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Abstract. Recently, there has been a proposal by Dung and Thang and by Li et
al to extend abstract argumentation to take uncertainty of arguments into account
by assigning a probability value to each argument, and then use this assignment to
determine the probability that a set of arguments is an extension. In this paper, we
explore some of the assumptions behind the definitions, and some of the resulting
properties, of the proposal for probabilistic argument graphs.
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1. Introduction

Recent developments of abstract argumentation, that take into account the uncer-
tainty of arguments, have been presented including probabilistic argument graphs
[DT10,LON11]. Whilst the approach of probabilistic argument graphs is a useful devel-
opment of abstract argumentation, allowing for better modelling of some real-world sit-
uations, its nature has been largely unexplored. In order to address this, we investigate in
this paper the foundations of probabilistic argument graphs by providing a clarification
of some of the assumptions behind the original definitions and by providing a number
of properties that hold for it. We also extend the approach by qualifying the certainty of
inferences (i.e. arguments) from probabilistic argument graphs.

2. Probabilistic argument graphs

In this section, we review probabilistic argument graphs [DT10,LON11].

Definition 1. A probabilistic argument graph is a tuple (A,R, p) where (A,R) is an
argument graph and p : A → [0, 1] is a probability function over arguments.

In general, there are no further constraints on the probability assignment beyond
Definition 1. So, for example, it is possible for every argument in a graph to be assigned
a probability of 1, in which case we will return to Dung’s original proposal. Similarly, it
is possible for any or every argument in a graph to be assigned a probability of 0.



Let G = (A,R, p) be an probabilistic argument graph, and let A′ ⊆ A. The
marginalization of R to A′, denoted R⊗A′, is the subset of R involving just the argu-
ments inA′ (i.e.R⊗A′ = {(A,B) ∈ R | A,B ∈ A′}). IfG′ = (A′,R′) is an argument
graph, then G′ is a spanning subgraph of G, denoted G′ v G, iff A′ ⊆ A and R′ is
R⊗A′. For simplicity, we will refer to a spanning subgraph as a subgraph. Using these
definitions, the probability distribution over subgraphs is obtained as follows.

Definition 2. Let G = (A,R, p) be probabilistic argument graph and G′ = (A′,R′)
be a subgraph such that G′ v G. The probability of subgraph G′, denoted p(G′), is
(
∏
α∈A′ p(α))× (

∏
α∈A\A′(1− p(α)).

For a probabilistic argument graph G = (A,R, p), a set of arguments Γ ⊆ A,
and G′ = (A′,R′) where G′ v G, G′  Γ denotes that Γ is an admissible set in
G′ and G′ X Γ denotes that Γ is an X extension of G′ where X = {co, pr, gr, st},
and co denotes complete semantics, pr denotes preferred semantics, st denotes stable
semantics, and gr denotes grounded semantics. When G′  Γ holds, we say that G′

entails Γ. The set of subgraphs that entail a set of arguments Γ, denoted QX(Γ), is
{G′ v G | G′ X Γ}.

The probability that a set of arguments is admissible, denoted p(Γ), is the sum of
the probability of each subgraph for which Γ is admissible.

Definition 3. Let G = (A,R, p) be a probabilistic argument graph and let Γ ⊆ A. The
probability that Γ is admissible is

∑
G′∈Q(Γ) p(G

′).

Example 1. Consider the argument graph in Figure 1a where p(a) = 1, p(b) = 1,
p(c) = 0.5, and p(d) = 0.5. So there are four subgraphs with non-zero probability.
These are G1, G2, G3, and G4, as shown in 1. Each has probability 1/4. The admissible
sets for each subgraph is given below.

Subgraph Admissible sets
G1 {a, b, d}, {a, b}, {a, d}, {b, d}, {a}, {b}, {}
G2 {a, b}, {a}, {b}, {}
G3 {a, b, d}, {a, b}, {a, d}, {b, d}, {a}, {b}, {d}, {}
G4 {a, b}, {a}, {b}, {}

As a result, there are eight admissible sets with non-zero probability to consider: p(∅) =
1, p({a}) = 1, p({b}) = 1, p({d}) = 1/4, p({a, b}) = 1, p({a, d}) = 1/2, p({b, d}) =
1/2, and p({a, b, d}) = 1/2.

The probability that a set of arguments is anX extension, denoted p(ΓX), is the sum
of the probability of each subgraph for which Γ is an X extension.

Definition 4. Let G = (A,R, p) be a probabilistic argument graph and let Γ ⊆ A. The
probability that Γ is an X extension is

∑
G′∈QX(Γ) p(G

′).

Example 2. We consider a scenario involving a clinician considering two diagnoses for
a patient given by arguments a and b respectively. These arguments rebut each other
(assuming that normally only one diagnosis should be associated with a disorder). The
clinician also has a reason, captured by counterargument c, to doubt the diagnosis in
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Figure 1. Spanning subgraphs for Examples 1.

argument a, and she has a reason, captured by counterargument d, to doubt the diag-
nosis in argument b. This is formalized in the following argument graph together with
the probability function p where p(a) = 0.7, p(b) = 0.2, p(c) = 0.3, and p(d) = 0.8.
The subgraphs are presented in Table 1. As a result, there are eight grounded exten-
sions with non-zero probability to consider: p(∅gr) = 0.0053, p({a}gr) = 0.0784,
p({b}gr) = 0.0084, p({c}gr) = 0.048, p({d}gr) = 0.168, p({a, d}gr) = 0.392,
p({c, b}gr) = 0.0036, and p({c, d}gr) = 0.24.

a bc d

We see that the most likely grounded extension is {a, d} with a probability of 0.392,
and the next most likely grounded extension is {c, d} with a probability of 0.24. For
the original argument graph, the grounded extension is {c, d}. So with the use of the
probability function, the belief in a and the lack of belief in cmeans that {a, d} is the most
probable grounded extension, and this does include one of the diagnoses. In contrast,
using Dung’s original definition, we get {c, d} which just captures the doubts involved.

So from [DT10,LON11], each argument in a graph can be assigned a value in the
unit interval, which gives a probability distribution over the subgraphs of the argument
graph, and this can then be used to give a probability assignment for a set of arguments
being an admissible set or extension of the argument graph.

3. Probabilistic independence

There is an issue with respect to the assumption of independence of arguments when
calculating the probability distribution over the spanning subgraphs (i.e. Definition 2).
The proposals for probabilistic argument graphs [DT10,LON11] do not address this issue
and so we attempt to address this now.

For this, we introduce the justification perspective on the probability of an argu-
ment: For an argument α in a graphG, with a probability assignment p, p(α) is treated as
the probability that α is a justified point (i.e. each is a self-contained, and internally valid,
contribution) and therefore should appear in the graph, and 1 − p(α) is the probability
that α is not a justified point and so should not appear in the graph. This means the prob-
abilities of the arguments being justified are independent (i.e. knowing that one argument
is a justified point does not affect the probability that another is a justified point).



Subgraph Probability of Grounded Preferred
subgraph extension extensions

G1 c→ a↔ b← d 0.0336 {c, d} {c, d}
G2 c→ a↔ b 0.0084 {b, c} {b, c}
G3 a↔ b← d 0.0784 {a, d} {a, d}
G4 a↔ b 0.0196 {} {a}, {b}
G5 c→ a d 0.1344 {c, d} {c, d}
G6 c→ a 0.0336 {c} {c}
G7 a d 0.3136 {a, d} {a, d}
G8 a 0.0784 {a} {a}
G9 c b← d 0.0144 {c, d} {c, d}
G10 c b 0.0036 {c, b} {c, b}
G11 b← d 0.0336 {d} {d}
G12 b 0.0084 {b} {b}
G13 c d 0.0576 {c, d} {c, d}
G14 c 0.0144 {c} {c}
G15 d 0.1344 {d} {d}
G16 0.0336 {} {}

Table 1. Subgraphs with probability of subgraphs and extensions for Example 2.

To illustrate the justification perspective, we consider logical arguments. If we have
a knowledgebase containing just two formulae {q,¬q}, we can construct arguments
a1 = 〈{q}, q〉, and a2 = 〈{¬q},¬q〉. The rebuttal relation holds so that the arguments
attack each other. In terms of classical logic, it is not possible for both arguments to be
true, but each of them is a justified point (i.e. each is a self-contained, and internally
valid, contribution given the knowledgebase). So even though logically a1 and a2 are not
independent (in the sense that if one is known to be true, then the other is known to be
false), they are independent as justified points. This means we can construct an argument
graph with both arguments appearing. Furthermore, we can use the probability assign-
ment to each argument as reflecting the confidence that the argument makes a justified
point. If each of a1 and a2 is assigned 1, then both are treated as fully justified points (and
so we handle the argument graph using Dung’s original definition). But if the assignment
is less than 1 for either argument, then there is some explicit doubt that the argument is
a justified point, and therefore there is some doubt that it should appear in the argument
graph (in which case we can handle the uncertainy as a probabilistic argument graph).

4. Sample spaces

The proposals for probabilistic argument graphs [DT10,LON11] do provide the follow-
ing result, but they do not then investigate the nature of the probability distribution over
subgraphs as a probability space. We attempt to address this shortcoming in this section.

Proposition 1. For any G = (A,R, p),
∑
G′vG p(G

′) = 1

So we can view G = {G′ v G} as a sample space. This means we can assign a
probability value to each subgraph G′ ∈ G so that the probabilities sum to 1.



Furthermore, for a graph G with n nodes, each element of the sample space (i.e.
each subgraph G′ v G) can be viewed as a conjunction of the form x1 ∧ ... ∧ xn, where
for each conjunct xi, if the node αi is in G′, then xi is αi, otherwise xi is αi. We call
x1 ∧ ... ∧ xn the conjunctive form of G′. Therefore, the probability distribution over G
is equivalent is the joint distribution over the conjunctive form of each subgraph in G.
Using this correspondence, we can obtain the probability of any argument as a marginal
distribution.

Example 3. Let A = {a, b}. The joint distribution is an assignment to each of p(a ∧ b),
p(a∧b), p(a∧b), and p(a∧b) such that these sum to 1. The marginal for p(a) is p(a∧b)
+ p(a ∧ b) and for p(b) is p(a ∧ b) + p(a ∧ b)

So calculating the marginal distribution using the joint distribution is the same as us-
ing the probability distribution over G (i.e. p(α) =

∑
G′vG s.t. α∈Nodes(G′) p(G

′) where
α is an argument).

Example 4. Consider the argument graph below. Let G1 be this graph, G2 be the graph
containing a, G3 be the graph containing b, and G4 be the empty graph. Suppose we
have a probability distribution over subgraphs such that p(G1) = 0.09, p(G2) = 0.81,
p(G3) = 0.01, and p(G4) = 0.09. So p(a) = p(G1)+p(G2) and p(b) = p(G1)+p(G3).

a b

However, as shown next, it is not the case that any probability distribution over
subgraphs would give us an appropriate probability function over arguments.

Example 5. To illustrate how a probability distribution over subgraphs is not neces-
sarily a probability function over arguments. Consider the argument graph G1 and its
subgraphs as given in Example 4. Suppose we have a probability distribution over sub-
graphs such that p(G1) = 0, p(G2) = 0.5, p(G3) = 0.5, and p(G4) = 0. So p(G1)
+ p(G2) + p(G3) + p(G4) = 1. Then we obtain p(a) = 0.5, and p(b) = 0.5, as
the marginal distributions. However, if we use these values with Definition 2, we get
p(G1) = 0.25, p(G2) = 0.25, p(G3) = 0.25, and p(G4) = 0.25, which contradicts the
original probability distribution over subgraphs.

So if we start with the sample space G = {G′ v G}, and we want to find a probabil-
ity distribution over G that is consistent with the framework given in [DT10,LON11], and
summarized in Section 2, then we need to restrict the choice of probability distribution
over G to being a regular distribution as defined next.

Definition 5. Let G = {G′ v G}, where G has n nodes, and let P : ℘(G)→ [0, 1]. p is
a regular distribution over G iff for eachG′ ∈ G, p(x1∧ ...∧xn) = p(x1)× ...×p(xn),
where x1 ∧ ... ∧ xn is the conjunctive form of G′.

The probability distribution over G given in Example 4 is a regular distribution,
whereas that given in Example 5 is not a regular distribution.

Proposition 2. LetG = (A,R, p) be a probabilistic argument graph and let G = {G′ v
G}. p is a probability function over A iff p is a regular distribution over G



The above result means that we can start with a sample space, viz. G, and choose a
regular distribution over G, knowing that this would be a probability function over the
arguments in the argument graph.

5. Probability functions over admissible sets

Whilst the proposals for probabilistic argument graphs [DT10,LON11] do not explicitly
consider the probability of admissible sets, it is useful to consider the properties of them.
For this, we require some further subsidiary definitions. For a probabilistic argument
graph G = (A,R, p), p is maximal iff for for all α ∈ A, p(α) = 1, p is minimal iff for
for all α ∈ A, p(α) = 0, and p is uniform iff there is a k ∈ [0, 1] such that for for all
α ∈ A, p(α) = k.

Proposition 3. If G = (A,R, p) is a probabilistic argument graph such that p is maxi-
mal, then p(G) = 1.

So we see that we recover Dung’s original definitions and results by assuming all
arguments have probability 1.

Proposition 4. If G = (A,R, p) is a probabilistic argument graph such that p is maxi-
mal, and Γ ⊆ A, then Γ is admissible iff p(Γ) = 1.

At the other extreme, if all the arguments in a probabilistic argument graph G have
probability of 0, then the empty subgraph has probability 1, and so the only admissible
set is the empty set (with probability 1).

We may regard the following as postulates that should hold for the probability p(Γ)
that Γ is admissible.

• (A0) p(∅) = 1.
• (A1) if Γ is not conflictfree, then p(Γ) = 0.
• (A2) p is maximal iff for all Γ ⊆ A, p(Γ) = 1 or p(Γ) = 0.
• (A3) p(Γ) = 1 iff ∀G′ v G (p(G′) = 0 or G′  Γ).
• (A4) p(Γ1) ≤ p(Γ2) if Q(Γ1) ⊆ Q(Γ2).
• (A5) If Q(Γ1) ⊆ Q(Γ2), then p(Γ2) = p(Γ1) + p(G1) + ...+ p(Gi),

where Q(Γ2) \Q(Γ1) = {G1, ..., Gi}.
• (A6) If A is conflictfree, and Γ ⊆ A, then p(Γ) =

∏
α∈Γ p(α)

We can explain these postulates as follows: (A0) Since the empty set is always an
admissible set, the probability of it is 1; (A1) Since a set that is not conflictfree can never
be an admissible set, the probability of it is 0; (A2) If the probability of each argument
is 1, then there is just one subgraph to consider, which is the original graph, and so each
subset of argument is either an admissible set (with probability 1) or not an admissible set
(with probability 0); (A3) The probability of a set being admissible is 1 iff all subgraphs
are such that the subgraph entails that set or the subgraph has zero probability; (A4) The
probability of a set being admissible increases monotonically as the membership of the
subgraphs entailing it increases; (A5) If the set of subgraphs entailing Γ1 is a subset
of those entailing Γ2, then the extra probability assigned to Γ2 is just the sum of the
probability of the extra subgraphs that entail Γ2; and (A6) If the set of all arguments is



conflictfree, then the probability of a set being admissible is the product of the probability
of the arguments in the set. As shown next, the postulates are met by Definition 3.

Proposition 5. Given a probabilistic argument graphG = (A,R, p), a set of arguments
Γ ⊆ A, the definition for p(Γ) given in Definition 3 satisfies the postulates A0 to A6.

Proof. Assume the probability function p satisfies Definition 3. (A0) For each G′ v G,
the definition of admissible set implies that G′  ∅ holds. Therefore, from Proposition 1,
we have p(∅) = 1. (A1) Assume Γ is not conflictfree. Therefore, from the definition of
admissible set, there is no graph G′ such that G′  Γ. Therefore,

∑
G′∈Q(Γ) p(G

′) = 0,
and hence we have p(Γ) = 0. (A2) Assume the probability of each argument in A is
1. Therefore by Proposition 3, p(G) = 1, and for all G′ < G, p(G′) = 0. Therefore,
p(Γ) = 1 iff G  Γ, and p(Γ) = 0 iff G 6 Γ. Therefore, for all Γ ⊆ A, p(Γ) =
1 or p(Γ) = 0. (A3) By Definition 3, p(Γ) = 1 iff

∑
G′∈Q(Γ) p(Γ) = 1. Also as a

corollary of Proposition 1,
∑
G′∈Q(Γ) p(Γ) = 1 iff ∀G′ v G (p(G′) = 0 or G′  Γ).

Therefore, p(Γ) = 1 iff ∀G′ v G (p(G′) = 0 or G′  Γ). (A4) Assume Q(Γ1) ⊆
Q(Γ2). Therefore, by Definition 3, p(Γ2) ≤ p(Γ1). (A5) Assume Q(Γ1) ⊆ Q(Γ2). Let
Q(Γ2) \Q(Γ1) = {G1, ..., Gi} and Q(Γ1) = {Gi+1, ..., Gi+j}. Therefore, by Definition
3, p(Γ1) = p(Gi+1) + ... + p(Gi+j), and p(Γ2) = p(G1) + ... + p(Gi) + p(Gi+1) +
... + p(Gi+j). Therefore, p(Γ2) = p(Γ1) + p(G1) + ... + p(Gi). (A6) Assume A is
conflictfree, and Γ ⊆ A. Also, for any G′ v G, where G′ = (A′,R′, p), let Nodes(G′)
denote A′. Hence, for any G′ v G, we have G′  Γ iff Γ ⊆ Nodes(G′). So from
Definition 3, we have p(Γ) =

∑
G′vG s.t. Γ⊆Nodes(G′) p(G

′). Then using Definition 2 to
substitute for p(G′),

p(Γ) =
∑

G′vG s.t. Γ⊆Nodes(G′)

 ∏
α∈Nodes(G′)

p(α)×
∏

α∈A\Nodes(G′)

(1− p(α))


Let Φ = A \ Γ, and so we can rewrite the above to the following.

p(Γ) =
∑
Ψ⊆Φ

 ∏
α∈Γ∪Ψ

p(α)×
∏

α∈A\(Γ∪Ψ)

(1− p(α))


Therefore, we can rewrite the above to obtain p(Γ) =

∏
α∈Γ p(α).

The following is a representation result for the probability of admissibility.

Proposition 6. For a probabilistic argument graph G = (A,R, p), p satisfies Definition
3 iff p satisfies A1, A5 and A6.

Proof. (=>) Shown in Proposition 5. (<=) Assume A1, A5 and A6. Consider a prob-
abilistic argument graph G = (A,R, p), and a set of arguments Γ ⊆ A. We use three
cases to show the result. (Case 1) In this case, Γ is conflictfree and A is conflictfree.
So from A6, p(Γ) = (

∏
α∈Γ p(α)) × (

∏
α∈A\Γ(1 − p(α)). Then we can use the proof

in Proposition 5 (A6), since each step is equal to the previous step. Therefore, we can
show that p(Γ) =

∑
G′∈Q(Γ) p(G

′) in this case. (Case 2) In this case, Γ is conflict-
free and A is not conflictfree. From A1, p(A) = 0. Therefore, Q(A) = ∅. Since
Q(Γ) 6= ∅, Q(A) ⊂ Q(Γ). Therefore, Q(Γ) \ Q(A) = Q(Γ). Therefore, by A5, if



Q(Γ) = {G1, ..., Gi}, then p(Γ) = p(G1) + ...+ p(Gi). Therefore,
∑
G′∈Q(Γ) p(G

′) in
this case. (Case 3) In this case, Γ is not conflictfree. So from A1, p(Γ) = 0. Also, by the
definition of admissible set, Q(Γ) = ∅. So, p(Γ) =

∑
G′∈Q(Γ) p(G

′) in this case.

In this section, we have shown some desirable properties hold for the probability
function for admissible sets.

6. Probability functions over extensions

The proposals for probabilistic argument graphs [DT10,LON11] do introduce the idea
of a probability function over extensions (i.e Definition 4), but they do not consider
the properties of the definition. To address this, we start by proposing the following as
constraints that should hold for any way of calculating p(ΓX).

• (B1) If p is maximal, then for all Γ ⊆ A, p(ΓX) = 1 or p(ΓX) = 0.
• (B2) If p is uniform and not maximal, then for all Γ ⊆ A, p(ΓX) < 1.
• (B3) For all Γ ⊆ A, p(Γgr) ≤ p(Γpr), and p(Γpr) ≤ p(Γco).
• (B4) For all Γ ⊆ A, p(ΓX) ≤ p(Γ).

We explain these postulates as follows: (B1) If the probability of each argument is
1, then there is just one subgraph to consider, which is the original graph, and so each
subset of argument is either an admissible set (with probability 1) or not an admissible
set (with probability 0); (B2) If p is uniform and not maximal, then each subgraph is
possible, and so no extension has a probability of 1; (B3) The probability that Γ is a
complete extension is greater than it being a preferred extension, which in turn is greater
than it being a grounded extension; and (B4) The probability that Γ is an admissible
set is greater than the probability that Γ is an extension. We will show that the above
constraints are met by the definition.

Proposition 7. Given a probabilistic argument graphG = (A,R, p), a set of arguments
Γ ⊆ A, and X ∈ {co, pr, gr, st}, the definition for p(ΓX) given in Definition 4 satisfies
B1 to B4.

Proof. Assume p(ΓX) satisfies Definition 4. (B1) Assume p is maximal. Therefore, for
all α ∈ A, p(α) = 1. Therefore, p(G) = 1 and for all G′ < G, p(G′) = 0. There-
fore, for all Γ ⊆ A, if G X Γ, then p(ΓX) = 1, else p(ΓX) = 0. (B2) Assume p
is uniform and not maximal, Therefore, for all α ∈ A, p(α) < 1. Therefore, for all
G′ v G, 0 < p(G′) < 1. Also, for each Γ ⊆ A, there is a G′ v G such that not all
the arguments in Γ appear as nodes in G′. Therefore, QX(Γ) ⊂ {G′ | G′ v G} There-
fore,

∑
G′∈QX(Γ) p(G

′) <
∑
G′vG p(G

′). Hence, for all Γ v A, p(ΓX) < 1. (B3) For
all G′ v G, G′ gr Γ implies G′ pr Γ, and G′ pr Γ implies G′ co Γ. Therefore,∑
G′∈Qgr(Γ) p(G

′) ≤
∑
G′∈Qpr(Γ) p(G

′), and
∑
G′∈Qpr(Γ) p(G

′) ≤
∑
G′∈Qco(Γ) p(G

′).
Therefore, p(Γgr) ≤ p(Γpr), and p(Γpr) ≤ p(Γco). (B4) For all G′ v G, and for all X ∈
{co, pr, gr, st}, G′  Γ implies G′ X Γ. So,

∑
G′∈QX(Γ) p(G

′) ≤
∑
G′∈Q(Γ) p(G

′),
and hence, p(ΓX) ≤ p(Γ).

The following results show that by constraining the probability function, we can ob-
tain extensions with unit probability. The first of these results shows that whatever argu-



ment graph we start with, we can choose a probability function that lets any conflictfree
set be an extension with probability of 1.

Proposition 8. For all argument graphs G = (A,R), for all Γ ⊆ A, and for all
X ∈ {co, pr, gr, st}, if Γ is conflictfree, then there is a probability function p, such that
(A,R, p) is a probabilistic argument graph and p(ΓX) = 1.

By disbelieving at least one argument in each cycle, we can ensure that there is
a non-empty extension with non-zero probability. So by making some commitment to
some arguments, cycles can be broken.

Proposition 9. For all probabilistic graphs (A,R, p), where A 6= ∅ and p is not mini-
mal, if for all cycles (α1, α2), ..., (αk, α1) ∈ R, there is a αi ∈ {α1, ..., αn} such that
p(αi) = 0, then there is a Γ ⊆ A such that p(ΓX) > 0 and Γ 6= ∅.

Proof. Assume that for all cycles (α1, α2), ..., (αk, α1) ∈ R, there is a αi ∈ {α1, ..., αn}
such that p(αi) = 0. Therefore, for allG′ v G, if p(G′) > 0, thenG′ contains no cycles.
Therefore, for allG′ v G, and for allX ∈ {co, pr, gr, st}, if p(G′) > 0, there is a Γ ⊆ A
such that G′ X Γ. Therefore, for all X ∈ {co, pr, gr, st}, there is a Γ ⊆ A such that
p(ΓX) > 0 and Γ 6= ∅.

In this section, we have introduced postulates for the probability of an extension,
and we have considered some of the circumstances under which the probability function
or extension can be chosen to meet certain conditions such as a non-zero probability.

7. Probability function over inferences

The proposals for probabilistic argument graphs [DT10,LON11] do not consider the
probability of “inferences”. Yet given a probabilistic argument graph G = (A,R, p),
and an argument α ∈ A, we can calculate the probability that α is an X inference (i.e.
the probability that argument α is in anX extension), which we denote by p(αX), where
X ∈ {co, pr, gr, st}. To address this, we define the probability of a formula being in an
X extension as the sum of the probabilities for the subgraphs that entail an X extension
containing the formula, and this requires the following subsidiary definitions: For an ar-
gument α ∈ A, the set of subgraphs that imply an argument is an X extension, denoted
IX(α), is I(α) = {G′ v G | G′  Γ and α ∈ Γ}.

Definition 6. Let G = (A,R, p) be a probabilistic argument graph. For an argument α,
and X ∈ {co, pr, gr, st}, the probability that it is in an X extension, denoted p(αX), is∑
G′∈IX(α) p(G

′).

As we have seen in the previous examples, the same argument can appear in multiple
extensions with non-zero probability. So the above definition for probability of inferences
allows this information to be drawn out.

Example 6. Consider the following argument graph where p(a) = 1, p(b) = 0.5, and
p(c) = 0.5. There are four subgraphs, G1 to G4, with non-zero probability. Each has
probability 0.25. G1 is the graph, G2 is the subgraph composed of a and c, G3 is the
subgraph composed of a and b, and G4 is the subgraph composed of a. The grounded



extension of G1 and G2 is {a, c}, the grounded extension of G3 is {}, and the grounded
extension of G4 is {a}. Therefore p(agr) = 0.75, p(bgr) = 0, and p(cgr) = 0.5.

a b c

We now propose the following as constraints that should hold for calculating p(αX).
For this, we require the the following subsidiary definitions: For an argument α, we say
that: α is self-attacking when α is an attacker of α; α is unattacked when there is no
attacker of α; and α is undefended when there is an attacker β of α but there is no
attacker γ of β.

• (C1) If α is self-attacking, then p(αX) = 0.
• (C2) If α is unattacked, then p(αX) = p(α).
• (C3) If α is undefended, then p(αX) ≤ p(α).
• (C4) For all α ∈ A, p(αgr) ≤ p(αpr), and p(αpr) ≤ p(αco).
• (C5) For all α ∈ A, p(αX) ≤ p({α}).

We explain these postulates as follows: (C1) If α is self-attacking, there is no ex-
tension containing α, and so it has zero probability; (C2) If α is unattacked, then the
probability that it is in an extension is equal to its original probability (dialectical con-
sistency); (C3) If α is undefended, then the probability that it is in an extension is less
than its original probability (dialectical diminution); (C4) The probability that α is in a
complete extension is greater than being in a preferred extension, which in turn is greater
than being in a grounded extension; and (C5) The probability that {α} is an admissible
set is greater than α is in an extension.

Proposition 10. Given a probabilistic argument graph G = (A,R, p), an argument
α ∈ A, and X ∈ {co, pr, gr, st}, the definition for p(αX) given in Definition 6 satisfies
C1 to C5.

Proof. Assume p(αX) satisfies Definition 6. (C1) Assume α is self-attacking. Therefore,
for all Γ ∈ A, if α ∈ Γ, then Γ is not conflictfree. Therefore, for all G′ v G, for all
Γ ⊆ A, if α ∈ Γ, then G′ 6 Γ. Therefore, for all X ∈ {co, pr, gr, st}, IX(α) = ∅,
and hence p(αX) = 0. (C2) Assume α is unattacked. Therefore, for all G′ v G, if
α is a node in G′, then α is unattacked in G′. Therefore, for all G′ v G, if α is a
node in G′, then there is a Γ ⊂ A, such that G′ X Γ and α ∈ Γ. Let J(α) =
{G′ v G | α is a node in G′}. Therefore, IX(α) = J(α). Also, from Definition 2,
using a derivation analogous to that used in the proof of Proposition 1, it is the case
that p(α) =

∑
G′∈J(α) p(G

′). Since, p(αX) =
∑
G′∈IX(α) p(G

′), we have that p(αX) =∑
G′∈J(α) p(G

′). Hence, p(αX) = p(α). (C3) Assume α is undefended. Therefore, there
is aG′ v G, such that α is a node inG′, then α is undefended inG′. Therefore, there is a
G′ v G, such that α is a node inG′, and there is a Γ ⊂ A, such thatG′ X Γ and α 6∈ Γ.
Let J(α) = {G′ v G | α is a node in G′}. Therefore, IX(α) ⊆ J(α). Also, from Defini-
tion 2, using a derivation analogous to that used in the proof of Proposition 1, it is the case
that p(α) =

∑
G′∈J(α) p(G

′). Since, p(αX) =
∑
G′∈IX(α) p(G

′), we have that p(αX) ≤
p(α). (C4) For all G′ v G, G′ gr Γ implies G′ pr Γ, and G′ pr Γ implies G′ co Γ.
Therefore, Igr(α) ⊆ Ipr(α) and Ipr(α) ⊆ Ico(α). Therefore,

∑
G′∈Igr(α) p(G

′) ≤



∑
G′∈Ipr(α) p(G

′), and
∑
G′∈Ipr(α) p(G

′) ≤
∑
G′∈Ico(α) p(G

′). Therefore, p(αgr) ≤
p(αpr), and p(αpr) ≤ p(αco). (C5) For all G′ v G, and for all X ∈ {co, pr, gr, st},
G′  Γ implies G′ X Γ. Therefore, for all X ∈ {co, pr, gr, st}, IX(α) ⊆ I(α). Hence,∑
G′∈IX(α) p(G

′) ≤
∑
G′∈I(α) p(G

′), and so, p(αX) ≤ p({α}).

The next result shows that we can equivalently define the probability of a formula
being in a grounded extension in terms of the probability function over extensions.

Proposition 11. Given a probabilistic argument graph G = (A,R, p), an argument
α ∈ A, p(αgr) =

∑
Γ⊆A s.t. α∈Γ p(Γ

gr)

Proof. p(αgr) =
∑
G′∈Igr(α) p(G

′)
=

∑
G′∈{G′vG|G′grΓ and α∈Γ} p(G

′)
=

∑
Γ⊆A s.t. α∈Γ

∑
G′∈{G′vG|G′grΓ} p(G

′)
=

∑
Γ⊆A s.t. α∈Γ

∑
G′∈{G′∈Qgr(Γ)} p(G

′)
=

∑
Γ⊆A s.t. α∈Γ p(Γ

gr)

In this section, we have defined the probability of a formula being in an extension as
the sum of the probabilities of the subgraphs that entail an extension containing the for-
mula. This satisfies a number of simple postulates that we have introduced, and we have
shown in the case of grounded semantics this is equivalent to the sum of the probabilities
of the extensions containing the formula.

8. Discussion

In this paper, we have reviewed the proposals for probabilistic argument graphs [DT10,
LON11]. Probabilistic argument graphs are a valuable contribution to better understand-
ing argumentation arising in the real-world. However, they also raise questions about
what the probabilities over arguments mean, and can the definitions be justified. To ad-
dress this need, this paper has made the following contributions: (1) A clarification for
why independence can be assumed when generating the probability distribution over
the spanning subgraphs; (2) An analysis of how the set of spanning subgraphs offers a
probability space; (3) A proposal for sets of postulates for the probability function over
admissible sets and extensions, plus a number of results concerning these and related
properties; and (4) A proposal for a probability function for inferences from probabilistic
argument graphs, together with a set of properties that hold for the probability function.

As well as first introducing the idea of probabilistic argument graphs, Dung and
Thang [DT10] have used them in a version of assumption-based argumentation in which
a subset of the rules are probability rules. In another rule-based system for argumen-
tation by Riveret et al [RRS+07], the belief in the premises of an argument is used to
calculate the belief in the argument. However, the proposal does not investigate further
the nature of this assignment, in particular there is no investigation of how it relates to
abstract argumentation, but rather its use in dialogue is explored. For logical arguments,
a probability function on model has been used by Haenni et al [Hae98,HKL00,Hae01]
for a notion of probabilistic argumentation for diagnosis. Arguments are constructed for
and against particular diagnoses (i.e. only arguments and counterarguments that rebut
each other are considered). However, they do not consider their proposal with respect to



abstract argumentation. In the LA system, another logic-based framework for argumen-
tation, probabilities are also introduced into the rules, and these probabilities are propa-
gated by the inference rules so that arguments are qualified by probabilities (such as via
labels such as ”likely”, ”very likely”, etc). Again, there is no consideration of how this
relates to abstract argumentation [EGKF93,FD00].

Whilst using weights on arguments (such as discussed in [BGW05]), allow for a
notion of uncertainty to be represented, our understanding is incomplete for using such
weights in a way that conforms with established theories of quantitative uncertainty.
Preferences over arguments have been harnessed in argumentation theory (see for exam-
ple [AC98,AC02]) in order to decide on a pairwise basis whether one argument defeats
another argument. In some situations, this is a powerful and intuitive solution. Some-
times, the preferences seem to be based on the relative strength of belief in the argu-
ments, though more research is required to better understand the relationship between the
use of preferences over arguments and the use of a probability function over arguments.
Of course probability theory is only one way of capturing uncertainty about arguments,
and indeed, some interesting proposals have been made for using possibility theory in
argumentation (see for example [AP04,ACGS08]).
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