
Qualitative Evidence Aggregation
using Argumentation

Anthony HUNTER a and Matthew WILLIAMS b

a UCL Department of Computer Science,
Gower Street, London, WC1E 6BT, UK

b Royal Free Hospital,
Pond Street, London, NW3 2QG, UK

Abstract Evidence-based decision making is becoming increasingly important
in many diverse domains, including healthcare, environmental management, and
government. This has raised the need for tools to aggregate evidence from multiple
sources. For instance, in healthcare, much valuable evidence is in the form of the
results from clinical trials that compare the relative merits of treatments. For this, in
a previous paper [5], we have proposed a general language for encoding, capturing
and synthesizing knowledge from clinical trials and a framework that allows the
construction and evaluation of arguments from such knowledge. Now, in this paper,
we consider a specific version of the general framework for aggregating qualitative
information about trials, and undertake an evaluation of this qualitative framework
by comparing the results we obtain with those that are published in the biomedical
literature. Whilst the results from our qualitative system are inferior, we show that
they do offer a quick and useful aggregation of the evidence, and furthermore, we
suggest that it could be coupled with information extraction technology to provide
a valuable automated solution.

1. Introduction

The systematic use of evidence is already established in healthcare, and is being increa-
singly advocated in other domains, such as education and environmental management.
However, the rapidly increasing amount of evidential knowledge on a subject means that
it is difficult for a decision maker to locate, or even be aware of, new research that is rele-
vant to their needs. Even if the decision maker locates the necessary evidence, it is diffi-
cult for them to effectively and efficiently assimilate and fully exploit it. In addition to the
difficulty presented by the sheer volumes of information, the evidence is often concep-
tually complex, heterogeneous, incomplete and inconsistent. Not least, is the imperative
to abstract away from the details of individual items of evidential knowledge, and to ag-
gregate the evidence in a way that reduces the volume, complexity, inconsistency and
incompleteness.

One important kind of evidence comes from superiority-testing clinical trials which
compare the efficacy of two or more treatments in a particular class of patients. In order
to have a global view of the relative merits of treatments for a particular condition, a
potentially large number of publications needs to be reviewed. To address this, syntheses



of the evidence on particular treatments are routinely produced using systematic search
and statistical aggregation techniques (e.g., systematic reviews and meta-analyses). Of-
ten such syntheses involve groups of clinicians and statisticians. Such syntheses require
significant time and effort, and they can quickly become out of date as new results are
frequently being published.

Therefore, getting a quick, up-to-date review of the state of the art on treatment
efficacy for a particular condition is not always feasible. Thus, it would be helpful to
have a method for automatically analyzing and presenting the clinical trial results and the
possible ways to aggregate those in an intuitive form, highlighting agreement and conflict
present within the literature. Our proposal in [6,5] aims to suggest such a method. The
first part of our proposal is a language that can be used to encode the published results in
a semantically appropriate way, and methods for constructing a knowledge base from the
encoded results. The second part of our framework allows the construction of arguments
on the basis of evidence as well as their syntheses, published or generated on-the-fly.
The evidence available is then presented and organized according to the agreement and
conflict inherent. In addition, users can encode preferences for automatically ruling in
favour of the preferred arguments in a conflict.

In this paper, we go beyond what we have done in [6,5] by presenting a speci-
fic set of inference rules and preference rules for qualitative evidence aggregation. The
motivation for doing this is two-fold. First, with this very simple version of our gene-
ral framework, we can investigate the quality with respect to published meta-analyses.
Since meta-analyses are undertaken by clinicians, and medical statisticians, using stan-
dard techniques from statistics, for aggregating evidence, we see them as providing a
“gold standard" for the aggregated evidence. So in this paper, we present some results
comparing our approach with 15 meta-analyses obtained from three National Institute of
Clinical Excellence (NICE) Guidelines (www.nice.org.uk).

The second reason we want to present the qualitative version of our framework is
that it only requires a minimal amount of information from the published clinical trials.
Indeed, the information we require can often be obtained from the abstract of the publi-
shed paper covering the clinical trial. This then raises the possibility of using informa-
tion extraction technology with the abstracts obtained from PubMed (www.pubmed.org)
which catalogues all published clinical trials. The coupling of information extraction
technology with argument-based aggregation could then be used for providing an auto-
mated and immediate abstract view on the relevant literature (highlighting where the evi-
dence is in agreement and where there are key conflicts), and for generating rough drafts
of meta-analysis, guidelines, and systematic review.

2. Representing clinical trials

Our focus will be on 2-arm superiority trials, i.e., clinical trials whose purpose is to
determine whether, given two treatments, one is superior to the other (strictly speaking,
such a trial tries to disprove the hypothesis that the two treatments are identical). This is
an extremely common trial design.

We assume a set of trials TRIALS where each trial is just an atomic name for which
we associate information about the trial. We give an example in Table 1, and explain the
attributes as follows. The first attribute is the patient class involved. In this example, it is



Table 1. Two results obtain from the NICE Glaucoma Guideline (Appendix pages 70-72) where PGA is an
abbreviation for prostaglandin analogue and BB is an abbreviation for beta-blocker. The first row corresponds
to a trial performed by Pfeifer et al in 2002 (Pfe02) and the second row corresponds to a trial performed by
Felman at al in 2002 (Fel02).

Trial Patient Leftarm Rightarm Outcome Risk Statistically
name class indicator ratio significant

Pfe02 glaucoma PGA BB safe IOP 1.43 no
Fel02 glaucoma PGA BB safe IOP 1.29 yes

patients who have glaucoma (a problem resulting from increased pressure in the eye cau-
sing damage to the optic nerve and retina). The patient class may involve a conjunction
and/or disjunction of terms from a medical ontology and description logics can be used
to provide inferencing (see [2]). See [16,6] for proposals for using a medical ontology in
argumentation about clinical trials. However, in this paper, for simplicity we assume that
the set of results in TRIALS concerns a particular, sensible patient class, and so we do not
consider this aspect further here.

The next component of our representation concerns treatments. Again, medical on-
tologies cater for this task by providing categories and relationships on treatments, sub-
stances used, and other characteristics. We use the attributes leftarm and rightarm to
signify the treatments compared in each trial in TRIALS.

A trial comparing two treatments will do so with respect to a particular outcome,
which we call the outcome indicator e.g., in the case of the trials above, it is the pro-
portion of patients for whom IOP (i.e. intra ocular pressure) is reduced to a safe level.
As another example, for evaluating cancer treatments, it can be the proportion of patients
who survive after 5 years.

A trial uses a statistical method to compare the two treatments. There is a range of
methods, each appropriate to specific trial designs and outcomes. Here, risk ratio is used
which in general means the measure of the outcome indicator obtained from the leftarm
divided by measure of the outcome indicator obtained from the rightarm. For these trials,
specifically it means the proportion of patients in the leftarm (i.e. those treated with
prostaglandin) who during the trial period had the IOP reduced to a safe level divided by
the proportion of patients in the rightarm (i.e. those treated with betablocker) who during
the trial period had the IOP reduced to a safe level. So for both Pfe02 and Fel02, the risk
ratio is greater than 1, which means that in both trials, prostaglandin is associated with
more patients having a safe IOP than betablocker.

The final attribute is statistical significance for which if the entry is “yes" means
that it is unlikely that the risk ratio result could have been obtained by chance (using a
conventional cut-off such as 0.05), whereas if it is “no" then it means that it is quite likely
to have been obtained by chance.

The set of attributes we have discussed here is only indicative. Often other attributes
are useful for assessing and aggregating evidence (e.g. the number of patients involved
in each trial, the geographical location for each trial, the drop-out rate for the trial, the
methods of randomization for ensuring patients and clinician do not know which arm a
patient is in, etc), and it is straightforward to accommodate these extra attributes in our
framework. For a general introduction to the nature of clinical trials, and a discussion of
a wider range of attributes, see [7].



3. General framework

In this section, we review the general framework presented in [5] for constructing and
comparing arguments based on the kind of information presented in the previous section.

For a superiority clinical trial comparing treatments τ1 and τ2 with respect to the
outcome indicator µ, there are three possible interpretations of its results: (1) τ1 >µ τ2,
meaning that we believe that the result supports the claim that treatment τ1 is superior to
τ2 with respect to µ; (2) τ1 <µ τ2, meaning that we believe that the result supports the
claim that treatment τ1 is inferior to τ2 with respect to µ; And (3) τ1 ∼µ τ2, meaning
that we believe the result as supporting the claim that neither τ1 nor τ2 is superior to each
other with respect to µ; Any formula of the form τ1 >µ τ2, τ1 ∼µ τ2 and τ1 <µ τ2 we
will call a claim, denoted by ε, possibly subscripted. Note, we treat τ1 > τ2 as equivalent
to τ2 < τ1 and τ1 ∼ τ2 as equivalent to τ2 ∼ τ1.

Given a set of results TRIALS one can informally think of an argument comprising of
a set of evidence (i.e. a subset of TRIALS), an inferential rule and a conclusion or claim.
For example, a plausible interpretation of Fel02 is that since the value for risk ratio is
greater than 1, the first treatment is better than the second with respect to obtaining a safe
IOP, i.e., that PGA >safeIOP BB. We define this process by an inference rule.

Definition 1. An inference rule, λ, is a rule with conditions (employing set-theoretic
expressions and equations utilizing attributes over the reals) on a set of results Φ ⊆
TRIALS and a claim ε.

Example 1. For TRIALS, let τ1 be the leftarm, let τ2 be the rightarm, let µ be the outcome
indicator, and let γ ∈ TRIALS.

(λs) For Φ = {γ}, if γ is statistically significant
and the risk ratio is greater than 1, then τ1 >µ τ2.

Example 2. For TRIALS, let τ1 be the leftarm, let τ2 be the rightarm, let µ let the outcome
indicator, and let γ ∈ TRIALS.

(λn) For Φ = {γ}, if γ is not statistically significant, then τ1 ∼µ τ2

Definition 2. An argument is a triple 〈Φ, λ, ε〉 where Φ ⊆ TRIALS is a set of results, λ
is an inference rule, Φ satisfies the conditions of λ and ε is the claim of λ applied to Φ.

Example 3. Using the data in the previous section concerning Fel02 and Pfe02, we
obtain the following arguments.

〈{Fel02}, λs,PGA >safeIOP BB 〉 〈{Pfe02}, λn,PGA ∼safeIOP BB 〉

In the above example, we see that the two arguments are in conflict. We capture this
kind of conflict with the following definition. Note that this definition is symmetric, i.e.,
if A conflicts with B then B conflicts with A.

Definition 3. If A = 〈ΦA, λA, εA〉 and B = 〈ΦB , λB , εB〉 are two arguments then we
say that A conflicts with B whenever:

1. εA = τ1 >µ τ2, and either εB = τ1 ∼µ τ2 or εB = τ1 <µ τ2.
2. εA = τ1 ∼µ τ2, and either εB = τ1 >µ τ2 or εB = τ1 <µ τ2.



3. εA = τ1 <µ τ2, and either εB = τ1 >µ τ2 or εB = τ1 ∼µ τ2.

We organize the arguments into a graph. To do this, we first consider the conflict
relation given above. It is easy to see that the graph induced is tripartite, and its inde-
pendent sets are given by those arguments with claim τ1 >µ τ2, those arguments with
claim τ1 ∼µ τ2, and those arguments with claim τ1 <µ τ2. In our example, this graph is
as follows.

〈{Fel02}, λs,PGA >safeIOP BB 〉� 〈{Pfe02}, λn,PGA ∼safeIOP BB 〉

Since the argument graph is by definition symmetric (if we use the conflict relation),
it would be beneficial to allow breaking the symmetry with user-defined preferences. We
do this by defining preference rules.

Definition 4. A preference rule is a set of conditions on an ordered pair of conflic-
ting arguments A,B. When the conditions are satisfied, A is said to be preferred to B
otherwise, we say that A is not preferred to B.

Example 4. ForA= 〈{γa}, λa, εA〉 andB = 〈{γb}, λb, εB〉 such thatA conflicts withB,
A is preferred to B iff γa is statistically significant and γb is not statistically significant.

Preference rules are not required to be infallible in any sense. Indeed the above
example embodies one of the aspects of publication bias, where by preferring significant
results to non-significant ones, one may miss evidence that supports the claim that the
significant results are a chance occurrence.

We use the preference rules chosen by the user in breaking the symmetry present
in the conflict relation, as developed by Amgoud and Cayrol [1], and capture the attack
relation as follows.

Definition 5. For any pair of arguments A and B, A attacks B iff A conflicts with B
and A is preferred to B and it is not the case that B is preferred to A.

The motivation here is that if A and B conflict with each other and A is preferred to
B then B’s conflict with A is cancelled. However, this wording leads to problems when
A is preferred to B according to a preference rule and B is preferred to A according to a
preference rule. In this case, cancelling both attacks will give the misleading impression
thatA andB are consistent together. For this reason we give the above, more complicated
definition, which only cancels an attack if exactly one argument is preferred to the other.

Now we combine these components by defining an argument graph based on a set
of trial results, a set of inference rules, and a set of preference rules as follows.

Definition 6. Given a pair of treatments τ1, τ2 and an outcome indicator µ, and a set
TRIALS concerning these treatments and outcome indicator, an argument graph is a
graph where the set of nodes is the set of arguments formed using a set of inference rules
as given by Definition 1 and the set of arcs is the attacks relation given by Definition 5.

We can directly use the dialectical semantics given by Dung [4] to decide extensions
of argument graphs. We regard a preferred set of arguments as an interpretation of a
TRIALS (i.e. an aggregation of the evidence in TRIALS. So if X is an extension of the
argument graph, and A ∈ X , and ε is the claim of A, then ε is a possible aggregation of
the evidence.



4. Qualitative framework

Now we present a specific version of the framework including inference rules and pre-
ference rules. We start with a set of trials TRIALS = {t1, .., tn} each of which uses the
same outcome indicator and compares the same pair of treatments τ1 and τ2. We partition
TRIALS into three sets SUPERIOR, EQUITABLE, and INFERIOR. Those in SUPERIOR are
the trials for which τ1 was shown to be superior to τ2, those in EQUITABLE are the trials
for which τ2 was shown to equitable with τ1, and those in INFERIOR are the trials for
which τ2 was shown to be superior to τ1. We also partition TRIALS into two sets SIGNIFI-
CANT and NONSIGNIFICANT. Those in SIGNIFICANT are the trials for which the result is
significant, and those in NONSIGNIFICANT are the trials for which the result is not signi-
ficant. In this paper, we focus on qualitative aggregation based solely on the distribution
of trials in SUPERIOR, EQUITABLE, INFERIOR, SIGNIFICANT and NONSIGNIFICANT.

The inference rules we use for the qualitative framework are given in Table 2. From
these inference rules, we get four types of argument as follows.

• 〈SUPERIOR, Rx, τ1 > τ2〉 where Rx ∈ {R1, ..., R12}
• 〈INFERIOR, Rx, τ1 < τ2〉 where Rx ∈ {R1, ..., R12}
• 〈EQUITABLE, Rx, τ1 ∼ τ2〉 where Rx ∈ {R13, .., R15}
• 〈NONSIGNIFICANT, R16, τ1 ∼ τ2〉

Note, the items of evidence in INFERIOR state that τ1 is inferior to τ2 which is
equivalent to stating that τ2 is superior to τ1. Furthermore, as we specified earlier, τ1 < τ2
is equivalent to τ2 > τ1. Hence, by this correspondence, we may be able to apply the
rules in Rx ∈ {R1, ..., R12} to generate an argument 〈INFERIOR, Rx, τ1 < τ2〉 where
Rx ∈ {R1, ..., R12}.

Given a set TRIALS, we let Args(TRIALS) denote the set of arguments that can be
generated by this set of rules. Also, for an argument A, let Rule(A) be the inference
rule used in the argument, and let Claim(A) be the claim of the argument (i.e. for A =
〈Φ, λ, ε〉, Rule(A) = λ and Claim(A) = ε).

Example 5. For prostaglandin v beta-blocker (see Table 4), for obtaining a safe IOP,
we have |TRIALS| = 12, |SUPERIOR| = 12, and |SIGNIFICANT| = 7. Hence, we get the
argument 〈SUPERIOR, R2,PGA >safeIOP BB〉.

We motivate the inference rules as follows. First,R1, .., R4 are for when all the trials
show superiority (of the leftarm over the rightarm), R5, .., R8 are for when the majority
of the trials show superiority, and R9, .., R12 are for when a minority of the trials show
superiority. Then each of these three groups is broken down according to the proportion
of the trials that show superiority are also significant, i.e., |SUPERIOR∩SIGNIFICANT|

|SUPERIOR| .
So for instance, for R1, all trials are significant, for R2, it is the majority that are signifi-
cant, for R3, it is a minority that are significant, and for R4, none are significant. Then,
R13, .., R15 are for when some trials show equality (of the left and right arms). So R13 is
when a minority show equality, R14 is when a majority show equality, and R15 is when
all show equality. Note, R13, .., R15 are not broken down by significance since techni-
cally, when a trial shows equality it is a failure to show a difference, whereas significance
is for showing whether a difference occurred by chance. Hence, for equality, significance
is not meaningful. Finally, R16 is for when the proportion of trials that are nonsignificant
is greater than or equal to 1/2.



Table 2. Inference rules for qualitative framework. Given TRIALS, let ρ1 = |SUPERIOR/TRIALS|, ρ2 =
|SIGNIFICANT∩SUPERIOR/SUPERIOR|, ρ3 = |SIGNIFICANT/TRIALS|, and ρ4 = |EQUITABLE/TRIALS|.

Rule Condition Explanation Claim

R1 (1) ρ1 = 1 all trials show superiority τ1 > τ2

(2) ρ2 = 1 of which all are significant

R2 (1) ρ1 = 1 all trials show superiority τ1 > τ2

(2) 0.5 < ρ2 < 1 of which a majority are significant

R3 (1) ρ1 = 1 all trials show superiority τ1 > τ2

(2) 0 < ρ2 ≤ 0.5 of which a minority are significant

R4 (1) ρ1 = 1 all trials show superiority τ1 > τ2

(2) ρ2 = 0 of which none are significant

R5 (1) 0.5 < ρ1 < 1 a majority of trials show superiority τ1 > τ2

(2) ρ2 = 1 of which all are significant

R6 (1) 0.5 < ρ1 < 1 a majority of trials show superiority τ1 > τ2

(2) 0.5 < ρ2 < 1 of which a majority are significant

R7 (1) 0.5 < ρ1 < 1 a majority of trials show superiority τ1 > τ2

(2) 0 < ρ2 ≤ 0.5 of which a minority are significant

R8 (1) 0.5 < ρ1 < 1 a majority of trials show superiority τ1 > τ2

(2) ρ2 = 0 of which none are significant

R9 (1) 0 < ρ1 ≤ 0.5 a minority of trials show superiority τ1 > τ2

(2) ρ2 = 1 of which all are significant

R10 (1) 0 < ρ1 ≤ 0.5 a minority of trials show superiority τ1 > τ2

(2) 0.5 < ρ2 < 1 of which the majority are significant

R11 (1) 0 < ρ1 ≤ 0.5 a minority of trials show superiority τ1 > τ2

(2) 0 < ρ2 ≤ 0.5 of which a minority are significant

R12 (1) 0 < ρ1 ≤ 0.5 a minority of trials show superiority τ1 > τ2

(2) ρ2 = 0 of which none are significant

R13 0 < ρ4 ≤ 0.5 a minority of trials show equality of τ1 and τ2 τ1 ∼ τ2
R14 0.5 < ρ4 < 1 a majority of trials show equality of τ1 and τ2 τ1 ∼ τ2
R15 ρ4 = 1 all trials show equality of τ1 and τ2 τ1 ∼ τ2
R16 0.5 ≤ ρ3 ≤ 1 half or more trials are statistically nonsignificant τ1 ∼ τ2

Given a set TRIALS comparing τ1 and τ2, the inference rules R1 to R16 impose
constraints on what combinations of arguments are possible together in Args(TRIALS).

Proposition 1. If there is an argumentAi ∈ Args(TRIALS) where Claim(Ai) = τ1 > τ2,
then there is at most one argument Aj ∈ Args(TRIALS) where Claim(Aj) = τ2 > τ1,
and there is at most two arguments Ak ∈ Args(TRIALS) where Claim(Ak) = τ1 ∼ τ2,

So the above says that there is at most one argument showing superiority, at most
two showing equivalence, and at most one showing inferiority, and the following says
that there is always argument with at least one of these claims.

Proposition 2. If TRIALS 6= ∅, then there is an argument Ai ∈ Args(TRIALS) where
Claim(Ai) = τ1 > τ2 or Claim(Ai) = τ1 ∼ τ2 or Claim(Ai) = τ2 > τ1.

Being able to use rulesR5 toR12 means that conflicting arguments can be generated
from R5 to R15 as captured by the following proposition.



Table 3. For arguments Ai and Aj , Ai is preferred to Aj iff one of P2 to P11 holds for Rule(Ai) and
Rule(Aj).

Preference rule Rule(Ai) Rule(Aj)

P2 R2 {R16}
P3 R3 {R16}
P4 R4 {R16}
P5 R5 {R11, R12, R13, R16}
P6 R6 {R11, R12, R13, R16}
P7 R7 {R12, R13, R16}
P8 R8 {R12, R13, R16}
P9 R9 {R8, R11, R12, R13, R16}
P10 R10 {R8, R11, R12, R13, R16}
P11 R11 {R8, R13}

Proposition 3. If there is an argumentAi ∈ Args(TRIALS) s.t. Rule(Ai) ∈ {R5, ..., R12}
and Claim(Ai) = τ1 > τ2, then there is an argument Aj ∈ Args(TRIALS) where
Rule(Aj) ∈ {R5, ..., R15} and either Claim(Aj) = τ1 < τ2 or Claim(Aj) = τ1 ∼ τ2.

However, being able to use rules R1 to R4 means that no conflicting arguments can
be generated by using rules R5 to R15.

Proposition 4. If there is an argument Ai ∈ Args(TRIALS) where Rule(Ai) ∈
{R1, ..., R4} and Claim(Ai) = τ1 > τ2, then there is no argument Aj ∈ Args(TRIALS)
where Rule(Aj) ∈ {R5, ..., R15} and either Claim(Aj) = τ1 < τ2 or Claim(Aj) =
τ1 ∼ τ2.

Being able to use rules R13 or R14 also means that conflicting arguments can be
generated as captured by the following propositions.

Proposition 5. If there is an argument Ai ∈ Args(TRIALS) s.t. Claim(Ai) = τ1 ∼
τ2 and either Rule(Ai) = R13 or Rule(Ai) = R14, then there is an argument Aj ∈
Args(TRIALS) where Rule(Aj) ∈ {R5, ..., R12} and either Claim(Aj) = τ1 > τ2 or
Claim(Aj) = τ1 < τ2.

However, being able to use rule R15 means that no conflicting arguments can be
generated by using rules R1 to R15.

Proposition 6. If there is an argument Ai ∈ Args(TRIALS) where Rule(Ai) = R15 then
there is no argument Aj ∈ Args(TRIALS) where Rule(Aj) ∈ {R1, ..., R14}.

The preference rules are given in Table 3. Note, we do not consider R1 because if
it applies, no other rule could apply, and for R2, .., R4, the only other rule that can fire
is R16. Also, we do not consider R12, .., R16 since any argument based on them is not
preferred to any other argument.

Example 6. For prostaglandin v beta-blocker (m3 in Table 4), for lower risk of respi-
ratory problems as a side-effect, there are 2 trials, of which 1 shows superiority signi-
ficantly and 1 shows superiority non-significantly (and so all the trials say that pros-
taglandin is superior to beta-blocker). By preference rule P2, the attack from the right



argument to the left argument is suppressed. Therefore, we have the following argument
graph, and we obtain the left argument in the resulting grounded extension.

〈SUPERIOR, R3,PGA >respiratory BB〉 → 〈EQUITABLE, R16,PGA ∼respiratory BB〉

Example 7. For prostaglandin v beta-blocker (m4 in Table 4), for lower risk of cardio-
logical problems as a side-effect, there are 5 trials, of which 1 shows superiority signifi-
cantly, 2 show superiority non-significantly and 2 show inferiority non-significantly. So
by preference rule P7, the attack from the right argument to the left argument is sup-
pressed, and the attack from the lower argument to the left argument is also suppressed.
Therefore, we have the following argument graph, and we obtain the left argument in the
resulting grounded extension.

〈SUPERIOR, R7,PGA >cardio BB〉 → 〈INFERIOR, R12,PGA <cardio BB〉
↘ ↙↗

〈NONSIGNIFICANT, R16,PGA ∼cardio BB〉

With the qualitative framework, we have a simple set of inference rules and prefe-
rence rules, that given a set of trial results TRIALS produces a small set of arguments and
attack relationships. It allows for highlighting key conflicts in possible aggregations of
the evidence, and as we show in the next section, it appears to perform well with real
data.

5. Case study

In order to evaluate the qualitative framework, we have taken 14 meta-analyses from 3
NICE Guidelines (www.nice.org.uk), and we compare the results they obtained with the
results that our qualitative evidence aggregation produced. We give a summary of this
comparison in Tables 4, 5, and 6.

In these tables, each row is a based on a meta-analysis in the NICE guide-
line where n1 = |SUPERIOR ∩ SIGNIFICANT|, n2 = |SUPERIOR ∩ NONSIGNIFICANT|,
n3 = |EQUITABLE|, n4 = |INFERIOR ∩ NONSIGNIFICANT|, and n5 = |INFERIOR ∩
SIGNIFICANT|. The column “Their result” is the weighted average presented in the meta-
analysis in the guideline where sup (respectively eq and inf) denotes superior (respecti-
vely equal and inferior) and sig (respectively non-sig) denotes significant (respectively
non-significant). The column “Rule used” gives the rules that appear in the arguments
we generate from the data in n1, .., n5, and “Our result” is the form of the claims of
the arguments in the union of the preferred extensions. So for example, in Table 4, the
first row labelled m1, concerns a meta-analysis based on 12 clinical trials, of which 7
were statistically significant, and their weighted average result showed the leftarm was
significantly superior to the rightarm, and our result showed leftarm was superior to the
rightarm, and this was based on an argument involving inference rule R2.

• From the NICE Glaucoma Guideline (CG85), we have investigated 6 meta-
analyses, and give the data and results in Table 4. In each case where their result
is superior significantly (respectively inferior significantly), we obtain τ1 > τ2
(respectively τ1 < τ2). For the cases where the their result is superior non-
significantly, we obtain τ1 > τ2. For the case where their result is inferior non-



Table 4. Comparison of qualitative argument-based evidence aggregation with meta-analyses from NICE
Glaucoma Guideline (CG85, Appendix, pp 218-221). Each row is a meta-analysis where the left arm is a pros-
taglandin analogue and the right arm is a beta-blocker. The treatment is intended to lower intraocular pres-
sure (IOP). The outcome indicator for each meta-analysis is as follows: m1 Decrease of IOP; m2 Acceptable
(safe) IOP; m3 Respiratory problems; m4 Cardiological problems; m5 Allergic problems; m6 Hyperaemia
problems.

n1 n2 n3 n4 n5 Their result Rules used Our result

m1 7 5 0 0 0 sup sig R2 τ1 > τ2

m2 6 1 0 0 0 sup sig R2 τ1 > τ2

m3 1 1 0 0 0 sup non-sig R2, R16 τ1 > τ2

m4 1 2 0 2 0 sup non-sig R7, R12, R16 τ1 > τ2

m5 0 1 0 1 0 inf non-sig R8, R16 τ1 > τ2, τ1 ∼ τ2, τ1 < τ2

m6 0 0 0 4 6 inf sig R2 τ1 < τ2

significantly, we obtain the vaguer result of a disjunction of {τ1 > τ2, τ1 ∼
τ2, τ1 < τ2} instead of τ1 < τ2. So overall, in 5 out of 6 cases, we get the same
superiority/inferiority relation as their result, and in 1 out of 6 cases, we get a
vaguer result (i.e. disjunction of {τ1 > τ2, τ1 ∼ τ2, τ1 < τ2}).

• From the NICE Hypertension Guideline (CG34), we have investigated 5 meta-
analyses, and give the data and results in Table 5. In each case where their result is
superior significantly (respectively inferior significantly), we obtain τ1 > τ2 (res-
pectively τ1 < τ2). There are 2 cases where their result is inferior non-significant,
for which we obtain τ1 > τ2 in one case and τ1 < τ2 in the other case. Also
there is 1 case where their result is superior non-significant, for which we obtain
τ1 < τ2. So overall, in 3 out of 5 cases, we get the same as their result, and for
2 out of 5 cases, we get the opposite (i.e. either τ1 > τ2 instead of τ1 < τ2 or
τ1 < τ2 instead of τ1 > τ2).

• From the NICE Type 2 Diabetes Guideline (CG66), we have investigated 3 meta-
analyses, and give the data and results in Table 6. In the case where their result is
superior significantly, we obtain τ1 > τ2. In the case where their result is superior
non-significantly, we obtain τ1 > τ2. And in the case where their result is inferior
non-significantly, we obtain the disjunction of {τ1 > τ2, τ1 ∼ τ2, τ1 < τ2}.

From this consideration of 14 meta-analyses, it would appear that the qualitative
evidence aggregation performs well. In 10 out of 14 meta-analyses, we get the same
result (i.e. superiority or inferiority), in 2 out of 14 meta-analyses, we get a vaguer result
(i.e. a disjunction), and in 2 out of 14 meta-analyses, we get the opposite result (i.e. the
incorrect result) to the meta-analysis.

6. Discussion

We have presented a qualitative framework for argumentation on treatment efficacy.
Using these components along with standard argumentation tools, users can describe
their preferences and analyze the available evidence in terms of agreement and conflict.

The advantage of qualitative evidence aggregation is that it allows for abstraction
from details of a meta-analysis, and it allows for modularity of analysis (thereby facili-
tating the aggregation according to multiple outcome indicators). Obviously such qua-
litative evidence aggregation is not able to replace statistical evidence aggregation. Ra-



Table 5. Comparison of qualitative argument-based evidence aggregation with meta-analysis data and results
taken from NICE Hypertension Guideline (CG34, pp 36-43). Each row is a meta-analysis where the left arm
is a calcium channel blocker and the right arm is a thiazide. The treatment is intended to lower blood pressure.
The outcome indicator for each meta-analysis is as follows: m7 Mortality; m8 Myocardial infarction; m9

Stroke; m10 Heart failure; and m11 Diabetes.

n1 n2 n3 n4 n5 Their result Rules used Our result

m7 0 2 0 3 0 sup non-sig R8, R12, R16 τ1 < τ2

m8 0 1 0 4 0 inf non-sig R8, R12, R16 τ1 < τ2

m9 0 3 0 2 0 inf non-sig R8, R12, R16 τ1 > τ2

m10 0 1 0 2 2 inf sig R7, R12, R16 τ1 < τ2

m11 2 1 0 0 0 sup sig R2 τ1 > τ2

Table 6. Comparison of qualitative argument-based evidence aggregation with meta-analysis data and results
taken from NICE Type 2 Diabetes Guideline (CG66, Appendix, p 18). Each row is a meta-analysis where the
outcome indicator is the lowering of HbA1c (a protein involved in diabetes). For m13, the leftarm is biphasic
insulin and the rightarm is human insulin; for m14, the leftarm is glargin insulin and the rightarm is human
insulin; and for m15, the leftarm is biphasic insulin and the rightarm is glargin insulin.

n1 n2 n3 n4 n5 Their result Rules used Our result

m12 0 4 1 1 0 sup non-sig R8, R12, R13, R16 τ1 > τ2

m13 0 1 0 1 0 inf non-sig R8, R16 τ1>τ2,τ1∼τ2,τ1<τ2
m14 3 0 0 0 0 sup sig R1 τ1 > τ2

ther it is meant to complement it by addressing some of the shortcomings of statistical
evidence aggregation including statistics suppresses conflict by using averages (whereas
argumentation highlights conflict), statistics hides issues such as problems with particu-
lar sources of evidence (whereas in argumentation this can be made explicit by use of
appropriate preference rules and/or further types of inference rule), and statistics is based
on assumptions that either might be hidden or debatable.

Little work exists that aims to address the problem in focus here. Medical infor-
matics and bioinformatics research does not address the reasoning aspects inherent in
the analysis of evidence of primary nature, especially from clinical trials. Previous in-
teresting work ([9,14,15] and others) exists that uses argumentation as a tool in medical
decision support, but as such, assumes the existence of a hand-crafted knowledgebase.

We believe that the work presented here is a step towards an automated system for
aggregating qualitative evidence. It is straightforward to implement the inference rules
for generating arguments and the preference rules for generating the attack relation. Fur-
thermore, given that there is only a small number of arguments generated per set TRIALS,
a naive algorithm that considers each subset of arguments for calculating preferred ex-
tensions is viable.

For developing information extraction of clinical trials, it may be possible to build
on a set of open source tools and resources for clinical text mining that are available
as part of the well-established GATE framework [3]. These resources include the CLEF
corpus of annotated clinical documents [12], terminological resources such as the Uni-
fied Medical Language System (UMLS) [8], and machine learning methods (such as
SVMs) that have been tailored to statistical named entity recognition (NER) and rela-
tionship extraction. Using GATE, Roberts and co-workers have recently developed and
evaluated hybrid methods (combining terminological resources with statistical methods)



for recognizing a set of entity types (medical condition, drug, intervention, etc.) relevant
to our research [10], and statistical methods for the extraction of clinical relationships
between these entities [11]. Also, there is the Trial Bank Project which is concerned with
extracting detailed information about the patient class from published clinical trials [13].
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