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Abstract. Proposals for strategies for dialogical argumentation often focus on sit-
uations where one of the agents wins the dialogue and the other agent loses. Yet
in real-world argumentation, it is common for agents to not involve such zero-sum
situations. Rather, the agents may enter into a dialogue with divergent but not nec-
essarily opposing views on what is important in the outcomes from the argumen-
tation. In order to model this kind of situation, we investigate a decision-theoretic
approach that allows different participants to have different utility evaluations of a
dialogue, and for the proponent to model the opponent’s utility evaluation in order
to optimize the choice of move in the dialogue.
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1. Introduction

In the literature on computational models of dialogical argument, there is an emphasis
on situations where agents take opposing positions on the outcomes from the dialogues,
and the aim of each agent is to win and thereby make the other agent lose. However, for
some dialogues, this may be an over-simplification since it may overlook the fact that
each participant may be seeking different but not necessarily conflicting outcomes.

For example, in a discussion on politics, participant P1 might want to persuade par-
ticipant P2 to accept an argument A1 about the need to raise funding in hospitals, and
participant P2 might want to persuade P1 to accept an argument A2 about the need to
cut government expenditure. Depending on the other arguments and the relationships be-
tween them, it is possible for both agents to accept both A1 and A2, yet participant P1

might have high utility in A1 and low utility in A2 being accepted, and participant P2

might have the reverse.
In this paper, we investigate how by taking into account the utility function of the

opponent, the proponent has a more accurate picture of how the opponent may behave in
a dialogue. This information can be harnessed by the proponent to make better choices of
move. For example, if the proponent wishes to persuade the opponent to accept a claim,
the proponent may attempt to use an argument for that claim for which the opponent
would assign a high utility value. Our approach is to use games in extensive form [11]
and adapt them for argumentation.
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[a1] To get into a healthy habit, you
should join a regular exercise class.

[a2] I am too unfit to
join a class.

[a3] I find exercise
classes boring.

[a4] Even after a few
sessions you will feel
fitter.

[a5] There are classes
for all levels.

[a6] You could try
indoor climbing which
is exciting.

[a7] You could go
with a friend to make
it fun.

Figure 1. A decision tree for an argumentation dialogue. Each arc is labelled with an argument that is posited
in a dialogue. Each branch denotes a dialogue involving exactly three arguments with the first (respectively
second) being posited by the proponent (respectively opponent). Proponent (decision) nodes are solid boxes
and opponent (chance) nodes are dashed boxes.

2. Decision trees for argumentation

We consider a subset of extensive form games that we refer to as decision trees. A de-
cision tree represents all the possible combinations of decisions and outcomes of a se-
quential decision-making problem. In a two-agent problem, where the agents take turns,
a path from the root to any leaf crosses alternately nodes associated with the proponent
(called decision nodes) and nodes associated with the opponent (called chance nodes).

In the case of dialogical argumentation, a decision tree represents all possible dia-
logues. Each path is one possible permutation of the moves permitted by the dialogue
protocol i.e., one possible complete dialogue between the two agents. An edge between
any two nodes n and n′ in the tree is the decision (i.e. dialogue move) that has to be taken
by the corresponding agent in order to transition from node n to node n′.

In this paper, we do not restrict ourselves to a specific dialogue protocol, and so there
are various options for constructing a decision tree. For instance, we could assume that
the only kind of move is the posit of an argument from an argument graph, or we could
allow moves such as queries, concessions, and retractions. It could be non-exhaustive so
as to reflect when one or both agents decide to stop participating in the dialogue. Alter-
natively, it could be exhaustive, for instance in order to directly reflect Dung’s seman-
tics [4], which can be undertaken by adopting the dialogue protocols of Vreeswijk and
Prakken [18] or Caminada [1]. In the examples, we restrict consideration to each move
being a posit of an argument and the participants take turns to present their argument.
Each argument is a label on an arc in the decision tree (as illustrated in Figure 1).

Once the decision tree is built, we select, in each decision node, an action to perform
(e.g., an argument to posit in each state of the debate) from the point of view of the
proponent. This association of a node with the action to perform in this node is called a
policy. The aim is to compute an optimal policy. This is the policy that selects the best
action to perform in each decision node. For this, we use a decision rule, composed of
two parts: one taking account of the values of all children of a decision node and the
other taking account of the values of all the children of a chance node. We consider some
options for decision rules in the following sections.
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Figure 2. A decision tree to illustrate the maximax and maximin decision rules. The node n1 is a decision
node (box with solid line), and the nodes n2 and n3 are chance nodes (box with dashed line). Each arc is
labelled with an argument. For the leaf nodes, the value in brackets is the utility value. For the non-leaf nodes,
the first value in brackets is the value for the Q function for the maximax case, and the second value is the value
for the maximin case. We assume δ = 1. The policy for the maximax case is Π(n1) = a2 and the policy for
the maximin case is Π(n1) = a1.

3. Decision rules for argumentation

We now review two simple decision rules and show how they can be used for our decision
rules for argumentation. In the following definitions, we assume that we have a decision
tree T , a labelling functionL that assigns a label (which represents a move in the dialogue
such as positing a particular argument) to each arc in T , a utility function U (which gives
a utility value to each leaf), and a discount factor δ (which is used to discount the utility
of longer branches). Also, for a utility function U , and a node n in the decision tree
T , we define the AMax and AMin functions as follows, where Children(T, n) is the set
of children for n in T . Essentially, AMax (respectively AMin) gives the children with
maximum (respectively minimum) utility.

AMax(T,U, n) = {n′ ∈ Children(T, n) | for all n′′ ∈ Children(T, n), U(n′) ≥ U(n′′)}
AMin(T,U, n) = {n′ ∈ Children(T, n) | for all n′′ ∈ Children(T, n), U(n′) ≤ U(n′′)}

We start with the maximax rule which is specified in Definition 1 and illustrated in Fig-
ure 2. This rule is applied if the proponent wants to adopt an optimistic behaviour, i.e., to
consider that the opponent wants to maximize the outcome as well. Recall that the out-
come is given from the point of view of the proponent only. The Q function captures the
utility backed-up the tree (i.e. for each non-leaf node, the utility assigned to the node is
based on the maximum utility of its children), and it is decreased by the discount factor.
Note that the maximax policy is not necessarily unique; indeed, none of the proposals
we consider in this paper necessarily give a unique policy.

Definition 1. A maximax policy for (T, L, U, δ) is Π : Nodes(T )→ Nodes(G) defined
as follows using the calculation of the Q : Nodes(T )→ R function.

• If n is a leaf node, then Q(n) = U(n).
• If n is a chance node, and ni ∈ AMax(T,Q, n), then Q(n) = δ ×Q(ni).
• If n is a decision node, and ni ∈ AMax(T,Q, n), then Q(n) = δ × Q(ni), and

Π(n) = L(n, ni).

We now consider the maximin rule which is specified in Definition 2 and illustrated
in Figure 2 [19]. This is the pessimistic selection since the proponent assumes that the
opponent will always try to minimize the outcome. It can be related to a two-player
zero-sum game where a negative outcome for one player is positive for the other.
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Figure 3. A decision tree with the bimaximax values passed back up the tree. Each node n in the decision
tree has the biparty utility in the form x/y where x is the backed-up proponent utility Qp(n) and y is the
backed-up opponent utility Qo(n). So at a proponent node, the child with x/y such that x is largest is chosen,
whereas at an opponent node, the child with x/y such that y is largest is chosen.

Definition 2. A maximin policy for (T, L, U, δ) is Π : Nodes(T )→ Nodes(G) defined
as follows using the calculation of the Q : Nodes(T )→ R function.

• If n is a leaf node, then Q(n) = U(n).
• If n is a chance node, and ni ∈ AMin(T,Q, n), then Q(n) = δ ×Q(ni).
• If n is a decision node, and ni ∈ AMax(T,Q, n), then Q(n) = δ × Q(ni), and

Π(n) = L(n, ni).

In previous work, we have shown how dialogical argumentation can be optimized
by the application of decision rules [9]. The outcome of each branch of a dialogue can
be judged, the utility of that outcome evaluated, and the optimal policy determined. The
outcome of a branch can be judged in various ways including in terms of belief in a
persuasion goal at the leaf or the set of accepted arguments at the leaf. For the latter,
an abstract argument graph can be constructed from the moves in the dialogue, and then
Dung’s dialectical semantics (as defined in [4]) can be applied to the resulting graph.

4. Biparty decision theory

In biparty decision theory, we assume that each agent i has a utility function U i. The aim
is for U i to reflect what agent i would regard as the benefit of each possible outcome
(i.e. each leaf of the decision tree). To use this, we consider the bimaximax decision rule
in Definition 3 and illustrate it in Figure 3. This assumes that we have a utility function
Up for the proponent and a utility function Uo for the opponent. The bimaximax rule is
a generalization of the maximax rule where the Up is maximized at a decision node, and
Uo is maximized at a chance node.

Definition 3. A bimaximax policy for (T, L, Up, Uo, δ) is Π : Nodes(T )→ Nodes(G)
defined as follows using the calculation of the Qp : Nodes(T ) → R and Qo :
Nodes(T )→ R functions.

• If n is a leaf node, then Qp(n) = Up(n) and Qo(n) = Uo(n).
• If n is a chance node, and ni ∈ AMax(T,Qo, n), then Qo(n) = δ ×Qo(ni) and
Qp(n) = δ ×Qp(ni).

• If n is a decision node, and ni ∈ AMax(T,Qp, n), thenQo(n) = δ×Qo(ni) and
Qp(n) = δ ×Qp(ni) and Π(n) = L(n, ni).



n1 (3/6)
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[a1] You can join the
office daily walk to
get fit.

[a2] You can join the
office daily run to get
fit.

[a3] I will join
because walk-
ing with my col-
leagues will be
fun.

[a4] I will go
walking with
my colleagues
but only once a
week.

[a5] I would
rather miss the
pleasure of so-
cializing than
suffer a run.

[a6] I will join
because running
is a great way to
get fit.

[a7] I would find it
very embarrassing to
be sweaty in front of
my colleagues, but I
will think about it.

Figure 4. A decision tree for Example 1 with the bimaximax values passed back up the tree. Each node n in
the decision tree has the biparty utility in the form x/y where x is the backed-up proponent utility Qp(n) and
y is the backed-up opponent utility Qo(n). Each arc is labelled with an argument that is posited in a dialogue.
Each branch denotes a dialogue involving exactly two arguments with the first and third (respectively second)
being posited by the proponent (respectively opponent).

Example 1. Consider the arguments (which are presented as enthymemes and so involve
some implicit premises and/or claims) that appear in the decision tree in Figure 4. We
suppose that each branch is a possible dialogue according to an assumed protocol. From
the point of view of the proponent (who wants the opponent to increase exercise), the
utility could be the following.

• n4 Having the opponent agree to a daily walk is a good outcome (Up(n4) = 6).
• n5 Having the opponent disagree to a daily run but agree to a weekly walk is

positive but not as good as agreeing to a daily walk (Up(n5) = 3).
• n6 Having the opponent disagree to a run and therefore disagreeing to do exercise

is the worst outcome (Up(n6) = −8).
• n7 Having the opponent agree to a daily run is the best outcome (Up(n7) = 9).
• n8 Having the opponent reject a daily run, but agree to think about it, is a neutral

outcome (Up(n8) = 0).

From the point of view of the opponent (who is mildly interested in improving his/her
health by exercise but does not want to do much exercise and in addition likes socializ-
ing), the utility could be the following.

• n4 Agreeing to the opportunity for socializing, despite doing a walk daily, is a
reasonable good outcome (U0(n4) = 4).

• n5 Agreeing to a weekly walk is better than to a daily walk (U0(n5) = 6).
• n6 Disagreeing to a daily run means that there is no exercise is done and so the

desire to do a little exercise is not met (U0(n6) = −1).
• n7 Agreeing to a daily run would be a bad outcome (U0(n7) = −8).
• n8 Disagreeing to a daily run but agreeing to think about it is a neutral outcome

(U0(n8) = 0).

So the participants agree that n4 and n5 have positive utility (though there is some differ-
ence in the actual values assigned), n6 has negative utility (though with substantial dif-
ference in the actual value assigned), and n8 has zero utility. The participants completely



3/9 6/8 2/7 2/6 8/7 1/6 2/7 1/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8

3/9 2/7 8/7 1/8 2/8 2/8 2/8 2/8

n1 = 3/9 n2 = 8/7 n3 = 2/8 n4 = 2/8

8/7 2/8

8/7

Figure 5. A decision tree with the bimaxilocal values passed back up the tree. Each node n in the decision tree
has the biparty utility in the form x/y where x is the backed-up proponent utilityQp(n) and y is the backed-up
opponent utilityQo(n). So at a proponent node, the child with x/y such that x is largest is chosen, whereas at
an opponent node, the child with arc with label with highest utility (according to the opponent utility function)
is chosen. For this example, suppose Uo(n2) > Uo(n1) and Uo(n3) > Uo(n4).

disagree on n7. Given these considerations by the participants, we obtain the backed-up
values given in the decision tree in Figure 4.

We now consider a variant of the bimaximax decision rule called the bimaxilocal
decision rule in Definition 4 and illustrate it in Figure 5. At a chance node, the rule
assumes that the opponent chooses the action that maximizes its utility at that step. So
it assumes that the opponent makes a local choice and does not consider the utility of
the whole branch. For argumentation, it captures an agent who just decides what to say
without considering the wider ramifications.

Definition 4. A bimaxilocal policy for (T, L, Up, Uo, δ) is Π : Nodes(T )→ Nodes(G)
defined as follows using the calculation of the Qp : Nodes(T )→ R function.

• If n is a leaf node, then Qp(n) = Up(n).
• If n is a chance node, and ni ∈ AMax(T,Uo, n), then Qp(n) = δ ×Qp(ni).
• If n is a decision node, and ni ∈ AMax(T,Qp, n), then Qp(n) = δ × Qp(ni)

and Π(n) = L(n, ni).

The bimaxilocal policy models an opponent who provides its highest utility counter-
argument to each argument by the proponent, but does not think in terms of choosing its
counterarguments based on what further arguments the proponent may put forward. This
may be useful for modelling an agent who is behaving intelligently within a conversa-
tion but not behaving strategically. As an example, consider a doctor (proponent) trying
to persuade a patient (opponent) to give up smoking. The patient may choose the best
arguments to posit at each stage of the dialogical but might not be aiming to maximize
its utility from the overall dialogue.

5. Properties of biparty decision rules

We can show that the bimaximax decision rule subsumes the maximax decision rules
by choosing the biparty utility appropriately. For instance, we can show this when the
utility for the opponent and the utility for the proponent are the same for each outcome.
Similarly, we can show that the bimaximax decision rule subsumes the maximin decision
rules by choosing the biparty utility appropriately. For instance, we can show this when



the utility for the opponent is the reciprocal of the utility for the proponent for each
outcome. Note, all propositions and proofs are available in the proof appendix2.

The maximax rule captures the bimaximax rule in the sense that we can find a utility
function to use with the maximax rule that gives the same policy as a bimaximax policy.
However, there is no simple way of obtaining this utility function. Indeed, it seems to
call for applying the bimaximax rule to the decision tree in order to reverse engineer an
appropriate utility function.

In the definitions of the bimaximax and bimaxilocal policies, we use the function
Qp to identify the backed-up utility for the proponent. So for a policy Π, the value forQp

at the root is the utility that the proponent would expect to get by following the policy.
We call this value the gain of the policy Π. For example, in Figure 3, the gain is 3, and
in Figure 5, the gain is 8. In the following results, we consider gain.

Proposition 1. Let Π1 and Π2 be bimaximax policies of (T, L, Up, Uo, δ), and let γ1
(respectively γ2) be the gain of Π1 (respectively Π2). If Up and Uo are injective functions
(i.e. for each function, no two nodes have the same utility value). then γ1 = γ2, else it is
not guaranteed that γ1 = γ2.

Proposition 2. If Π1 is a bimaximax policy of (T, L, Up, Uo, δ), and Π2 is a bimaxilocal
policy of (T, L, Up, Uo, δ), and γ1 (respectively γ2) is the gain of Π1 (respectively Π2),
then it is not necessarily the case that γ1 ≤ γ2 and or that γ1 ≥ γ2.

Considering gain is important if we want to be sure of what we can get out of a
dialogue. It is also important if we want to consider the appropriateness of a decision
rule for taking account of a particular opponent. For instance, as the distance between
Up and Uo grows, the maximax policy (which just uses Up) tends to be over-optimistic
in gain with respect to the bimaximax decision rule.

6. Discussion

Most proposals for dialogical argumentation focus on protocols (e.g., [12,13,5,2]),
though there is increasing interest in strategies (see [17] for a review). Game theoretic
analyses have been applied to argumentation as a one step process where all arguments
are presented and then evaluated, rather than in a dialogue where arguments are pre-
sented over a number of steps [14]. Mechanism design has been applied to dialogical
argumentation with a focus on issues such as lying [6]. There are proposals for using
probability theory to select a move based on a probabilistic model of the opponent (e.g.
[15,7,10,8]). In previous work [9], we have shown how classical decision rules such as
maximax, maximin, Hurwicz, and Laplace, can be used for optimizing the choice of
move in dialogical argumentation taking into account the degree to which the opponent
is being adversarial and/or the degree to which the model of the opponent is uncertain,
though it does not take the utility of the opponent into account. Modelling the utility of
the opponent has been considered in [15] using an adaptation of the M∗ algorithm by
[3], and in [16] using the notion of a subgame perfect equilibrium. There are further op-
tions within decision theory and game theory for modelling the utility of the opponent in

2For proof appendix, see http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/bipartyappendix.pdf



games in extensive form, and that potentially these could be harnessed in argumentation.
Taking a general approach, as done in this paper, without committing to a specific set of
moves or protocol, may allow us to identify important properties or behaviour for a wide
variety of argumentation systems.
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