representation that is based on specifying the following

features for a word:

� Argument structure: providing conventional information about the syntax of a word.

� Event structure: describing a word in terms of states, processes, and transitions.

� Qualia structure: describing a word's meaning (or qualia) in terms of the following aspects

of the concept it captures:

{ Constitutive: the relation between the concept and its constituent parts.

{ Formal: information that distinguishes the concept within a larger domain.

{ Telic: information on the purpose and function of the concept.

{ Agentive: factors involved in the origin or generation of the concept.

� Lexical inheritance: determines the relation of a word to other words in a lexicon.

18

The generative lexicon framework does o�er context-dependent reasoning| though predominantly

this is classical | so for a word disambiguation di�erent word senses may be determined using

the extra constraints in the qualia structure. Whilst the generative lexicon is a rich and powerful

framework, the approach is limited in context-dependent reasoning, supporting only a form of

inheritance, and in particular it does not support uncertainty management.

Some machine-readable lexicons have been developed in formal knowledge representation frame-

works, supported by logical reasoning. Key formal frameworks are DATR [EG96, EG89], Laurel

[Cop92, BCP94], and persistent default uni�cation (PDU) [LBAC95]. These are forms of inher-

itance hierarchy that o�er an e�cient and lucid representation of lexical knowledge. However,

they are limited formalisms in terms of expressibility and inferential capability, in particular with

respect to context-dependent reasoning, and reasoning with inferences. They don't provide any

mechanisms for determing the context for a given ambiguous word or for reasoning with context

information. Also preferences used in the default reasoning are restricted to a form of speci�city.

There is no facility for preferences based on reasoning about exceptions or for explicit priorities.

There are some proposals to use logics for lexical knowledge representation and reasoning. An

epistemic logic has been used as the basis of a framework for reasoning about context for resolving

lexical ambiguity [Buv96]. Unfortunately, the reasoning is monotonic and so o�ers no context-

dependent default reasoning.

A new variant of default logic has been proposed for reasoning about ambiguity according to

context [Poe96]. However, there is no mechanism for determining context for a given ambiguous

word, and the approach is limited in reasoning about contexts. There are also open questions

about the behaviour of the default logic with regard to automated reasoning.

Another modal logic for disambiguation has been proposed in [Fer97] that does provide default

reasoning. This framework is interesting as an abstract framework. But, there are open questions

with regard to its practical application. Again the reasoning about contexts is limited and there are

no implicit or explicit prioritization mechanisms over context-dependent rules for disambiguation.

There is a mechanism for determining a context for a given ambiguous word, but this is also limited

to explicitly listing the presence or absence of individual words in the sequence of words to the

left and right of the ambiguous word for each disambiguation rule. This does not take advantage

of the structure that exists in the lexical knowledge.

So to conclude this comparison, despite the extensive developments in lexical knowledgebases,

there is a pressing need for a formal approach to knowledge representation and reasoning that

can handle the context-dependent default knowledge, and in particular for addressing uncertainty

management with contexts. To address the shortcomings of existing approaches, we believe that

using default logic together with context classi�cation trees is a promising direction for developing

lexical knowledgebases.

6 Discussion

In this paper, we have presented the dex framework: We have shown how we can use classi�cation

trees to identify contexts for a word, and shown how we can use the identi�ed contexts to reason

with lexical knowledge about the word in default logic. We have also shown that machine learning

techniques can be used to generate context classi�cation trees. Reasoning with a dex knowledgebase

is non-monotonic with respect to the source: Taking a superset of the source may cause lexical

inferences to be retracted. This gives the context-dependent reasoning that is necessary for lexical

knowledge.

19

Elsewhere machine learning techniques have also been successfully applied to text categorization.

In particular, rule induction with rule re�nement techniques has been been applied to generating

text categorization rules using large training and test sets (around 8000 examples) of news articles

from the Reuters newswire [ADW94]. Given the close relationship between the function of text

categorization rules, and context classi�cation trees, the results indicate how the generation of

context classi�cation trees could be scaled-up using re�nement techniques.

Our next goal in developing the dex framework is to support goal-directed reasoning. For simplic-

ity, we chose Reiter's version of default logic. But, for e�ciency, a goal-directed form of default

reasoning is more appropriate. In particular, we are investigating the use of the XRay query

answering system for default logics [Sch95, NS98].

We also want to re�ne the notion of a source to allow better scoping. To illustrate the need,

consider the following extreme example that is a zeugma taken from [LCB96].

John banked the money and then the plane.

The context of the �rst occurrence of banked could be described as finance and of the second

(implicit) occurrence could be described as aviation. Whilst this is an extreme example, it does

indicate that the larger the source, the more likely that the set of words will refer to disjoint

contexts. Managing the size of the source is therefore an important issue. It raises interesting

questions like how to di�erentiate noise in determining a context from more complex structure in

the contexts that pertain to a piece of text. So for example, how does context normally change in

reading a sentence or set of sentences, and how does it move between more specialized and more

generalized contexts.

For an application, it is possible that a relatively large number of default rules would be required

for an acceptable level of performance. To address this viability problem, we aim to investigate a

number of avenues: (1) Using inductive logic programming ([Mug92, Cus97, Cus98, TM98]) and

statistical techniques (such as [CHS93]), to generate formulae for a default theory for a domain; (2)

Using co-locational data with decision tree learning based on ID3 or C4.5, or co-locational data with

unsupervised learning techniques such as in [Yar95]; and (3) Using machine-readable dictionaries

and thesauri [NFE90, Mei93]. Whilst none of these techniques use a hypothesis language that

is as expressive as default logic, they are potentially very useful in identifying relationships and

generating rules that could be incorporated within default logic.

Acknowledgements

The author would like to thank Beatrice Duval, Roger Evans, Ruth Kempson, Rodger Kibble, Lutz

Marten, Wilfred Viol-Meyer, Pascal Nicolas, and Torsten Schaub, for some very helpful discussions

that led to the work reported in this paper. The author is also grateful to the two anonymous

referees for some useful suggestions.

References

[ADW94] C Apte, F Damerau, and S Weiss. Automated learning of decision rules for text

categorization. ACM Transactions on Information Systems, 12(3):233{251, 1994.

[Ant97] G Antoniou. Non-monotonic Reasoning. MIT Press, 1997.

20

[BCP94] T Briscoe, A Copestake, and V de Paiva, editors. Inheritance, Defaults and the Lexicon.

Studies in Natural Language Processing. Cambridge University Prees, 1994.

[BDK97] G Brewka, J Dix, and K Konolige. Non-monotonic Reasoning: An Overview. CLSI

Publications, 1997.

[Bes89] Ph Besnard. An Introduction to Default Logic. Springer, 1989.

[BFGM91] R Beckworth, C Fellbaum, D Gross, and G Miller. WordNet: A lexical database orga-

nized on psycholinguistic principles. In U Zernik, editor, Lexical Acquisition: Exploiting

On-line Resources to Build a Lexicon, pages 211{226. Lawrence Erlbaum Associates,

1991.

[Bre91] G Brewka. Common-sense Reasoning. Cambridge University Press, 1991.

[Buv96] S Buvac. Resolving lexical ambiguity using a formal theory of context. In K van

Deemter and S Peters, editors, Semantic Ambiguity and Underspeci�cation, pages 101{

124. CSLI Publications, 1996.

[CHS93] J Cussens, A Hunter, and A Srinivasan. Generating explicit orderings for non-

monotonic logics. In Proceedings of the Eleventh National Conference on Arti�cial

Intelligence (AAAI'93), pages 420{425. MIT Press, 1993.

[Cop92] A Copestake. The representation of lexical semantic information. Technical report,

University of Sussex, 1992. CSRP 280.

[Cru86] D Cruse. Lexical Semantics. Cambridge University Press, 1986.

[Cus97] J Cussens. Parts-of-speech tagging using progol. In Proceedings of the Inductive Logic

Programming Conference(ILP'97), 1997.

[Cus98] J Cussens. Using prior probabilities and density estimation for relational classi�cation.

In Proceedings of the Inductive Logic Programming Conference(ILP'98), 1998.

[EG89] R Evans and G Gazdar. Inference in DATR. In Proceedings of the 4th Conference of

European Chapter of the Association of Computational Linguistics (EACL89), pages

66{71, 1989.

[EG96] R Evans and G Gazdar. DATR: A language for lexical knowledge representation.

Computational Linguistics, 22:167{216, 1996.

[FA98] C Fillmore and B Atkins. Framenet and lexicongraphic relevance. In Proceedings of

the First International Conference on Language Resources and Evaluation, 1998.

[Fer97] T Fernando. A modal logic for non-determinsitic disambiguation. In Proceedings of

the Amsterdam Colloquium, pages 121{126, 1997.

[Ger95] P Gervas. Logical considerations in the interpretation of presuppositional sentences.

PhD thesis, Department of Computer Science, Imperial College, 1995.

[GPWS96] L Gutherie, J Pustejovsky, Y Wilks, and B Slator. The role of lexicons in natural

language processing. Communications of the ACM, 39(1):63{72, 1996.

[Gre96] G Green. Ambiguity resolution and discourse interpretation. In K van Deemter and

S Peters, editors, Semantic Ambiguity and Underspeci�cation, pages 1{26. CSLI Pub-

lications, 1996.

[Gut93] L Gutherie. A note on lexical disambiguation. In C Souter and E Atwell, editors,

Corpus-based computational linguistics, pages 227{237. Rodopi, 1993.

21

[Hir87] G Hirst. Semantic Interpretation and the Resolution of Ambiguity. Studies in Natural

Language Processing. Cambridge University Press, 1987.

[HM98] S Harabagiu and D Moldovan. Knowledge processing on an extended wordnet. In

C Fellbaum, editor, WordNet: An Electronic Lexical Database, pages 379{405. MIT

Press, 1998.

[HS93] C Hwang and L Schubert. EL: A formal, yet natural, comprehensive knowledge repre-

sentation. In Proceedings of the Eleventh National Conference on Arti�cial Intelligence

(AAAI'93), pages 676{682. MIT Press, 1993.

[Hun96] A Hunter. Intelligent text handling using default logic. In Proceedings of the IEEE

Conference on Tools with Arti�cial Intelligence, pages 34{40. IEEE Computer Society

Press, 1996.

[Hun97] A. Hunter. Using default logic for lexical knowledge. In Qualitative and Quantitative

Practical Reasoning, volume 1244 of Lecture Notes in Computer Science, pages 86{95.

Springer, 1997.

[LBAC95] A Lascarides, T Briscoe, N Asher, and A Copestake. Order independent and persistent

typed default uni�cation. Linguistics and Philosophy, 19(1):1{90, 1995.

[LCB96] A Lascarides, A Copestake, and T Briscoe. Ambiguity and coherence. Journal of

Semantics, 13(1):41{65, 1996.

[LS95] T Linke and T Schaub. Lemma handling in default logic theorem provers. In Symbolic

and Qualitative Approaches to Reasoning and Uncertainty, volume 946 of Lecture Notes

in Computer Science, pages 285{292. Springer, 1995.

[Mei93] W Meijs. Exploring lexical knowledge. In C Souter and E Atwell, editors, Corpus-based

Computational Linguistics, pages 249{260. Rodopi, 1993.

[Mer91] B Mercer. Presuppositions and default reasoning: A study in lexical pragmatics. In

J Pustejovsky and S Bergler, editors, Lexical Semantics and Knowledge Representation,

volume 627 of Lecture Notes in Arti�cial Intelligence, pages 321{340. Springer, 1991.

[Mil95] G Miller. WordNet: A lexical database for English. Communications of the ACM,

38(11):39{41, 1995.

[Mug92] S Muggleton. Inductive Logic Programming. Academic Press, 1992.

[NFE90] J Nutter, E Fox, and M Evens. Building a lexicon from machine-readable dictionaries

for improved information retrieval. Literary and Linguistic Computing, 5(2):129{137,

1990.

[Nie94] I Niemel�a. A decision method for non-monotonic reasoning based on autoepistemic

reasoning. In Proceedings of the Fourth International Conference Principles of Knowl-

edge Representation and Reasoning, pages 473{484. Morgan Kaufmann, 1994.

[NS98] P Nicolas and T Schaub. The XRay system: An implementation platform for local

query answering in default logics. In A Hunter and S Parsons, editors, Applications of

Uncertainty Formalisms, Lecture Notes in Computer Science, pages 354{378. Springer,

1998.

[PB93] J Pustejovsky and B Boguraev. Lexical knowledge and natural language processing.

Arti�cial Intelligence, 63:193{223, 1993.

[Poe96] M Poesio. Semantic ambiguity and perceived ambiguity. In K van Deemter and

S Peters, editors, Semantic Ambiguity and Underspeci�cation, pages 159{202. CSLI

Publications, 1996.

22

[Pus95] J Pustejovsky. The Generative Lexicon. MIT Press, 1995.

[Qua93] J Quantz. A preferential default description logic for disambiguation in natural lan-

guage processing. In G Brewka and C Witteveen, editors, Proceedings of the Dutch-

German Workshop on Nonmonotonic Reasoning Techniques and their Applications,

pages 1{13. RWTH Aachen, 1993.

[Qui86] J Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.

[Qui93] J Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[Rei80] R Reiter. Default logic. Arti�cial Intelligence, 13:81{132, 1980.

[Sch95] T Schaub. A new methodology for query-answering in default logics via structure-

oriented theorem proving. Journal of Automated Reasoning, 15:95{165, 1995.

[Sch98] T Schaub. The Automation of Reasoning with Incomplete Information: From Semantic

Foundation to E�cient Computation. Springer, 1998.

[Spa86] K Spark-Jones. Synonym and Semantic Classi�cation. Edinburgh Information Tech-

nology Series. Edinburgh University Press, 1986.

[TM98] C Thompson and RMooney. Semantic lexicon acquisition for learning natural language

interfaces. Technical Report TR AI98-273, AI Lab, University of Texas at Austin, 1998.

[Voo94] E Voorhees. Query expansion using lexical-semantic relations. In W Croft and C van

Rijsbergen, editors, Proceedings of the Seventeenth International ACM-SIGIR Confer-

ence on Research and Developement in Information Retrieval, pages 61{69, 1994.

[vR79] C van Rijsbergen. Information Retrieval. Cambridge University Press, 1979.

[WSG96] Y Wilks, B Slator, and L Guthrie. Electric Words: Dictionaries, Computers, and

Meanings. MIT Press, 1996.

[Yar95] D Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods.

In Proceedings of the 32nd Annual Meeting of the Association of Computational Lin-

gustics, pages 189{196, 1995.

23

