
Formalization of Weighted Factors Analysis

Ali Hessami

�

and Anthony Hunter

yz

March 7, 2002

Keywords: Argumentation; Knowledge representation and reasoning; Logic; Decision support;

Scenario analysis; Knowledge management.

Abstract

Weighted Factors Analysis (WeFA) has been proposed as a new approach for elicitation,

representation, and manipulation of knowledge about a given problem, generally at a high and

strategic level. Central to this proposal is that a group of experts in the area of the problem

can identify a hierarchy of factors with positive or negative in
uences on the problem outcome.

The tangible output of WeFA is a directed weighted graph called a WeFA graph. This is a

set of nodes denoting factors that can directly or indirectly in
uence an overall aim of the

graph. The aim is also represented by a node. Each directed arc is a direct in
uence of one

factor on another. A chain of directed arcs indicates an indirect in
uence. The in
uences may

be identi�ed as either positive or negative. For example, sales and costs are two factors

that in
uence the aim of profitability in an organization. sales has a positive in
uence

on profitability and costs has a negative in
uence on profitability. In addition, the

relative signi�cance of each in
uence is represented by a weight. In this paper, we develop

Binary WeFA which is a variant of WeFA where the factors in the graph are restricted to

being either true or false. Imposing this restriction on a WeFA graph allows us to be more

precise about the meaning of the graph and of reasoning in it. Binary WeFA is a new proposal

that provides a formal yet su�ciently simple language for logic-based argumentation for use

by business people in decision-support and knowledge management. Whilst Binary WeFA is

expressively simpler than other logic-based argumentation formalisms, it does incorporate a

novel formalization of the notion of signi�cance.

1 Introduction

Weighted Factors Analysis (WeFA) has been proposed as a new approach for elicitation, represen-

tation, and manipulation of knowledge about a given problem, generally at a high and strategic

level [8]. Central to this proposal is that a group of experts in the area of the problem can identify

factors with positive or negative in
uences on the problem outcome. Furthermore, for each of these

�

WSAtkins, 171 High Holburn, London WC1V 7AA.

y

Department of Computer Science, University College London, Gower Street, London WC1E 6BT.

z

Corresponding author (a.hunter@cs.ucl.ac.uk)

1



factors, this breakdown can be repeated by recursion. This gives a hierarchical decomposition of

factors according to how directly each factor a�ects the overall problem being analysed. WeFA

harnesses this elicitated knowledge in a structured framework for further analysis.

Once the need for the application of WeFA to a problem has been identi�ed, a meeting of rel-

evant and interested stakeholders and experts can be called to examine the key factors in the

problem. The �rst task of this group is knowledge elicitation and the starting point for this

is the identi�cation of a factor that is the overall aim of the analysis. For example it might

be The project is completed on time and within budget or it might be The business has

increased profitability. Having agreed on the aim, the group can normally identify factors

with positive or negative in
uences on the outcome of the aim. Furthermore, for each of these

factors, subsidiary factors can be identi�ed with positive and negative in
uences on the factor.

This process can be continued, until an appropriate breakdown and analysis of the problem has

been achieved.

The tangible output of WeFA is a WeFA graph. This is a set of nodes denoting factors that

can directly or indirectly in
uence an overall aim of the graph. The aim is also represented by a

node. Each directed arc is a direct in
uence of one factor on another. A chain of directed arcs

indicates an indirect in
uence. The in
uences may be identi�ed as either positive or negative.

For example, sales and costs are two factors that in
uence the aim of profitability in an

organization. sales has a positive in
uence on profitability and costs has a negative in
uence

on profitability.

Each node, other than the aim, in a WeFA graph is either a positive or negative in
uence on

the aim. A factor can have a positive in
uence on the aim via a direct positive in
uence on the

aim or indirectly by having a negative in
uence on a node that has a negative in
uence on the

aim or indirectly by having a positive in
uence on a node that has a positive in
uence on the

aim. A factor can have a negative in
uence on the aim via a direct negative in
uence on the aim

or indirectly by having negative in
uence on a node that has a positive in
uence on the aim or

indirectly by having a positive in
uence on a node that has a negative in
uence on a node.

A node that has a direct positive in
uence on another node is called a driver and a node that has

a direct negative in
uence on another node is called an inhibitor. Construction of a WeFA graph

is usually done by just considering the drivers and inhibitors for each node. This allows for the

contruction of the graph by focussing on local issues. Once the graph is constructed, it can be

analysed globally.

In addition to identifying the polarity for each in
uence, it is possible to identify the relative

weight of the in
uence. For a factor in a graph, there may be a number of factors that in
uence it.

These factors may have di�erent weights. For example, consider the factor passing a new bill

in parliament, with the subsidiary factors the bill is supported by a backbench MP and

the bill is supported by the Prime Minister. Both these subsidiary factors have a positive

in
uence, but the latter factor carries much more weight than the former.

In a given WeFA graph, there are a number of factors represented that can directly or indirectly

in
uence the aim of the graph. So the outcome of the aim of the graph is regarded as contingent

on the truth value of the other factors in the graph. To analyse this contingency, a scenario is an

assignment of truth values to some of these factors. Given this assignment, the truth values can

be propagated through the graph in order to determine the truth value for the aim.

Scenario analysis involves identifying both extreme scenarios, such as best-case and worst-case

scenarios, and average-case scenarios, to see the e�ect on the outcome of the aim of the graph.

Other criteria may also be used to generate interesting sets of scenario to test in a WeFA graph.

In this paper, we provide a formalization of WeFA. In particlar, we develop Binary WeFA which

2



a

1

b

1

�

�

�

��

+2

b

2

6

-1

b

3

@

@

@

@I

-1

c

1

�

�

�

��

+2

c

2

6

-1

c

3

6

+1

c

4

6

+1

�

-1

c

5

@

@

@

@I

-1

Figure 1: A Binary WeFA graph with the aim a

1

. b

1

has a direct positive in
uence on the aim,

and b

2

and b

3

have direct negative in
uences on the aim. So b

1

is a driver for the aim and b

2

and

b

3

are inhibitors. c

1

, c

4

and c

5

have an indirect positive in
uence on the aim, and c

2

, c

3

and c

4

have an indirect negative in
uence on the aim. As an example of a scenario, we could have c

1

, c

2

and c

3

true. From this, we would get c

4

, c

5

and b

3

are false by default, and b

1

and b

2

are true by

inference, and �nally a

1

true by inference.

.

is a variant of WeFA where the factors in the graph are restricted to being either true or false.

Imposing this restriction on a WeFA graph allows us to be more precise about the meaning of

the graph and of reasoning in it. In this formalization, we have sought a balance between having

a simple representation that participants in WeFA should feel happy with, and a representation

that has su�cient expressibility for worthwhile problem analysis.

In order to do reasoning with a Binary WeFA graph, we assume a scenario which is an assignment

of true or false to some of the nodes in the graph. If a node is true, then any arc coming out from

that node is �red. From this assignment, we can propagate truth assignments to the other nodes

as follows: For each node x, if the sum of the weights on the positive �red arcs is greater than the

sum of the weights on the negative �red arcs, then node x is true, otherwise it is false. The gives

us a way of representing and reasoning with the relative signi�cance of direct in
uences on a node.

In the basic de�nition for Binary WeFA, factors can either be true or false and there is no explicit

probability value. However it does incorporate default reasoning: If a node is not assigned true

by a scenario, and it is not forced to be true by application of the scenario to the graph, then it

is assumed to be false. Uncertainty is captured by the combination of default reasoning and the

formalisation of signi�cance of in
uences.

Binary WeFA is a form of logic-based argumentation system that incorporates a simpli�cation of

techniques from Hunter et al [10, 9]. An excellent introduction to the notion of argumentation is

by Toulmin [17] and an excellent introduction to the role of logic in argumentation is Fisher [5].

See [16] for a recent reviews of logic-based argumentation.

Whilst there have been a signi�cant number of recent proposals for logic-based argumentation,

most seem to implicitly assume that the reasoning is done on a knowledge-base constructed by

knowledge engineers. In contrast, we assume that the participants in the WeFA exercise are con-

structing the knowledge-base (ie. the WeFA graph). This means we have adopted a simpler and

more intuitive language, with simpler reasoning, than that normally proposed for logic-based ar-

gumentation. However, we believe that there is a signi�cant need for Binary WeFA in problem

analysis, decision-support and knowledge management in organizations.

3



2 Formalization of syntax

A WeFA graph is composed of a set of nodes that represent measurable parameters in the real-

world. An arc from a node x to a node y denotes an in
uence of x on y. In addition, each arc is

weighted to indicate the strength of the arc relative to the other arcs with the same destination

node.

A WeFA graph is used to represent a general situation. More speci�cally it is used to represent

how some events can in
uence other events. This can be to model a one-o� situation, such as for

analysing a strategic decision, or to model a reoccurring situation, such as for analysing a set of

operational decisions.

De�nition 2.1 A WeFA graph is a tuple (N;A; F ) where N is a set of nodes, A is a set of arcs

and F assigns an integer, called the weight, to each arc in A. In addition, we assume there is a

node x in N such that (1) there are only inward arcs into N and (2) there is a path (respecting

the directionality of the arcs) from every other node to x. We call x the aim of the graph.

We assume that a WeFA graph is developed for analysing some aspect of an organization. The

aim is the central aim or goal of the organization in the situation being modelled and analysed.

Normally, we do not know whether the aim is true (or false), and we want to determine whether

according to the graph certain combinations of other nodes being true or false makes the aim true

(or false). However, an alternative way of using a WeFA graph is as follows: It may be known that

the aim is true (or false), but it is unknown which combination of other nodes being true or false

made the aim true (or false).

According to the de�nition of a WeFA graph, the constraints are such that the graph is connected

though not strongly connected. Cycles are allowed. Also allowed are bidirectional in
uences be-

tween nodes, i.e. for a pair of nodes x and y, it is possible to have an arc from x to y and an arc

from y to x.

De�nition 2.2 Each node in a WeFA graph has an associated statement (normally a phrase or

sentence in free text) that denotes an outcome that can be veri�ed or falsi�ed in the real-world.

Example 2.1 The following are examples of statements associated with nodes:

The project completion is within-time and under-cost

There is an adequate cost-cutting strategy

Inflation is high

There is understaffing

There are problems with bad weather

Increase the charge to the customer

Taking the �rst statement The project completion is within-time and under-cost, we may

associate further text that de�nes what project completion is, what within-time means, and

what under-cost means. This further text may be comprehensive and may refer to other docu-

ments, reports, standards, etc.

De�nition 2.3 Each node is either an environmental variable or an organizational variable. The

environmental variables are outside the control of the organization, eg. Inflation is high. The

organizational variables are inside the control of the organization, eg. Increase the charge to

the customer.

4



One of the roles of WeFA modelling is to see how decisions by an organization are a�ected by

the wider environment when trying to realise some goal. It can also be used to see how certain

negative environmental outcomes can be o�set or ameliorated by organizational decisions.

De�nition 2.4 We can represent a WeFA graph using sets, or a �gure, or using the following

inline representation: The [] symbol is used to represent each arc with a weight so that an arc

(x; y) with weight +3 is represented by x[+3]y. So for any WeFA graph (N;A; F ), F (x; y) = n is

equivalent to x[n]y.

Example 2.2 Let the following be a WeFA graph. Here there are four nodes, with all the arcs

pointing to node y.

x

1

[�1]y x

2

[�1]y x

3

[+2]y

De�nition 2.5 The weight associated with each arc denotes the strength of the arc relative to the

other arcs entering the same node. The whole number part of the integer gives the signi�cance,

and the sign indicates whether it is a positive in
uence (a driver) or a negative in
uence (an

inhibitor). A + sign indicates a positive in
uence and a � sign indicates a negative in
uence.

Example 2.3 Returning to Example 2.2, we see that the in
uence of x

3

on y is twice as signi�cant

as either the in
uence of x

1

or x

2

on y.

We give the formal semantics for signi�cance in Section 3. However, informally we motivate it in

the following examples.

Example 2.4 Consider a WeFA graph with two arcs converging on a node y. Suppose one of the

arcs is a positive in
uence and the other is a negative in
uence. In addition, suppose they are both

of equal signi�cance. These could be represented by the following arcs:

x

1

[�1]y x

2

[+1]y

If both x

1

and x

2

are true, then y is false. If x

1

is true and x

2

is false then y is false. Finally if

x

1

is false and x

2

is true then y is true.

Example 2.5 Now consider a di�erent graph with two arcs converging on a node y such that one

arc is twice as signi�cant as the other.

x

3

[�1]y x

4

[+2]y

If both x

3

and x

4

are true then we can determine that y is true. If x

3

is true and x

4

is false then

y is false. Finally if x

3

is false and x

4

is true then y is true.

We explain the details of the mechanism behind these examples in this section. For this, we require

the de�nition of a number of subsidiary functions. In order to simplify the presentation we omit

qualifying subscripts, in particular for referencing WeFA graphs.

De�nition 2.6 For a WeFA graph (N;A; F ), the sets Inputs and Outputs are de�ned as follows:

For each x 2 N; Inputs(x) = fy 2 N j (y; x) 2 Ag

For each x 2 N;Outputs(x) = fy 2 N j (x; y) 2 Ag

For each x 2 N;Feeders(x) = fy 2 N j there is a path from y to x in A g

5



De�nition 2.7 For a WeFA graph (N;A; F ), the sets PositiveInputs and NegativeInputs are de-

�ned as follows:

For each x 2 N;PositiveInputs(x) = f(y; x) 2 A j F (y; x) > 0g

For each x 2 N;NegativeInputs(x) = f(y; x) 2 A j F (y; x) < 0g

For a WeFA graph (N;A; F ), each x in N is a variable that can take a value either true or false. In

a given situation, we may know the truth values of some of the nodes with the remainder unknown.

This is represented by a scenario (de�ned as follows).

De�nition 2.8 For a WeFA graph (N;A; F ), a scenario, denoted S, is a partial function from

N to ftrue; falseg.

A scenario �xes zero or more variables with a Boolean truth value. However, it does not take the

structure of the WeFA graph into consideration. As a result no rami�cations of the scenario are

identi�ed. We address this in the following.

De�nition 2.9 A primed WeFA graph is a tuple (N;A; F; S) where (N;A; F ) is a WeFA graph

and S is a scenario.

De�nition 2.10 For a primed WeFA graph (N;A; F; S), an extension, denoted E, is a total

function from N to ftrue; falseg.

Given a primed WeFA graph, we want to determine what are the truth values of all the nodes

in the graph are. In other words, we want to determine the rami�cations of the scenario when

applied to the graph. The result of applying a scenario to a WeFA graph is an extension.

De�nition 2.11 For a primed WeFA graph (N;A; F; S), an extension E, and a node x 2 N , the

sets PosFire and NegFire are de�ned as follows:

PosF ire(E; x) = f(y; x) 2 PositveInputs(x) j E(y) = true and F (y; x) > 0g

NegF ire(E; x) = f(y; x) 2 NegativeInputs(x) j E(y) = true and F (y; x) < 0g

If (y,x) is in PosFire(E,x), then (y,x) is a positive �red arc in E. Similarly, if (y,x) is in Neg-

Fire(E,x), then (y,x) is a negative �red arc in E.

De�nition 2.12 For a WeFA graph (N;A; F ), where f(z

1

; x); ::; (z

i

; x)g is a subset of A, the

Value function is de�ned as follows:

V alue(f(z

1

; x); ::; (z

i

; x)g) = F (z

1

; x) + ::+ F (z

i

; x)

where V alue(fg) = 0.

De�nition 2.13 For a primed WeFA graph (N;A; F; S), an extension E is a consistent extension

of (N;A; F; S) i� the following two conditions are satis�ed for each node x in N :

E(x) = true i� S(x) = true or (S(x) 6= false and V alue(PosF ire(E; x)) > V alue(NegF ire(E; x)))

E(x) = false i� S(x) = false or (S(x) 6= true and V alue(PosF ire(E; x)) � V alue(NegF ire(E; x)))

6



A consistent extension is an extension that gives priority to the scenario so that if a scenario

says a particular node is true (or respectively false), then it is true (or respectively false) in the

consistent extension. In the case when a scenario does not specify whether a particular node is

true or false, then the truth value is determined from the aggregation of the input arcs. If the sum

of the signi�cance of the positive �red arcs is greater than the sum of the negative �red arcs, then

the node is true in the consistent extension, otherwise it is false.

Example 2.6 The following WeFA graph, with scenario f(x; true)g, gives the consistent extension

f(x; true); (y; true); (z; false)g.

x[+1]y y[�1]z

Example 2.7 Consider the following WeFA graph

y

1

[+1]x y

2

[�1]x

and the following scenarios, S

1

,S

2

,S

3

, and S

4

, which respectively give the corresponding consistent

extensions E

1

, E

2

, E

3

, and E

4

on the right.

S

1

= f(y

1

; false); (y

2

; true)g E

1

= f(y

1

; false); (y

2

; true); (x; false)g

S

2

= f(y

1

; true); (y

2

; true)g E

2

= f(y

1

; true); (y

2

; true); (x; false)g

S

3

= f(y

1

; true); (y

2

; false)g E

3

= f(y

1

; true); (y

2

; false); (x; true)g

S

4

= f(y

1

; false); (y

2

; false)g E

4

= f(y

1

; false); (y

2

; false); (x; false)g

Example 2.8 Consider the following WeFA graph

y

1

[+2]x y

2

[�1]x y

3

[�1]x y

4

[�1]x

and the following scenarios, S

1

and S

2

, which give the corresponding consistent extensions E

1

and

E

2

below.

S

1

= f(y

1

; true); (y

2

; true); (y

3

; true); (y

4

; true)g

E

1

= f(y

1

; true); (y

2

; true); (y

3

; true); (y

4

; true); (x; false)g

S

2

= f(y

1

; true); (y

2

; true)g

E

2

= f(y

1

; true); (y

2

; true); (y

3

; false); (y

4

; false); (x; true)g

Example 2.9 Consider the following WeFA graph

y

1

[+2]x y

2

[�1]x

and the following scenarios, which respectively give the corresponding consistent extensions on the

right.

S

1

= f(y

1

; true)g E

1

= f(y

1

; true); (y

2

; false); (x; true)g

S

2

= f(y

1

; true); (y

2

; true)g E

2

= f(y

1

; true); (y

2

; true); (x; true)g

S

3

= f(y

1

; false); (y

2

; false)g E

3

= f(y

1

; false); (y

2

; false); (x; false)g

S

4

= f(y

1

; true); (x; false)g E

4

= f(y

1

; true); (y

2

; false); (x; false)g

S

5

= f(y

2

; true)g E

5

= f(y

1

; false); (y

2

; true); (x; false)g

A primed WeFA graph is not guaranteed to give a unique consistent extension, as illustrated by

Example 2.10.

7



Example 2.10 Consider the following WeFA graph with the empty set scenario:

x[+1]y y[+1]x

Here the extension E

1

where E

1

(x) = E

1

(y) = true is consistent but it is only because the nodes

are self-supporting. In contrast, the extension E

2

where E

2

(x) = E

2

(y) = false is also consistent

but the nodes are not self supporting.

In order to avoid multiple extensions, we use the following de�nition of complete extension that

gives the minimal consistent extension.

De�nition 2.14 For a primed WeFA graph (N;A; F; S), a consistent extension E

i

is a complete

extension of (N;A; F; S) i� for all E

j

such that E

j

is a consistent extension of (N;A; F; S), if

E

i

(x) = true then E

j

(x) = true.

A complete extension is a minimal extension in the sense that a node is only true in the extension

if it is forced to be true either by being true in the scenario or by propagation of truth values in

the graph.

De�nition 2.15 For a primed WeFA graph (N;A; F; S), the negation-as-default assumption is

that each node is assumed false unless found to be true either because assumed true in S or

inferred true by the application of S to (N;A; F ).

The negation-as-default assumption is implicit in the de�nition for a complete extension. In other

words, if E is a consistent extension of (N;A; F; S) then the negation-as-default assumption holds

for E.

Every primed WeFA graph is guaranteed to have a complete extension.

Example 2.11 Consider the following WeFA graph with an empty set scenario.

x[+1]y y[�1]x

This has the complete extension f(x; false); (y; false)g.

We de�ne inference in a primed WeFA graph in terms of an extension.

De�nition 2.16 If E is the complete extension of a primed WeFA graph (N;A; F; S), and E(x)

is true, then x is an inference from (N;A; F; S).

Example 2.12 Consider the nodes a1 to c3 below, where a1 is the focus of the WeFA graph, the

b

i

nodes are the second layer nodes, and the c

i

nodes are the third layer nodes.

a

1

The requirements capture and management is robust

b

1

There is a credible process

b

2

There is an understanding of the social and legal context

b

3

The system is complex

b

4

There are appropriate tools and skills

b

5

There is a lack of communication

b

6

The system context is understood

b

7

There is a failure to identify stakeholders needs clearly

c

1

There are conflicting stakeholder needs

c

2

There is a change in stakeholders

c

3

There is no business case

8



a

1

The requirements capture and management is robust

b

4

There are appropriate

tools and skills

6

+2

b

5

There is a lack of communication

6

�1

b

6

The system context is understood

6

+1

b

1

There is a credible process

6

+2

b

2

There is an understanding

of social and legal context

6

+1

b

3

The system is complex

6

�1

b

7

There is a failure to identify stakeholders clearly

6

�1

c

3

There is no business case

6

+2

c

2

There is a change in stakeholders

6

+1

c

1

There are conflicting

shareholder needs

6

+2

Figure 2: A Binary WeFA graph with the aim The requirements capture and management is

robust which is discussed in Example 2.12

.

The graph can be represented by the following arcs. This graph is also given in Figure 2.

b

1

[+2]a

1

b

3

[�1]a

1

b

5

[�1]a

1

b

7

[�1]a

1

c

2

[+1]b

7

b

2

[+1]a

1

b

4

[+2]a

1

b

6

[+1]a

1

c

1

[+2]b

7

c

3

[+2]b

7

So if we have a scenario

S = f(b

1

; true); (b

2

; true); (c

1

; false); (c

2

; true); (c

3

; false)g

then we get the following complete extension

f(a

1

; true); (b

1

; true); (b

2

; true); (b

3

; false); (b

4

; false); (b

5

; false);

(b

6

; false); (b

7

; true); (c

1

; false); (c

2

; true); (c

3

; false)g

and hence the top-level goal a

1

is true.

The notion of signi�cance is more than just representing a total ordering over the incoming arcs

to each node. It provides a powerful notation for representing and reasoning with the uncertainty

inherent in argumentation in real-world models. It is less powerful, but more practical, than seeking

a separate aggregation function for each node [9].

The use of Boolean truth value for nodes, and for aggregation of truth values at each node avoids

the more complex problems found in uncertainty reasoning approaches such as probabilistic rea-

soning and possibilistic reasoning. Here we are dealing with normality rather than probability: If

9



we know the truth values for the nodes in Input(x) then we determine what normally we would

expect the truth value of x should be using the signi�cance in the positive �red and negative �red

arcs. We argue that this is a more lucid representation of uncertainty than an approach based on

propagating numerical values.

Implicit in the Binary WeFA approach is that uncertainty is managed in part by the weights on

the arcs. In addition to scenario analysis, we can explore shifting weights between a pessimistic

and an optimistic bias. If we want a pessimistic bias, we increase the signi�cance of the negative

in
uences, whereas if we want an optimistic bias, then we increase the signi�cance of the positive

in
uences.

3 Formalization of semantics

So far we have a de�nition for the representation of Binary WeFA graphs and associated concepts.

We also have some informal semantics for the notation and concepts introduced. We now consider

a formal semantics. For this, we will assume classical propositional logic. We will de�ne WeFA

graphs in terms of this logic. Note, however there is a default mechanism in binary WeFA graphs,

and so the formalization here extends classical propositional logic.

De�nition 3.1 We assume the usual de�nition of the classical propositional language. Let : be

the negation operator, _ be the disjunction operator, ^ be the conjunction operator, and ! be the

implication operator. If � is an atom then � is a formula, and if � and � are formulae, then :�,

�_ �, �^ � and �! � are formulae. If � is an atom, then � is a literal and :� is a literal. We

also assume the usual truth tables for classical propositional logic for interpreting these formulae.

In order to represent a WeFA graph as a set of classical logic formulae, we require some subsidiary

functions.

De�nition 3.2 The functions Conjunction and NegatedConjunction form a formula from a set

of literals as follows:

Conjunction(fq

1

; :::; q

i

g) = q

1

^ ::^ q

i

NegatedConjunction(fq

1

; ::; q

i

g) = :q

1

^ ::^ :q

i

De�nition 3.3 For any set K, }(K) is the power set of K.

De�nition 3.4 For a WeFA graph (N;A; F ), the functions PosContribution and NegContribution

are de�ned as follows. Let K be a subset of N and let x be in N . It is not necessary for x to be in

K.

PosContribution(K;x) = f(y; x) 2 PositiveInputs(x) j y 2 Kg

NegContribution(K;x) = f(y; x) 2 NegativeInputs(x) j y 2 Kg

Example 3.1 Consider the WeFA graph

x

1

[+1]y x

2

[�1]y x

3

[+2]y

10



Then

PosContribution(fx

1

g; y) = f(x

1

; y)g NegContribution(fx

1

g; y) = fg

PosContribution(fx

2

g; y) = fg NegContribution(fx

2

g; y) = f(x

2

; y)g

PosContribution(fx

3

g; y) = f(x

3

; y)g NegContribution(fx

3

g; y) = fg

PosContribution(fx

1

; x

2

g; y) = f(x

1

; y)g NegContribution(fx

1

; x

2

g; y) = f(x

2

; y)g

PosContribution(fx

1

; x

3

g; y) = f(x

1

; y); (x

3

; y)g NegContribution(fx

1

; x

3

g; y) = fg

PosContribution(fx

1

; x

2

; x

3

g; y) = f(x

1

; y); (x

3

; y)g NegContribution(fx

1

; x

2

; x

3

g; y) = f(x

2

; y)g

De�nition 3.5 For a WeFA graph (N;A; F ), where x is in N , the Choice function is de�ned as

follows, where for all K, Choice(K;x) = x or Choice(K;x) = :x

Choice(K;x) = x i� V alue(PosContribution(K;x)) > V alue(NegContribution(K;x))

Example 3.2 Consider the graph

x

1

[+1]y x

2

[�2]y

Hence

Choice(fg; y) = :y

Choice(fx

1

g; y) = y

Choice(fx

2

g; y) = :y

Choice(fx

1

; x

2

g; y) = :y

De�nition 3.6 We de�ne the Formulate function as follows: Let (N;A; F ) be a WeFA graph. For

each x in N , where Inputs(x) is not the empty set, and for each K in }(Inputs(x)), we form the

following formula, where K

�

is Inputs(x) �K.

Conjunction(K) ^NegatedConjunction(K

�

)! Choice(K;x)

Let the set of all such formulae for (N;A; F ) be denoted Formulate(N;A; F ).

Example 3.3 Consider the following WeFA graph

x

1

[+1]y x

2

[�2]y

Here Formulate(N;A; F ) gives the following set of formulae:

x

1

^ x

2

! :y

x

1

^ :x

2

! y

:x

1

^ x

2

! :y

:x

1

^ :x

2

! :y

The de�nition for the set Formulate means there is some redundancy in the number of formulae.

Using classical logic, it is straightforward to assume an equivalent though simpler and more com-

pressed set of formulae. We can de�ne a set of rewrite rules that give an e�cient algorithm for

doing this simpli�cation.

Example 3.4 Consider the following WeFA graph.

a[�2]x b[+1]x c[+1]x d[+1]x

This gives the following formulae after simpli�cation using classical logic:

a ^ :(b^ c ^ d)! :x :a ^ (a _ b _ c)! x

:a ^ :b ^ :c^ :d! :x b ^ c ^ d! x

11



We can consider how we use these formulae.

De�nition 3.7 For a primed WeFA graph (N;A; F; S), the function Assumptions is de�ned as

follows:

Assumptions(N;A; F; S) =

fxjS(x) = trueg

[f:x j S(x) = falseg

[f�! x 2 Formulate(N;A; F ) j S(x) 6= true and S(x) 6= falseg

[f�! :x 2 Formulate(N;A; F ) j S(x) 6= true and S(x) 6= falseg

[f:x j S(x) 6= true and S(x) 6= false

and for all y 2 Feeders(x) (S(y) 6= true and S(y) 6= false)g

where � is some conjunction of literals.

The set Assumptions(N;A; F; S) is a set of classical formulae that corresponds to (N;A; F; S)

when used with classical logic. Before explaining how we use this set, we motivate the sets listed

in De�nition 3.7 from which it is composed. The �rst two sets give priority to the scenario. The

next two sets are rules with consquents that represent nodes not assigned by the scenario. The

last set captures the default assumptions. Essentially, if the graph has a node x where none of the

nodes with a path to x being assigned a truth value by the scenario then it is false by default. To

illustrate this, consider a graph with just x[+1]y and an empty scenario. Here, none of the nodes

in Feeders(x) have an assignment in the scenario, and so by default we can assume that they are

all false, and so x is also false. Similarly, none of the nodes in Feeders(y) have an assignment in

the scenario, and so by default we can assume that they are all false, and so y is also false. We

look at this example in more detail below.

Example 3.5 Consider the following WeFA graph

x[+1]y

giving the following formulae with the Formulate function

x! y :x! :y

Hence

if S = f(y; true)g; then Assumptions(N;A; F; S) = f:x; yg

if S = f(y; false)g; then Assumptions(N;A; F; S) = f:x;:yg

if S = f(x; true)g; then Assumptions(N;A; F; S) = fx; x! y;:x! :yg

if S = fg; then Assumptions(N;A; F; S) = f:x; x! y;:x! :y;:yg

We now consider a couple of simple examples of WeFA graphs with cycles.

Example 3.6 Consider the following WeFA graph

x[+1]y y[�1]x

giving the following formulae with the Formulate function

x! y :x! :y y ! :x :y ! :x

Hence, if S = fg, then

Assumptions(N;A; F; S) = f:x; x! y;:x! :y; y ! :x;:y! :x;:yg

12



Example 3.7 Consider the following WeFA graph

x[+1]y y[+1]x

giving the following formulae with the Formulate function

x! y :x! :y :y ! :x y ! x

Hence, if S = fg, then

Assumptions(N;A; F; S) = f:x; x! y;:x! :y;:y ! :x; y! x;:yg

We now consider the logical reasoning with the set Assumptions(N;A; F; S).

De�nition 3.8 Let ` be the classical consequence relation.

De�nition 3.9 For a primed WeFA graph (N;A; F; S), the Literals function is de�ned as follows:

Literals(N;A; F; S) = fx 2 N j Assumptions(N;A; F; S) ` x and x is a literal g

Example 3.8 Consider the following WeFA graph.

x

1

[�1]y x

2

[�1]y x

3

[+2]y

This is can be represented by the following formulae:

x

1

^ x

2

! :y

:x

3

! :y

(:x

1

_ :x

2

) ^ x

3

! y

Suppose, we now have a scenario S = f(x

1

; true); (x

2

; false); (x

3

; true)g. Here we would get the

literals x

1

, :x

2

, and x

3

, which together with the other formulae, would allow us to derive y as an

inference using classical logic. So Literals(N;A; F; S) = fx

1

;:x

2

; x

3

; yg.

We can show that the logic-based semantics is equivalent to the de�nition for Binary WeFA.

Proposition 3.1 For a primed WeFA graph (N;A; F; S), and a node x 2 N , the following equiv-

alence holds, where E is the complete extension of (N;A; F; S)

x 2 Literals(N;A; F; S) i� E(x) = true

:x 2 Literals(N;A; F; S; ) i� E(x) = false

Proof: ()) We need to construct the complete extension E from Literals(N;A; F; S) First

assume x 2 Literals(N;A; F; S). Hence Assumption(N;A; F; S) ` x, and x is a positive lit-

eral. From this, one of the following two cases follow: (Case 1) S(x) = true; and (Case 2)

� ! x 2 Formulate(N;A; F ) and Assumptions(N;A; F; S) ` �. If Case 1, then E(x) = true. If

case 2, then there is a K � Inputs(x) such that the following hold,

Conjunction(K) ^NegatedConjunction(K

�

)! x

Assumptions(N;A; F; S) ` Conjunction(K) ^NegatedConjunction(K

�

)

13



and hence, V alue(PosConjunction(K;x)) > V alue(NegConjunction(K;x)). Since there is a K

s.t. Assumptions(N;A; F; S) ` Conjunction(K)^NegatedConjunction(K

�

), we can assume that

by recursion, for all y 2 Conjunction(K), we have E(y) = true, and for all y 2 NegatedConjunction(K

�

),

we have E(y) = false. From this we can infer V alue(PosF ire(E; x)) > V alue(NegF ire(E; x)), and

hence E(x) = true. Now assume :x 2 Literals(N;A; F; S). Hence Assumption(N;A; F; S) ` :x,

and :x is a negative literal. From this, one of the following three cases follow: (Case 3) S(x)

= false; (Case 4) � ! :x 2 Formulate(N;A; F ) and Assumptions(N;A; F; S) ` �; and (Case

5) S(x) 6= true and S(x) 6= false and for all y 2 Feeders(x) S(y) 6= true and S(x) 6= false.

If Case 3, then E(x) = false. If Case 4, then the proof is equivalent to that for Case 2. If

Case 5, then for every node y 2 Feeders(x) we have E(y) = false by recursion. Hence, there

is no K such that for all y 2 Feeders(x) we have y 62 K and V alue(PosContribution(K; y)) >

V alue(NegContribution(K; y)). Therefore, we have V alue(PosF ire(E; x))� V alue(NegF ire(E; x)),

and hence E(x) = false. From this we have shown that for every postive literal x 2 Literals(N;A; F; S)

we have E(x) = true and every negative literal :x 2 Literals(N;A; F; S), we have E(x) = false.

All that remains is to show that E is a minimal function. Given the priority of the scenario over

the rules in composing the set Assumptions(N;A; F; S), it is not possible to add a literal x to

Assumptions(N;A; F; S) and a rule �! :x 2 Assumptions(N;A; F; S). Similarly, it is not pos-

sible to add a literal :x to Assumptions(N;A; F; S) and a rule �! x 2 Assumptions(N;A; F; S)

when Assumptions(N;A; F; S) ` �. Also by De�nition 3.6, it is not possible to have rules �! x

and � ! :x in Assumptions(N;A; F; S) with Assumptions(N;A; F; S) ` � ^ �. Hence, E is a

function. The minimality of E comes from the negative literals added to Assumptions(N;A; F; S)

for each node that is not �xed by the scenario and not �xed by the aggregation of the input nodes.

(() Follows similarly. 2

Whilst the syntactic de�nition for Binary WeFA is simple and intuitive, and can be informally

presented to business users, it is important to have the semantic de�nition to better understand

the logical foundations of the proposal. As a result, we can compare it with other logic-based

approaches to argumentation and it also can facilitate the development of tool support.

4 Frameworks issues

Here we here consider some of the options that WeFA gives us, and in particular consider some

further concepts that we can use to apply Binary WeFA more fruitfully. These concepts and

de�nitions constitute a framework supporting the syntax and semantics of Binary WeFA.

4.1 Modelling options

Now that we have the basic de�nitions for syntax and semantics for Binary WeFA, we consider

how we can use the approach to model more complex problems.

De�nition 4.1 For a WeFA graph (N;A; F ), and a node x in N where Inputs(x) is the empty

set, a splitback involves adding further nodes to N, and arcs from these extra nodes to x.

Whilst the de�nition of splitback is quite general, it is intended to capture the re�nement of a

node so that when its truth value is not �xed by a scenario it is desirable to not just resort to

the negation-by-default assumption. In other words, by splitback the truth value of a node can be

made conditional on the nodes with positive and negative in
uence on it.

Example 4.1 Consider the following node with associated statement and assume that Inputs(a

1

)

14



is the empty set.

a

1

Project completed in-time and under-budget

For a splitback, we can add the following nodes and arcs.

b

1

Estimates are accurate

b

2

Estimates are approximate

b

3

Project management is reliable

b

4

Project management could be problematical

b

1

[+2]a

1

b

2

[�1]a

1

b

3

[+2]a

1

b

4

[�1]a

1

So now we have provided some of the conditions on a1 being true or false. So if the truth value of

a

1

is not established in a scenario, a context sensitive truth value assignment for a

1

can be made

on the basis of the truth assignments for b

1

to b

4

.

De�nition 4.2 For a WeFA graph (N;A; F ), and a node x in N , a splitdown involves replacing

x and the arcs involving x with two or more new nodes and associated arcs that in
uence the nodes

in Output(x).

The splitdown de�nition is intended to give a �ner grained representation of the events that may

be observed or predicted.

Example 4.2 Consider the following nodes and arc.

a

1

Price rise in project supplies

b

1

Inflation is high

b

1

[+2]a

1

Here b

1

may be regarded as too vague. It could be replaced by the following nodes and arcs

b

2

Inflation is below 2%

b

3

Inflation is between 2% and 5%

b

4

Inflation is between 5% and 10%

b

5

Inflation is above 10%

b

2

[�1]a

1

b

3

[+1]a

1

b

4

[+2]a

1

b

5

[+3]a

1

One of the things we see with the above example is that with re�nement we can handle quanti�ed

information by translating the ranges into a digitized or interval form. In this way, each value or

interval in the original quanti�ed range is represented by a truth-valued node.

Example 4.3 Consider the following nodes with associated statements:

a

1

Project completed within budget

b

1

Estimates are accurate

b

2

Project management is reliable

b

3

Inflation rises significantly

b

4

Inflation falls significantly

b

5

Exchange rate moves significantly in our favour

b

6

Exchange rate moves significantly against our favour

15



with the following graph

b

1

[+1]a

1

b

2

[+2]a

1

b

3

[�2]a

1

b

4

[+1]a

1

b

5

[+1]a

1

b

6

[�1]a

1

Here there may be uncertainty about node b

3

. In particular it may be necessary to consider the

conditions under which b

3

is normally true. This could be done by the following splitback involving

the following two extra nodes.

c

1

Unemployment falls sharply

c

2

Bank of England is strongly maintaining an anti-inflation policy

and the following extra arcs:

c

1

[+1]b

3

c

2

[�2]b

3

Alternatively, it may be felt that node b

3

is too coarse-grained. To address this, a splitdown could

replace b

3

with the following nodes

b

7

Inflation is between 5% and 8%

b

8

Inflation is between 8% and 12%

b

9

Inflation is above 12%

and add the following arcs

b

7

[+1]a

1

b

8

[+2]a

1

b

9

[+3]a

1

:

We can extend the notation used in representing WeFA graphs to indicate a constraint that a set

of nodes is mutually exclusive. In other words, if a set of nodes is marked as mutually exclusive

then at most one of the nodes in the set can be true in any consistent extension. So in the above

example, we could state that fb

7

; b

8

; b

9

g are mutually exclusive.

If we record the evolution of re�nements in drawing up a WeFA graph as a sequence of splitdown

and splitback operations, then we have a relationship between structure and substructure. This

can allow for di�erent resolutions of viewing of a WeFA graph.

4.2 Connectivity options

There are a number of kinds of connectivity within WeFA graphs that we need to characterize

and consider. These kinds of connectivity are permitted by the de�nition of WeFA graphs. Some

kinds may be regarded as problematical or undesirable. Once we have a formal characterization,

we can use tool support to identify them.

De�nition 4.3 Let (N;A; F ) be a WeFA graph, where x; y 2 N and there is a path from x to y.

If there are zero or an even number of negative arcs in the path from x to y, then x has a positive

in
uence on y, otherwise x has a negative in
uence on y.

De�nition 4.4 A pair of nodes x and y are independent if the following conditions hold: (1) x is

not a positive in
uence on y; (2) x is not a negative in
uence on y; (3) y is not a positive in
uence

on x; and (4) y is not a negative in
uence on x.

Normally, if y and z are in Inputs(x), then we would want y and z to be independent.

De�nition 4.5 For a WeFA graph (N;A; F ), there is a bidirectional link between a pair of nodes

x and y in N i� there is an arc x[n]y in A and an arc y[m]x in A where n and m are integers.

16



Example 4.4 As an example of a graph with a bidirectional link, consider the following WeFA

graph, with the scenario S = f(x; true)g, which gives the extension E = f(x; true); (y; true); (z; true)g.

x[+1]y y[+1]z z[+1]y

A bidirectional link is a type of cycle in a WeFA graph. The motivation for including bidirectional

links, and cycles generally, is that some variables are not independent.

De�nition 4.6 For a WeFA graph (N;A; F ), where x, y, a, and b are four di�erent nodes in N ,

if there is a path from x to y via a but not via b that respects the directionality of the arcs and if

there is a path from x to y via b but not via a that respects the directionality of the arcs, then there

is a multiple path from x to y.

A multiple path emanating from a node x in a graph indicates that the variable x can in
uence

the aim in more than one way. In argumentation terms, it means x is a factor in more than one

argument.

De�nition 4.7 For a WeFA graph (N;A; F ), where x and y are in N , there is an ambiguous

in
uence of node x on node y i� there are two arcs x[n]y and x[m]y in A such that n > 0 and

m < 0.

An ambiguous in
uence does not cause any problems in using a Binary WeFA graph. However it

is a form of redundancy and it decreases the lucidity of the graph.

4.3 Reasoning options

Using classical proof theory, we can automate reasoning with WeFA graphs. Using the de�nition

of Binary WeFA semantics, we can represent each WeFA graph and scenario as a set of logical

formulae and then these formulae can be used directly with a classical logic theorem prover. There

are a number of prototype automated reasoning tools that could be used for this. Alternatively,

since the formulae are relatively simple, a theorem prover could be implemented based on a

semantic tableau algorithm. The advantage of this approach is that extra domain knowledge such

as general rules and constraints can be added as extra logical formulae in the logical reasoning.

The disadvantage is the increase in complexity in understanding how to use the technology. In

general, the disadvantages will greatly outweigh the advantages for the intended target users of

Binary WeFA.

For automating the reasoning with WeFA graphs, the recommended option is to implement the

application of scenarios using the propagation de�nition given in the formalization of syntax of

Binary WeFA. This de�nition can be straightforwardly translated into an algorithm for implemen-

tation.

If using additional domain knowledge is of particular value, then an alternative approach could

be based on Prolog. This is a programming language that supports declarative representation of

knowledge such as rules and is ideally suited to implementing simple propositional logic theorem

provers.

17



5 Application issues

In order to harness the formal framework for Binary WeFA, we need to consider strategies for

using WeFA for application problems. In particular, we need strategies for knowledge elicitation,

scenario analysis, and knowledge management.

5.1 Strategies for knowledge elicitation

Knowledge elicitation is an important activity in WeFA and is central to the process of constructing

a WeFA graph. As we indicated in Section 1, we assume that to undertake WeFA we need a meeting

of stakeholders or experts.

(1) Domain understanding: The group should have adequate coverage of the problem domain.

If key aspects of an organization's activities in the problem area are not represented, then it

is likely that a suboptimal analysis will be conducted. During the meeting, participants should

communicate the essence of their perspective to the other participants in order to build up a

common understanding of the problem domain.

(2) De�nition of the WeFA aim: If this has not been speci�ed in advance, the working group

should agree on a speci�cation of the aim. Remember that this is captured as a statement that

can potentially be true or false.

(3) Collation of suggestions for in
uences on a factor in the graph (�rst-time around this will

be the aim of the graph): During an open session, or perhaps via break-out sessions, a list of

suggestions for in
uences on the aim should be collated. In addition to the suggestions for factors,

there will be the need to suggest the polarity of the in
uence.

(4) Re�nement of suggestions for in
uences on the aim: The suggestions will inevitably include

some overlapping suggestions for factors. Furthermore, suggestions that are not su�ciently clear

should be re�ned. This stage may require some negotiation and con
ict resolution between the

participants.

(5) Negotiation over the signi�cance of the factors: Given the factors and polarity of in
uence, the

working group needs to decide on the relative signi�cance of the factors.

(6) If the graph requires splitdown or splitback on a factor in the graph, then go through the

sequence (3) to (6) again.

(7) At the end of each cycle of (3) to (6), the graph should be checked to avoid ambiguous in
uences

and to identify mutually exclusive sets of factors. In addition, the graph may need to be re�ned

to increase lucidity and reusability.

(8) Once the working group agrees that the WeFA graph is su�ciently developed, scenario analysis

can be used to validate the graph for completeness and consistency with expectations.

An alternative to the recursive breakdown strategy where the group builds the graph layer-by-

layer, is to �rst list and agree the majority of factors to be included in the model before considering

the polarity, signi�cance, and level of each factor.

In general, there is a di�cult trade-o� in building a WeFA graph between producing a comprehen-

sive model and producing an easily understandable model. In any case, features to try to avoid are

multiple paths, bidirectional arcs, and high connectivity. These features are allowed and can be

unavoidable. However they can render a WeFA graph di�cult to read and moreover may indicate

18



that a problem has not been adequately or appropriately decomposed.

5.2 Strategies for scenario analysis

In a WeFA graph, there are a number of factors represented that can directly or indirectly in
uence

the aim of the graph. So the outcome of the aim of the graph is regarded as contingent on the

truth value of the other factors in the graph. To analyse this contingency, we use scenario analysis.

Di�erent scenarios tell us di�erent things about the problem being analysed. Of particular interest

are scenarios that could be described as extreme or normal:

Best-case scenarios scenarios that give the best outcome for the aim of the graph.

Worst-case scenarios scenarios that give the worst outcome for the aim of the graph.

Average-case scenarios scenarios that could be described as normal.

The average-case scenario is a scenario that is one of the most likely scenario whereas the extreme

case scenarios are not necessarily likely. Given that it would normally take too long to exhaustively

consider all scenarios using key scenarios such as these is important.

We can also work backwards in WeFA graphs: We start with a particular outcome for the aim and

see which combinations of factor leads to that scenario outcome. A specialization of this is to also

assume the organizational variables have been �xed in order to see which environmental variables

need to be true for this aim to be true.

In addition to considering individual scenarios, there is the need to consider sets of scenarios. These

can tell us about the sensitivity of the graph to changes in the scenario. If the behaviour of the

outcome appears very sensitive to the input, then this may indicate that the deciding factors for

the desired outcome of the aim have not been adequately established. In particular if the outcome

is sensitive to environmental factors (factors that are not under the control of the organization),

then the outcome of the aim may be susceptible to the vagaries of the environment. This kind of

scenario analysis is called sensitivity analysis.

A specialization of sensitivity analysis is to order the scenarios according to likelihood. If the truth

(or falsity) of a node, including the aim of the graph, is relatively stable in inferred truth value for

the more likely scenarios, then there is increased con�dence that uncertainty has been minimized

in the model.

Another kind of scenario analysis is temporal analysis. Here a sequence of scenarios is meant to

indicate how inputs to a problem may evolve over time. For example if we have a WeFA graph

that models a project management problem, we may have a sequence of scenarios S

1

, S

2

, S

3

, etc,

where S

1

is the scenario for month one, S

2

, is the scenario for month two, and S

3

is the scenario for

month three. Here, we can see how the outcome of the aim is a�ected by the sequence of scenarios.

We can also do temporal analysis with extreme or normal scenarios and we can combine it with

sensitivity analysis.

A specialization of temporal analysis is to only �x environmental variables in the scenarios, and

then see if organizational variables can be manipulated to ensure the aim of the graph is true.

This kind of analysis tests whether an organization has enough control to respond to problems (or

opportunities) arising in the environment.

In addition to looking at di�erent scenarios in scenario analysis, we can manipulate the values

given for signi�cance. If we increase the signi�cance for a driver, then we are taking a more

19



optimistic view on that driver, and if we decrease the signi�cance, then we are taking a more

pessimistic view on that driver. In contrast, if we increase the signi�cance for an inhibitor, then

we are taking a more pessimistic view on that inhibitor, and if we decrease the signi�cance then

we are taking a more optimistic view on that inhibitor. Identifying the ranges of signi�cance for

particular outcomes can be helpful in determining the con�dence in a model.

5.3 Strategies for knowledge management

WeFA has been proposed for high and strategic problem analysis and in particular for analysing

the risks and rewards involved in decision making. Normally, in making big decisions, the focus

is forward, we worry about how the decision will be a�ected by other factors we try to delineate

the uncertainties and we try to predict the likely outcomes.

Yet implicit in this process is the role of looking backwards. We try to bring similar decision making

situations into consideration to see if they can enable understanding of the current decision and

help in predicting the outcomes. Since a WeFA graph is a record of an analysis of a problem, it

can be recycled. In other words, it can be used in the future by people with a similar problem.

Recycling may involve adapting the WeFA graph. Recycling may also involve evaluating the actual

real-world outcome of the WeFA graph, and adapting the graph to avoid problems reoccurring.

This also leads to viewingWeFA graphs as a mechanism for supporting auditing of decision making

in an organization, and hence supporting a form of organizational feedback and learning such as

argued for by Butler [3].

In order to bene�t from recycling, there are some issues that need to be addressed. First, the

question of lucidity of the WeFA graph is even more important if the graph is to be used by other

people who have not been involved in the original problem analysis. This means that extra e�ort

has to be directed at choosing meaningful labels for nodes, and for providing clear self-contained

associated text.

In addition, there is a need to consider appropriate indexing of the documentation. Suppose a

repository of WeFA graphs is maintained for use by members of an organization, there is a need

to collate and index them for straightforward retrieval in response to future needs.

6 Conclusions

In this report, we have provided a formalization of the syntax and semantics for representing

and reasoning with Weighted Factors Analysis (WeFA). The version of WeFA we consider here is

Binary WeFA.

Binary WeFA provides an intuitive and apparently simple way of modelling in
uences of events on

other events and goals. The approach uses and adapts key ideas from WeFA and puts them into

a logic-based framework with default reasoning. We now have a clear de�nition of factors, and of

polarity and signi�cance of in
uence, in terms of logic. Using these de�nitions allows for both a

clear presentation of a WeFA graph, and for propagating scenarios in a WeFA graph.

In addition, the formal basis of Binary WeFA can be built upon using further techniques from un-

certainty modelling and argumentation for more sophisticated modelling and reasoning. However,

if more complexity is introduced into Binary WeFA graphs, such as explicit probabilistic reasoning

or temporal reasoning, it may decrease the acceptability and uptake of WeFA for general use in

problem solving.

20



An informal modelling technique, that is related to WeFA, is based on cognitive maps. In a

cognitive map, a directed labelled graph is used to capture the structure of a decision-maker's

stated beliefs about a particular problem [1]. Some cognitive maps can be used for a form of

factors analysis. As with WeFA, the use of cognitive maps has been proposed for modelling high

level issues. But the approach does not incorporate a formal logical basis.

WeFA does involve representing aspects of uncertainty and causality. These are issues re
ected

in a range of other approaches. In Bayesian networks (for a review see [11]), a directed acyclic

graph is used to represent causal relations between random variables. These causal relations are

used to identify independence assumptions between random variables to facilitate more e�cient

representation and reasoning with conditional probabilities. Whilst in a sense, Bayesian networks

provide a form of factors analysis, the nature of the formalization is fundamentally di�erent from

that given by causal mapping. In particular, they provide a means for looking at the rami�cations

of changes in random variables as dictated by the probability distribution and the axioms of

probability theory.

Qualitative probabilistic networks are a qualitative form of probabilistic network [19] (for a review

see [13]). Reasoning in qualitative probabilistic networks is qualitatively dictated by a qualitative

probability distribution and the axioms of probability theory, and so it is also fundamentally

di�erent from reasoning with WeFA graphs. However, in [7] there is a limited formalization of

cognitive maps.

Another approach to handling uncertainty and causality is possibilistic networks. In possibilistic

networks (for a review see [6]), a directed acyclic graph is used to represent casual relations between

possibilistic variables. Possibilistic networks can provide a form of factors analysis, though again

the nature of the formalization is fundamentally di�erent from that given by WeFA. In particular,

they provide a means for looking at the rami�cation of changes in possibilistic variables as dictated

by the possibility distribution and the axioms of possibility theory.

Finally, Binary WeFA is complementary to a variety of logic-based approaches to argumentation

(for examples of formalisms for argumentation see [14, 4, 15, 12, 18, 16, 2]). Whilst Binary WeFA

is less expressive than these other proposals, it is more appropriate for non-technical users. In

addition, it incorporates the novel formalization of signi�cance.

References

[1] R Axelrod, editor. Structure of Decisions: The Cognitive Maps of the Political Elites. Prince-

ton University Press, 1976.

[2] Ph Besnard and A Hunter. Towards a logic-based theory of argumentation. In Proceedings

of the Seventeenth National Conference on Arti�cial Intelligence (AAAI'2000). MIT Press,

2000.

[3] R Butler. Designing Organizations. Routledge, 1991.

[4] M Elvang-Goransson and A Hunter. Argumentative logics: Reasoning from classically incon-

sistent information. Data and Knowledge Engineering Journal, 16:125{145, 1995.

[5] A Fisher. The Logic of Real Arguments. Cambridge University Press, 1988.

[6] J Gebhardt and R Kruse. Background and perspectives of possibilistic graphical models. In

A Hunter and S Parsons, editors, Applications of Uncertainty Formalisms, Lecture Notes in

Computer Science. Springer, 1998.

21



[7] H Ge�ner. A formal framework for causal modelling and argumentation. In D Gabbay and H-

J Ohlbach, editors, Practical Reasoning, number 1085 in Lecture Notes in Computer Science.

Springer, 1996.

[8] A Hessami. Risk: A missed opportunity. Risk and Continuity Journal, 2:17{26, 1999.

[9] A Hunter. Rami�cation analysis using causal mapping. Data and Knowledge Engineering,

32:1{27, 2000.

[10] A Hunter and P McBrien. Default databases: Extending the approach of deductive databases

using default logic. Data and Knowledge Engineering, 26:135{160, 1998.

[11] F Jenssen. An Introduction to Bayesian Networks. UCL Press, 1996.

[12] S Parsons. De�ning normative systems for qualitative argumentation. In D Gabbay and H-J

Ohlbach, editors, Practical Reasoning, volume 1085 of Lecture Notes in Computer Science,

1996.

[13] S Parsons. Qualitative Methods for Reasoning under Uncertainty. MIT Press, 2001.

[14] H Prakken. An argument framework for default reasoning. In Annals of Mathematics and

Arti�cial Intelligence, volume 9, 1993.

[15] H Prakken. Logical Tools for Modelling Legal Argument. Kluwer, 1997.

[16] H Prakken and G Vreeswijk. Modelling argumentation in logic. In D Gabbay, editor,Handbook

of Philosophical Logic. Kluwer, 1999.

[17] S Toulmin. The Use of Argument. Cambridge University Press, 1958.

[18] D Vermier, E Laenens, and P Geerts. Defeasible logics. In Handbook of Defeasible Reasoning

and Uncertainty Management, volume 3. Kluwer, 1998.

[19] M Wellman. Qualitative probabilisitc networks for planning under uncertainty. In J Lemmer

and L Kanal, editors, Uncertainty in Arti�cial Intelligence 2. Elsevier, 1988.

22


