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Abstract. There are a number of frameworks for modelling argumentation in logic.
They incorporate a formal representation of individual arguments and techniques
for comparing conflicting arguments. A common assumption for logic-based argu-
mentation is that an argument is a pair 〈Φ, α〉 where Φ is a minimal subset of the
knowledgebase such that Φ is consistent and Φ entails the claim α. We call the
logic used for consistency and entailment, the base logic. Different base logics pro-
vide different definitions for consistency and entailment and hence give us different
options for argumentation. This paper discusses some of the commonly used base
logics in logic-based argumentation, and considers various criteria that can be used
to identify commonalities and differences between them.
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1. Introduction

Proposals for logic-based argumentation rely on an underlying logic, which we call a
base logic, for generating logical arguments and for defining the counterargument rela-
tionships (using inference of conflict or existence of inconsistency). For logic-based ar-
gumentation, we assume that an argument is a pair 〈Φ, α〉 where Φ entails the claim α.
Let `x be the consequence relation of the base logic, and so Φ entails the claim α means
Φ `x α. Many proposals for logic-based argumentation also stipulate that for 〈Φ, α〉 to
be an argument, Φ is minimal (i.e. there is no Φ′ ⊂ Φ such that Φ′ `x α), and/or Φ is
consistent (which in most proposals for argumentation systems means that it is not the
case that Φ `x α and Φ `x ¬α for any atom α).

The choice of base logic is an important design decision for a logic-based argumen-
tation system. This then raises the questions of what are the minimal requirements for
a base logic and what are the factors that need to be considered for a base logic? In
this paper, we consider these questions in terms of general properties and in terms of
the base logics that arise in key approaches to logic-based argumentation. The net result
is that we can see some useful properties holding for all the key approaches (including
the important properties of cut, monotonicity, and a restricted form of reflexivity), and
some useful properties that differentiate approaches. We also suggest that given the wide
range of logics being developed in the knowledge representation field, there are further
interesting opportunities for using different base logics in argumentation.



2. Examples of base logics in argument systems

To help us explore the nature of base logics, we consider some key proposals for logic-
based argumentation, and draw out the base logics used. We start with simple proposals
that use classical logic `c as base logic [10,3,5], and for which 〈Φ, α〉 is an argument iff
Φ `c α and there is no Φ′ ⊂ Φ such that Φ′ `c α and Φ 6`c ⊥.

Example 1. Let ∆ = {¬¬a,¬b → ¬a,¬b ∨ (c ∧ d), b ∧ c ∧ ¬b,¬f → g ∨ h}. So
according to the above, 〈{¬¬a,¬b→ ¬a,¬b ∨ (c ∧ d)}, e→ d〉 is an argument.

The most common kind of base logic is a form of defeasible logic such as used in
defeasible logic programming [16], defeasible argumentation with specificity-based pre-
ferences [27], the ASPIC system [9], and argument-based extended logic programming
[24]. For a general coverage of defeasible logics in argumentation see [11,25,26].

The language for defeasible logic is based on rules of the following form where
β1, . . . , βj , βj+1 are literals and→k is an implication symbol.

β1 ∧ . . . ∧ βj →k βj+1

For the defeasible logic approaches to argumentation, such as [16], there can be more
than one type of implication symbol →k, and the proof theory for the base logic is gi-
ven by a derivation using modus ponens as defined next. Note, the consequence rela-
tion ignores any differences between the different types of implication symbol that may
appear in the knowledgebase1.

Definition 1. Let ∆ be the union of a set of rules and a set of literals. The defeasible
logic consequence relation `d is defined as follows.

∆ `d ψ iff there is a sequence of literals α1, . . . , αn

such that ψ is αn and for each αi ∈ {α1, . . . αn}
either αi is a literal in ∆
or there is a β1 ∧ . . . ∧ βj →k αi ∈ ∆

and {β1, . . . , βj} ⊆ {α1, . . . , αi−1}

In the following example,→1 denotes a strict rule and→2 denotes a defeasible rule,
though, as defined above, this denotation is ignored by the `d consequence relation.

Example 2. Let ∆ = {p,¬q, p→1 ¬r,¬q ∧ ¬r →2 s, s→1 t, p ∧ t→2 u}. Therefore
∆ `d u where the sequence of literals in the derivation is p,¬r,¬q, s, t, u.

For defeasible logic programming [16], 〈Φ, α〉 is an argument iff Φ `d α and there
is no Φ′ ⊂ Φ such that Φ′ `d α and it is not the case that there is a β such that Φ `d β
and Φ `d ¬β (i.e. Φ is a minimal consistent set entailing α), whereas for assumption-
based argumentation [12], 〈Φ, α〉 is an argument iff Φ `d α. Note, in [16] only the
defeasible rules are explicitly represented in the support of the argument, and in [12] only
the literals are explicitly represented in the support of the argument, but in both cases it
is a trivial change (as we do here) to explicitly represent both the rules and literals used
in the derivation in the support of the argument.

1The type of implication appearing in each formula in the support of an argument is used for determining
the relative preference of the argument when compared with other arguments.



Example 3. Continuing Example 2, the following is an argument in defeasible logic
programming [16].

〈{p,¬q, p→1 ¬r,¬q ∧ ¬r →2 s, s→1 t, p ∧ t→2 u}, u〉

Example 4. For ∆ = {p,¬q, s, p→ ¬r,¬q ∧ ¬r ∧ s→ t, t ∧ p→ u, v}, the following
is an argument in assumption-based argumentation [12].

〈{p,¬q, s, p→ ¬r,¬q ∧ ¬r ∧ s→ t}, t〉

Also note that in [12], there is the notion of a backward argument which is an ar-
gument that can be constructed by backward chaining reasoning: This means that the
derivation is constructed starting from the goal, which generates subgoals, and which are
addressed by recursion. If 〈Φ, α〉 is a backward argument, then 〈Φ, α〉 is an argument,
and so Φ `d α. Furthermore, this backward reasoning will avoid some unnecessary for-
mulae appearing in the support of the argument, but it is not guaranteed that the support
is minimal (i.e. it is possible that there is a Φ′ ⊂ Φ such that Φ′ `d α).

Clearly, classical logic has a richer language and proof theory than defeasible logic.
Even if we restrict classical logic to the same language as defeasible logic, then we see
many simple situations where classical logic gives an intuitive inference and defeasible
logic fails to give the inference, such as in the following example.

Example 5. Let ∆ = {a→ b,¬a→ b}. Hence, ∆ `c b, but ∆ 6`d b.

However, we should not regard classical logic as better than defeasible logic, or vice
versa. Rather, there is a range of logics available as base logics, and that we should choose
the base logic according to the needs of the application. Moreover, we should not restrict
consideration to those base logics already considered in the literature on argumentation.
There are many other candidates in the literature on artificial intelligence that could be
harnessed as base logics.

In some approaches to defeasible logic, such as argument-based extended logic pro-
gramming [24], a more complex defeasible rule is used that is based on two types of
negation (strong ¬ and weak ∼). For an atom γ, both γ and ¬γ are strong literals, and
for a strong literal δ,∼δ is a weak literal. An enhanced defeasible rule is a formula of the
following form where α0, . . . , αm are strong literals, β0, . . . , βn are weak literals, and δ
is a strong literal and→k is an implication symbol.

α0 ∧ . . . ∧ αm ∧ β0 ∧ . . . ∧ βn →k δ

Using this language, we can obtain a refined form of a defeasible consequence relation,
which we call the enhanced consequence relation `e as follows. In this, the antecedent
of a defeasible rule is satisfied when the strong literals can be obtained earlier in the
derivation. The meaning of the weak literals is that they are assumed to not hold, and
if there is evidence to the contrary in ∆, this will be manifested in the existence of a
counterargument.

Definition 2. Let ∆ be the union of a set of enhanced defeasible rules and a set of strong
literals. The enhanced consequence relation `e is defined as follows.



∆ `e ψ iff there is a sequence of literals α1, . . . , αn

such that ψ is αn and for each αi ∈ {α1, . . . αn}
either αi is a strong literal in ∆
or there is a γ0 ∧ . . . ∧ γm ∧ β0 ∧ . . . ∧ βn →k δ ∈ ∆

and {γ0, . . . , γm} ⊆ {α1, . . . , αi−1}

In the following example, →1 denotes a strict rule and →2 denotes an enhanced
defeasible rule, though as before, this differentiation does not affect the consequence
relation.

Example 6. Let ∆ = {p, p →1 ¬r,¬r∧ ∼q →2 s, s →1 t, p ∧ t →1 u}. Therefore
∆ `d u where the sequence of literals in the derivation is p,¬r, s, t, u.

For argument-based extended logic programming [24], we can define 〈Φ, α〉 as an
argument iff Φ `e α and there is no Φ′ ⊂ Φ such that Φ′ `e α.

Example 7. Continuing Example 6, the following is an argument in argument-based
extended logic programming [24].

〈{p, p→1 ¬r,¬r∧∼q →2 s, s→1 t, p ∧ t→1 u}, u〉

In [8,9], various proposals for argumentation based on defeasible logic were critici-
zed for violating some postulates that they proposed for acceptable argumentation. They
suggested introducing contraposition into the reasoning of the base logic offered a way
to address this problem. We introduce contraposition by defining a consequence relation
as follows where Contrapositives(∆) is the set of contrapositives formed from the rules
in ∆.

Definition 3. Let ∆ be a set of rules and literals. The defeasible logic consequence
relation `f is defined as follows.

∆ `f ψ iff there is a sequence of literals α1, . . . , αn

such that ψ is αn and for each αi ∈ {α1, . . . αn}
either αi is a literal in ∆
or there is a β1 ∧ . . . ∧ βj →k αi ∈ ∆ ∪ Contrapositives(∆)

and {β1, . . . , βj} ⊆ {α1, . . . , αi−1}

Example 8. Let ∆ = {q,¬r, p∧ q → r,¬p→ u}. So Contrapositives(∆) = {¬r∧ q →
¬p, p ∧ ¬r → ¬q,¬u → p}. Therefore, ∆ `f u, where the sequence of literals in the
derivation is q,¬r,¬p, u.

Further base logics considered for logic-based argumentation include (i) variants of
defeasible logic with annotations for lattice-theoretic truth values (such as for Belnap’s
four-valued logic) [28] and for possibility theory [1], (ii) temporal reasoning calculi used
with defeasible logic [4] and with classical logic [21], (iii) minimal logic (which is intui-
tionistic logic without the ⊥ → φ axiom) [18], and (iv) a form of modal logic [13].

A more general approach to logic-based argumentation is to leave the logic for de-
duction as a parameter. This was proposed in abstract argumentation systems [29], and
developed in assumption-based argumentation (ABA) [12]. However, since a substantial
part of the development of the theory and implementation of ABA is focused on defea-
sible logic (e.g. [15]), we have considered the base logic of ABA as being given by the
`d consequence relation.



∆ ∪ {α} `x α (Reflexivity)
∆ ∪ {α} `x α if α is a literal (Literal reflexivity)
∆ ∪ {β} `x γ if ∆ ∪ {α} `x γ and ` α↔ β (Left logical equivalent)
∆ `x α if ∆ `x β and ` β → α (Right weakening)
∆ `x α ∧ β if ∆ `x α and ∆ `x β (And)
∆ ∪ {α} `x β if ∆ `x β (Monotonicity)
∆ `x β if ∆ `x α and ∆ ∪ {α} `x β (Cut)
∆ `x α→ β if ∆ ∪ {α} `x β (Conditionalization)
∆ ∪ {α} `x β if ∆ `x α→ β (Deduction)
∆ ∪ {α} `x β if ∆ ∪ {¬β} `x ¬α (Contraposition)
∆ ∪ {α ∨ β} `x γ if ∆ ∪ {α} `x γ and ∆ ∪ {β} `x γ (Or)

Figure 1. Some properties of a consequence relation `x adapted from [20].

3. Properties of base logics

We have defined a base logic as the logic for defining entailment in constructing argu-
ments. Given that many logics have been proposed in philosophy, linguistics, and ar-
tificial intelligence, a natural question to ask is what are the required properties of a
consequence relation. The list of properties of a consequence relation given in Figure 1
provides a good starting point for considering this question. These properties have been
proposed as desirable conditions of a consequence relation. Furthermore, according to
Gabbay [14] and Makinson [20], the minimal properties of a consequence relation are
reflexivity, monotonicity (or a variant of it) and cut, and the need for each of them can be
justified as follows:

• Reflexivity captures the idea of “transparency”; If a formula α is assumed (i.e.
α ∈ ∆), then α can be declared (i.e ∆ `x α).

• Monotonicity captures the idea of “irreversibility”; Once a formula α is declared
(i.e ∆ `x α), then there is no assumption that can cause α to be withdrawn (i.e.
there is no β such that ∆ ∪ {β} 6`x α).

• Cut captures the idea of “equitability” of assumptions and inferences. Once a
formula α is declared (i.e ∆ `x α), it can be used for further reasoning.

These three properties can be seen equivalently in terms of the following three pro-
perties based on the consequence closureCx of a logic x [20], whereCx(∆) = {α | ∆ `
α}: (inclusion) ∆ ⊆ Cx(∆); (idempotence) Cx(∆) = Cx(Cx(∆)); and (monotony)
Cx(∆′) ⊆ Cx(∆) whenever ∆′ ⊆ ∆.

Classes of base logic can be identified using properties of the consequence relation,
and then argument systems can be developed in terms of them. For instance, to instantiate
abstract argumentation, in [2], the class of Tarskian logics has been used. This is the class
defined by inclusion, idempotence, finiteness (i.e. Cx(∆) is the union of Cx(Γ) for all
finite subsets Γ of ∆), absurdity (i.e. Cx({φ}) = L for some φ in the language L), and
coherence (i.e. Cx(∅) 6= L). Classical logic is an example of a Tarskian logic.

We now consider the base logics `c, `d, `e, and `f , reviewed in the previous sec-
tion, in terms of the properties of the consequence relation given in Figure 1.

Proposition 1. Each property holding for each of `c, `d, `e and `f is denoted by × in
the following table.



`c `d `e `f

Reflexivity ×
Literal reflexivity × × × ×
Left logical equivalence ×
Right weakening ×
And ×
Monotonicity × × × ×
Cut × × × ×
Conditionalization ×
Deduction ×
Contraposition × ×
Or ×

The good news from the above proposition is that the base logics `c, `d, `e, and
`f , that appear in the main proposals for logic-based argumentation, satisfy the proper-
ties of monotonicity and cut. Furthermore, by a trivial adaptation of the `d, `e, and `f

consequence relations, they could also all satisfy reflexivity. For instance, for `d if we
add the meta-rule that “if ψ is a rule in ∆, then ∆ `d ψ", then reflexivity also holds.
This means that we can say that the main base logics used in argumentation meet the
minimal requirements for being consequence relations. Furthermore, if we add the above
meta-rule, then we will also get the deduction property holding.

We can also compare base logics according to inferential strength of their conse-
quence relations as follows.

Definition 4. For `x and `y , `x is at least as strong as `y iff for all knowledgebases
∆, and all formulae α, if ∆ `y α, then ∆ `x α. Furthermore, `x is stronger than `y

iff `x is at least as strong as `y and it is not the case that `y is at least as strong as `x.
Finally, `x and `y are equally strong iff `x is at least as strong as `y and `y is at least
as strong as `x.

Proposition 2. Let ∆ be the union of a set of rules (excluding enhanced defeasible rules)
and a set of literals (excluding weak literals): (1) `c is stronger than `d, `e, and `f ; (2)
`f is stronger than `d and `e; and (3) `d and `e are equally strong.

Another way that we can compare the consequence relations is with how they deal
with inconsistent assumptions. For this, we consider the trivializable and the purity pro-
perties. The former characterizes the situations where any formula of the language fol-
lows from an inconsistent set of premises, and the later characterizes a notion of rele-
vancy between premises and consequences.

Definition 5. The consequence relation `x is trivializable iff for all ∆, there is an atom
α such that if ∆ ` α and ∆ ` ¬α then ∆ `x β for all atoms β.

Definition 6. Let Atoms(Γ) give the atoms appearing in a set of formulae Γ. A formula
α is pure with respect to ∆ iff Atoms(∆) ∩ Atoms({α}) 6= ∅. A consequence relation
`x is pure iff for all α and ∆, if ∆ `x α, then α is pure with respect to ∆.

Proposition 3. If a consequence relation `x is pure, then `x is not trivializable. Howe-
ver, the converse does not necessarily hold.



Proposition 4. The `c consequence relation is trivializable and not pure, whereas the
`d, `e, and `f consequence relations are not trivializable and they are pure.

The trivialization and lack of purity of classical logic does not appear to be a short-
coming in argumentation since for 〈Φ, α〉 to be an argument, most proposals have that Φ
is consistent.

Another dimension for comparing base logics is with respect to computational com-
plexity. For `c, it is well-known that the decision problem for entailment is co-NP com-
plete and for satisfiability it is NP complete [17]. This results in the problem of deciding
whether a tuple 〈Φ, α〉 is an argument (i.e. the support entails the claim, it is minimal for
this, and it is consistent) being Σp

2 complete [23]. We can also regard `f as being co-NP
complete for entailment and NP complete for satisfiability since generating the contra-
postives for each defeasible rule can equivalently be captured by treating each rule as a
clause (i.e. a disjuntion of literals) and with the proof rule being disjunctive syllogism
instead of modus ponens. Hence, we can formalize the `f decision problems as deci-
sion problems of Boolean satisfiability and its complement. In contrast, the `d and `e

consequence relations are much more efficient for entailment and consistency checking
(where ∆ 6`x ⊥ is an abbreviation for ∆ 6`x α and ∆ 6`x ¬α). For these, we can define a
polynomial algorithm (adapting an algorithm by Mahler [19]) to decide whether ∆ `x α
holds and whether ∆ 6`x ⊥ holds.

In this section, we have considered how we can compare base logics used in argu-
mentation. We see that the key properties of cut and monotonicity that have been propo-
sed as being essential properties for a logic, together with the restricted form of reflexi-
vity (called literal reflexivity), hold for the base logics for a number of key proposals. We
also see that a number of key proposals are essentially equivalent in terms of the base
logic, and that differences between the proposals can be identified in terms of these pro-
perties. We do not suggest that any particular proposal is superior to others because of its
properties. Rather, different applications call for different base logics. See for instance
the discussion of when contraposition is desirable [8] and undesirable [7].

4. Framework for combined base logics

An approach to defining a base logic is to compose it from two other logics. Before we
define this idea, we consider an example taken from a proposal for ontology-based ar-
gumentation with the base logic `Γ as follows [30]. The essential idea is that a set of
defeasible rules can be used with an ontology so that the ontology contains the infor-
mation that is certain and the defeasible rules contain the information that is uncertain.
In the prototype system presented in [30], a specialized description logic software was
harnessed for the ontology. See also [22] for a similar proposal.

Definition 7. Let ∆ be a set of defeasible rules of the form β1 ∧ . . . βj → βj+1 and let
Γ be an ontology in classical logic or description logic.

∆ `Γ ψ iff there is a sequence of literals α1, . . . , αn

such that ψ is αn and for each αi ∈ {α1, . . . αn}
either Γ ∪ {α1, . . . , αi−1} `c αi

or there is a β1 ∧ . . . ∧ βj → αi ∈ ∆
such that {β1, . . . , βj} ⊆ {α1, . . . , αi−1}



Example 9. {a→ b, c→ ¬d} `{a,b→c} ¬d because of the sequence a, b, c,¬d.

An alternative to this definition would be to only allow for the ontology to be
called for literal inferences, and no inferences from the defeasible reasoning could be
passed back to the ontology for further inferences (i.e. we have Γ `c αi instead of
Γ ∪ {α1, . . . , αi−1} `c αi ). This is a more cautious form of reasoning.

Definition 8. Let ∆ be a set of defeasible rules of the form β1 ∧ . . . βj → βj+1 and let
Γ is an ontology in classical/description logic.

∆ `′Γ ψ iff there is a sequence of literals α1, . . . , αn

such that ψ is αn and for each αi ∈ {α1, . . . αn}
either Γ `c αi

or there is a β1 ∧ . . . ∧ βj → αi ∈ ∆
such that {β1, . . . , βj} ⊆ {α1, . . . , αi−1}

Example 10. Continuing Example 9, for ∆ = {a → b, c → ¬d}, and Γ = {a, b→ c},
we get ∆ `Γ b, but ∆ 6`Γ c, and ∆ 6`Γ ¬d,

Now we generalize Definition 7 into a form of combined base logic, in what we call
a bilogic, as follows.

Definition 9. Let `x be the consequence relation for a logic x, and let `y be the conse-
quence relation for a logic y. Also let ∆ ⊆ Lx be a knowledgebase in the language x,
and let Γ ⊆ Ly be a knowledgebase in the language y. The consequence relation for the
bidirectional bilogic `x⊕y , is defined as follows.

(∆,Γ) `x⊕y α iff either ∆ ∪ {β1, . . . , βn} `x α or Γ ∪ {β1, . . . , βn} `y α
where (∆,Γ) `x⊕y β1 and . . . and (∆,Γ) `x⊕y βn

Using the notion of the bidirectional bilogic, we see in the following proposition that
we can define the consequence relation `Γ (i.e. Definition 7) equivalently just using the
`d and `c consequence relations.

Proposition 5. For a set of defeasible rules and literals ∆ and a set of formulae Γ,
∆ `Γ ψ iff (∆,Γ) `c⊕d ψ.

We can also see that other base logics can be captured as bidirectional bilogics, as
illustrated next, and this may help us better understand existing definitions.

Proposition 6. If ∆ is a set of defeasible rules and literals, and Γ is a set of strict rules
and literals, then (∆,Γ) `d⊕d ψ iff ∆ ∪ Γ `d ψ.

Now, we consider an alternative notion of bilogic, generalizing Definition 8, that
lets one of the constituent logics be used as a service for providing formulae without
conditional reasoning.

Definition 10. Let `x be the consequence relation for a logic x, and let `y be the conse-
quence relation for a logic y. Also let ∆ ⊆ Lx be a knowledgebase in the language x,
and let Γ ⊆ Ly be a knowledgebase in the language y. The consequence relation for the
unidirectional bilogic `x	y , is defined as follows.



(∆,Γ) `x	y α iff either ∆ `x α or Γ ∪ {β1, . . . , βn} `y α
where (∆,Γ) `x	y β1 and . . . and (∆,Γ) `x	y βn

Using unidirectional bilogic, we can define the consequence relation `′Γ equivalently
just using the `d and `c consequence relations.

Proposition 7. For a set of defeasible rules and literals ∆ and a set of formulae Γ,
∆ `′Γ ψ iff (∆,Γ) `c	d ψ.

We can also consider new proposals for combining existing base logics. For instance,
if ∆ is a set of strict rules and literals and Γ is a set of defeasible rules and literals,
then (∆,Γ) `d	d is a cautious defeasible logic (as opposed to the `d⊕d considered in
Proposition 6) that is cautious with its use of strict rules (i.e. those in ∆).

Example 11. Let ∆ = {a, b, c → e, d → ¬e} be a set of strict rules, and let Γ =
{a → c, b → d} be a set of defeasible rules. Using `d, with ∆ ∪ Γ, we get e and ¬e as
inferences (i.e. ∆ ∪ Γ `d e and ∆ ∪ Γ `d ¬e), which may be regarded as unacceptable,
since a contradiction follows from the strict rules). As an alternative, we can use `d	d,
and we do not get a contradiction since (∆,Γ) 6`d	d e and (∆,Γ) 6`d	d ¬e.

In general, a unidirectional bilogic is more cautious than its bidirectional bilogic
counterpart, and hence, it gives fewer inferences. Therefore, the bidirectional bilogic is
stronger for a given choice of base logics x and y.

Proposition 8. For any base logics x and y, if (∆,Γ) `x	y α, then (∆,Γ) `x⊕y α.

Considering existing base logics as bilogics allows us to decompose existing, per-
haps complex, definitions and consider them in terms of the simpler constituent logics.
Furthermore, combining base logics in the form of bilogics gives us the possibility for
designing and implementing new base logics more quickly. It also raises opportunities
for using existing technology (e.g. description logic reasoners, defeasible logic reaso-
ners, logic programming systems, database systems, etc) for implementing base logics,
and then combining them as bilogics to give systems appropriate for applications.

5. Impact of choice of base logic

The choice of base logic has a significant impact on the arguments generated by an
argument system. For instance, if we use `c as our base logic, then 〈{a→ b,¬a→ b}, b〉
is an argument, whereas if we use `d as our base logic, then 〈{a → b,¬a → b}, b〉 is
not an argument. There are many examples where it is debatable whether an inference
is intuitive or not, and it seems that whether to choose a logic that permits or prohibits
certain inferences depends on the application.

So far we have focused our discussion on propositional logics as base logics. But,
there are first-order logics that we can use as base logics [6]. By choosing a first-order
logic, we get further choices for defining arguments. Consider the knowledgebase ∆ =
{p(a),∀x.(p(x) → q(x)}. We can let 〈{p(a),∀x.(p(x) → q(x)}, q(a)〉 be an argument
since the support is a minimal consistent set of formulae that entails the claim. However,
we may also want to let 〈{p(a), p(a) → q(a)}, q(a)〉 be an argument since we may



regard forming a ground version of the premises as being an acceptable step in forming
the argument [21]. In other words, if ∆ is a knowledgebase, and Ground(∆) is formed
from ∆ by universal specialization (i.e. grounding of universally quantified formulae),
then we may allow 〈Φ, α〉 as an argument when Φ is a minimal consistent subset of
Ground(∆). This definition seems intuitive. Furthermore, it allows for arguments to be
formed for a claim when it is not possible to do so from the original knowledgebase as
illustrated in the next example.

Example 12. Consider Φ = {∀x.p(x) → q(x), p(a) ∧ p(b) ∧ p(c) ∧ ¬q(b)}. Since
Φ `c ⊥, 〈Φ, q(a)〉 is not an argument. However, there is a Ψ ⊆ Ground(Φ) such that
〈Ψ, q(a)〉 is an argument, namely Ψ = {p(a)→ q(a), p(a) ∧ p(b) ∧ p(c) ∧ ¬q(b)}.

Richer logics also lead to more possibilities for counterarguments. For example,
using defeasible logic as a base logic, a counterargument 〈Φ, α〉 for an argument 〈Ψ, β〉
is often defined as being such that α is the negation of a literal occurring in the derivation
of β from Ψ. In other words, there is a γ such that Ψ `d γ and γ is the complement
of α (for instance, 〈{p, p → q, q → r}, r〉 is an argument and 〈{s, s → ¬q, },¬q〉
is a counterargument to it). Now, if we consider a richer logic as a base logic, such
as classical logic, then we see we have more counterarguments (as illustrated in the
following example).

Example 13. Consider ∆ = {a, b, a → c, b → d,¬a ∨ ¬b}. used to generate the
following arguments using `c as the base logic.

A1 = 〈{a, b, a→ c, b→ d}, c ∧ d〉 A2 = 〈{a,¬a ∨ ¬b},¬b〉
A3 = 〈{a,¬a ∨ ¬b},¬a〉 A4 = 〈{¬a ∨ ¬b},¬a ∨ ¬b〉

Here, we see that A2 and A3 are counterarguments to A1 as discussed above. However,
we see that the claim of A4 also contradicts some of the support of A1. It does not
contradict an individual literal, but rather contradicts a conjunction of literals. It is a
weaker counterargument than A2 and A3 in the sense it has a subset of the support and
the claim is implied by the claim of each of A2 and A3.

In [5], the nature of counterarguments in a rich logic such as classical logic was
explored, and the proposal made that only the maximally conservative counterarguments
(the arguments with the weakest claim necessary for contradicting the argument) need to
be considered since they subsume the other counterarguments. The value of maximally
conservative counterarguments can even be seen with a language of defeasible rules as
illustrated next.

Example 14. Consider ∆ = {a, b, a ∧ b→ c, a→ ¬b}. used to generate the following
arguments using `d as the base logic. Here, we see that A2 is a counterargument to A1

as discussed above. However, we may have preferred to have 〈{a → ¬b}, a → ¬b〉 as
the counterargument since it is based on fewer premises.

A1 = 〈{a, b, a ∧ b→ c}, c〉 A2 = 〈{a, a→ ¬b},¬b〉

When dealing with richer logics, the need to avoid unnecessary counterarguments is
important. Richer logics can create many more inferences, and therefore they can create
many more counterarguments. Often, it seems there is much redundancy, and so selecting



a subset of counterarguments can render the use of argumentation more manageable by
eliminating potentially many redundant counterarguments.

One issue that we have conflated so far in this paper is the dichotomy identified bet-
ween assumption-based and derivation-based approaches to the definition of arguments.
In the former, the support of an argument is a set of premises that proves the claim (as
we have considered in this paper), and in the later, the support of an argument is a proof
resulting in the claim. For defining individual arguments, the assumption-based approach
seems sufficient since the proof can be generated from the assumptions: Given an argu-
ment 〈Φ, α〉 and a base logic x, there is a function Proofsx(〈Φ, α〉) which returns the set
of proofs of α from Φ. The reason that proofs become important is that some approaches
to comparing arguments take into account the sequence in which formulae are brought
into the proof and the relative “strength” of those premises. For instance, consider the
following arguments.

A1 = 〈{a, a→1 b, b→2 c}, c〉 A2 = 〈{a, a→2 ¬b,¬b→1 ¬c},¬c〉

So A1 and A2 rebut each other, and furthermore each has a subargument that under-
cuts the other: A3 = 〈{a, a →1 b}, b〉 undercuts A2 and A4 = 〈{a, a →2 ¬b},¬b〉
undercuts A1. Now, suppose→1 denotes strict implication, and→2 denotes defeasible
implication, then we may regard A3 as sufficient to defeat A2, in which case A1 has no
counterargument. For more discussion of these issues, see [25].

6. Discussion

There are a number of proposals for logic-based formalizations of argumentation. Of-
ten these proposals are quite complex in that they are based on number of defined no-
tions (e.g. definition of an argument, counterargument, preference criteria, acceptability
or warrant criteria, etc), and as a result they become difficult to compare. Therefore, at-
tempts to draw out features of logic-based argument systems, in order to find commona-
lities and differences, is potentially valuable.

In this paper, we have seen how base logics are an important part of a logic-based
argument system. By considering the base logic, we can identify properties to compare
and contrast the base logics. There are some properties of the consequence relation in
common for all the key approaches (including the important properties of cut, monoto-
nicity, and a restricted form of reflexivity), and there are properties of the consequence
relation to differentiate base logics (e.g. and, or, left logical equivalence, etc). But, ob-
viously, increasing the strength of the consequence relation can affect the computational
complexity of decision problems (such as validity and consistency) for the logic. Also,
increasing the strength of the consequence relation, and the language over which it ope-
rates, can also lead to an increasing range of options for how to define notions such as
argument, counterargument, attack, and defeat.
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