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Abstract. Many di�erent formal techniques, both numerical and sym-

bolic, have been developed over the past two decades for dealing with

incomplete and uncertain information. In this paper we review some of

the most important of these formalisms, describing how they work, and

in what ways they di�er from one another. We also consider heteroge-

neous approaches which incorporate two or more approximate reasoning

mechanisms within a single reasoning system. These have been proposed

to address limitations in the use of individual formalisms.

1 Introduction

Practical AI systems are constrained to deal with imperfect knowledge, and are

thus said to reason approximately under conditions of ignorance. Attempts to

deal with ignorance, [45, 91] for example, often attempt to form general tax-

onomies relating di�erent types and causes of ignorance such as uncertainty,

incompleteness, dissonance, ambiguity, and confusion. A taxonomy, taken from

Smithson [91], that is perhaps typical, is given in Figure 1. The importance of

such taxonomies is not so much that they accurately characterise the nature of

ignorance that those who build practical AI systems have to deal with|they

are far too open to debate for that|but more that they allow distinctions to

be drawn between di�erent types of ignorance. This has motivated the develop-

ment of a multitude of diverse formalisms each intended to capture a particular

nuance of ignorance, each nuance being a particular leaf in Smithson's taxon-

omy tree. The most important distinction is that made between what Smithson

calls uncertainty and absence, though this may be confused by a tendency in

the literature to refer to \absence" as \incompleteness". Uncertainty is gener-

ally considered to be a subjective measure of the certainty of something and is

thus modelled using a numerical value, typically between 0 and 1 with 0 de-

noting falsity and 1 denoting truth. Absence is the occurrence of missing facts,

and is usually dealt with by essentially logical methods. The wide acceptance of

the suggestion that uncertainty and absence are essentially di�erent, and must

therefore be handled by di�erent techniques has lead to a schism in approximate

reasoning between the \symbolic camp" who use logical methods to deal with

absence and the \numerical camp" who use quantitative measures to deal with

uncertainty.
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Fig. 1. Smithson's taxonomy of di�erent types of ignorance.

This void between symbolic and numerical techniques, which remained unad-

dressed for many years as researchers concentrated on the �ner technical details

of their particular formalism, can be seen as symptomatic of the way in which re-

search into approximate reasoning has been pursued. For many years researchers

indulged in ideological slanging matches of almost religious fervour in which the

formalism that they championed was compared with its \competitors" and found

to exhibit superior performance. Examples of this behaviour abound, particu-

larly notable are [10, 12, 42, 66, 88, 105]. It is only recently that a more moderate

eclectic view has emerged, [13, 32, 48, 78] for example, which acknowledges that

all formalisms are useful for the solution of di�erent problems. A general re-

alisation of the strength of this eclectic position has motivated research both

into ways in which di�erent formalisms may be used in combination to solve

interesting practical problems, and into establishing the formal di�erences and

similarities between di�erent systems.

In this paper we discuss some of the best established and widely used for-

malisms from both the symbolic and numerical sides of the great divide. We

suggest reasons for the introduction of the more novel techniques, and sketch

in the technical di�erences between the approaches. With this background well

established, we then consider work on bringing techniques together.

2 Numerical Approaches

Over the last two decades, numerous formal and informal systems have been in-

troduced for reasoning under conditions of ignorance and uncertainty. The �rst

uncertainty management technique to be introduced was probability theory. This

was not only developed many years before the �rst computer, but was also used

in computer decision aids before the advent of Arti�cial Intelligence as a dis-

cipline. Arthur Dempster generalised Bayes' theorem in 1967 [17, 18], though



his work remained con�ned to the �eld of statistics until Glenn Shafer reformu-

lated the theory and published it as \A Mathematical Theory of Evidence" in

1976 [82]. This body of work, often referred to as Dempster-Shafer theory, has

several interpretations including the transferable belief model [87, 90]. Another

much studied approach is possibility theory [26, 103] which grew out of work

on fuzzy sets [102]. There are numerous other numerical techniques for dealing

with uncertainty often developed from pragmatic considerations. These include

certainty factors [86], probabilistic logic [63], and belief intervals [21] to name

but a few.

2.1 Overview

The methods that we shall consider in the following sections are the main formal

theories introduced to handle uncertainty|probability theory, possibility theory,

and evidence theory. For theories that have traditionally been seen as rivals, one

might expect that they would appear radically di�erent, but this is not so.

Indeed, they are remarkably similar, di�ering largely in subtleties of meaning or

application, though this is not entirely surprising since they are intended to do

much the same thing.

The basic problem is how to weigh up the degree to which several uncertain

events are believed to occur so that the most believed may be unambiguously

identi�ed. The basis on which the \belief" is assigned is a contentious issue,

though all the theories that we shall consider assume allocation by an assignment

function that distributes belief to possible events under consideration. Belief may

be distributed on the basis of statistical information [81, 92], physical possibility

[103], or purely subjective assessment [12] by an expert or otherwise. The belief

assigned is a number between 0 and 1, with 0 being the belief assigned to a fact

that is known to be false, and 1 the belief assigned to a fact known to be de�nitely

true. The in�nite number of degrees of belief between the limits represent various

shades of uncertainty. Now, some formalisms restrict the amount of belief that

may be assigned. Both probability theory and evidence theory, which is after all

derived from probability theory, limit the total belief that may be assigned by a

particular distribution function by constraining the sum of all the beliefs to be 1.

This may be interpreted as meaning that one particular observer cannot believe

in a set of uncertain events more than she would have believed in a particular

event of total certainty. There is no such restriction on a possibility distribution,

since one may conceive of several alternative events that are perfectly possible,

and so have a possibility of 1. Probability theory, unlike the other theories, also

introduces a restriction on the belief that may be applied to a hypothesis based

on the belief assigned to its negation. If we have an event A, then

Pr(A) = 1� Pr(:A)

Given the result of a belief distribution, we are interested in how the assigned

beliefs may be manipulated. Given our belief in two events, what is our belief in

either of them occurring (our belief in their union), and what is our belief that



both will occur (our belief in their intersection)? More importantly perhaps,

especially for arti�cial intelligence applications where we often wish to assess

the combined belief that results from several di�erent pieces of information, we

are interested in combining the e�ects of two or more belief distributions over

the same set of hypotheses. Each distribution will, in general, assign di�erent

beliefs to a given hypothesis, and we require some means of assessing a �nal

belief that takes account of all the di�erent assignations. The way in which this

is done is based upon the interpretation that the theory gives to the belief it

assigns, and thus it is not surprising that each theory should \pool the evidence"

in a di�erent way.

2.2 Probability theory

Probability theory has existed in one form or another for several hundred years.

During this time various alternative formulations have been introduced, and it

is now di�cult to say where the de�nitive account may be found. This is in

contrast to the other methods described in this paper where the descriptions are

drawn from the original paper on the subject. The introduction presented here

is drawn from the discussion of probability theory in Lindley's excellent book

\Making Decisions" [53]. Lindley asserts that probability theory is built on three

axioms or laws that de�ne the behaviour of a probability measure, which may be

used as an estimate of the degree to which an uncertain event is likely to occur.

The measure may be assessed by reference to a standard, such as the likelihood

of drawing a black ball out of an urn containing �ve black balls and ten red

balls. The �rst law of probability theory is the convexity law which states that

the probability measure for an event A given information H is such that:

0 � Pr(AjH) � 1

The second law is the addition law, which relates the probabilities of two events

to the probability of their union. For two exclusive events A and B, that is two

events that cannot both occur, we have:

Pr(A [ BjH) = Pr(AjH) + Pr(BjH)

which is commonly written

Pr(A [ B) = Pr(A) + Pr(B)

without explicit reference to the information H , since the information is the

same in all cases. If the events are not exclusive we have, instead:

Pr(A [B) = Pr(A) + Pr(B) � Pr(A \ B)

Furthermore, the sum of the probabilities of a set of mutually exclusive and

exhaustive events, the latter meaning that they are the only possible events that

may occur, are constrained to sum to 1 so that:

Pr(A) + Pr(:A) = 1



or, more generally for a set of n such events A
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The �nal law is the multiplication law, which gives us the probability of two

events occurring together; the probability of the intersection of A and B:

Pr(A \ BjH) = Pr(AjH):Pr(BjA \H)

Again this may be written as

Pr(A \B) = Pr(A):Pr(BjA)

without explicit reference to H . Note that Pr(A\B) is often written as Pr(A;B).

The probability measure Pr(BjA) is the conditional probability of B given A,

the probability that B will occur, given that A is known to have occurred. From

these laws we can derive two further results which are crucial from the point of

view of arti�cial intelligence. The �rst of these is Je�rey's rule:
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The second is Bayes' theorem, named after an eighteenth century non-conformist

English clergyman. This states that:

Pr(AjB) =

Pr(BjA):Pr(A)

Pr(B)

and thus gives a means of computing one conditional probability relating two

events from another conditional probability.

Under the assumption that the events in which we are interested are mutu-

ally exclusive and exhaustive, and following some manipulation, we can obtain

a version of Bayes' rule [14] that is suitable for assessing the probability of
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This may be used, say, to reason about the likelihood of a particular disease (h

i

),

from a set of possible diseases fh

1

; : : : ; h

n

g, given a set of recorded symptoms

fe

1

; :::; e

m

g.

There have been several adaptations of probability theory within the liter-

ature of arti�cial intelligence including the odds-likelihood formulation used by

Prospector [28], and the cautious approach adopted by Inferno [74]. Another is
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Fig. 2. Part of a probabilistic network for diagnosing faults in a car.

the use of probability theory by Taw�k and Neufeld [93] in their chapter in this

volume where they consider the probability of failure of components over time

and use this to guide diagnosis. Nilsson [63] provided an interesting variation

with his probabilistic logic, an attempt to combine propositional calculus with

a numerical uncertainty handling formalism by associating probability measures

with logical sentences. Perhaps the most important feature of the formalism is

it handles incompletely speci�ed probabilistic models by computing the allowed

bounds on the derived consequents.

An increasing important approach to using probability theory in computing

is probabilistic networks, also called Bayesian networks or causal networks [39,

67, 68]. By augmenting the use of conditional probabilities with extra structural

information, they can be used to represent and reason more e�ciently with prob-

abilistic information. In particular they incorporate assumptions about which

propositions are independent of other propositions, thereby decreasing the di-

mensionality and number of conditional probability statements, and simplifying

the computations. Essentially, probabilistic networks are a set of nodes with

directed arcs (arrows) providing connections between nodes. Every node is con-

nected to another node, but each node is not necessarily connected to every other

node. Each node denotes a random variable, which is a variable that can be in-

stantiated with an element from the sample space for the variable. They are used

to model situations in which causality, or in
uence is prevalent, but in which we

only have a partial understanding, hence the need to model probabilistically.

As an example, consider the network in Figure 2 which is part of a proba-

bilistic network for diagnosing faults in a car (this example is drawn from [41]).

This captures the fact that the age of the battery (the node battery old) has an

in
uence on whether or not the battery is good (battery good), and that whether

or not the alternator is good (alternator ok) has an e�ect on whether or not the

battery is charging (battery charging), together the quality of the battery and

whether or not the battery is charging a�ect whether the battery is working (bat-



tery ok), and this has an e�ect on the radio (radio ok) and the lights (lights ok).

All the random variables in this example are either \true" or \false" so that

the random variable battery old, can be instantiated with the event battery old

meaning that the battery is old, or the event :battery old meaning that the

battery is not old.

Each of the links in the network is quanti�ed by giving the relevant condi-

tional probabilities, which in this case will include:

Pr(battery good jbattery old ) = 0:1

Pr(battery good j:battery old) = 0:8

Pr(battery ok jbattery good ; battery charging) = 0:9

Pr(battery ok jbattery good ;:battery charging) = 0:2

Pr(battery ok j:battery good ; battery charging) = 0:6

Pr(battery ok j:battery good ;:battery charging) = 0:05

Note that the conditional probabilities re
ect the direction of the arrows. Both,

broadly speaking, capture a notion of causality (which is why probabilistic net-

works are also known as \causal networks")|if the battery is old it causes

the battery to be less likely to be good, and it is therefore easier to assess

Pr(battery good jbattery old) than Pr(battery old jbattery good ) though the two

probabilities may each be computed from the other using Bayes' theorem.

Now, given the network and the prior probabilities of the battery being old,

Pr(battery old), and the alternator being ok, Pr(alternator ok), it is possible to

compute the probability of each state of each random variable in the network (for

instance Pr(battery good) = 0:58 if Pr(battery old) = 0:4) by simple application

of Je�rey's rule. It is also possible to take account of evidence that, for instance,

the radio is not ok (which means that Pr(:radio ok) = 1) and to use Bayes'

theorem to revise the probabilities.

Much attention has been given to the problem of propagating probabilities

through probabilistic networks e�ciently. Pearl [69] provides a comprehensive

introduction to the use of probabilistic causal networks, along with an e�cient

scheme for the propagation of probabilities in singly-connected networks

1

be-

tween every that is based on autonomous message passing. Another network-

based method that has received wide attention is that of Lauritzen and Spiegel-

halter [52] which has been used as the basis of the expert system shell HUGIN

[1], and the paper in this volume by Magni et al. [56] makes use of a graphical

representation similar to that discussed above.

2.3 Evidence theory

Evidence theory is the term commonly used to refer to the body of work carried

out by Arthur Dempster [17, 18] and Glenn Shafer [82] to remedy some of what

1

Singly-connected networks are those in which for every pair of nodes there is at most

one path along arcs which joins them. When assessing connectedness, arcs may be

traversed both directions, but any arc may only be traversed once.



they saw as the limitations of probability theory, in particular [19] disposing

with the \completeness" axiom of probability theory [42]. The theory deals with

the so-called frame of discernment, the set of base elements � = f�

1

; :::; �

n

g in

which we are interested, and its power set 2

�

, which is the set of all subsets of

the interesting elements. The basis of the measure of uncertainty is a probability

mass function m(�) that assigns zero mass to the empty set, m(;) = 0, and a

value in [0; 1] to each element of 2

�

, the total mass distributed being 1 so that:

X

A��

m(A) = 1

Since we deal with all possible subsets of the set of all base propositions, rather

than the propositions themselves as in probability theory, we can apportion the

probability mass exactly as we wish, ignoring assignments to those levels of

detail that we know nothing about. This allows us to model ignorance, m(�)

being the probability mass we are unable, through lack of knowledge, to assign

to any particular subset of �. We can de�ne our belief in a subset A of the

set of all propositions as the sum of all the probability masses that support its

constituents:

Bel(A) =

X

B�A

m(B)

and the plausibility of A may be de�ned as the probability mass not supporting

:A:

Pl(A) =

X

B\A6=;

m(B)

which may also be written as:

Pl(A) = 1� Bel(:A)

The interval [Bel(A);Pl(A)] can be considered to be a measure of our ignorance

about A, and can vary from zero when we have the same degree of belief in

A as would be generated by probability theory, to 1 when A has belief 0 and

plausibility 1. This means that no mass is assigned to A or any of its subsets,

but equally no mass is assigned to :A.

Evidence is combined by Dempster's rule of combination. This computes the

probability mass assigned to C � � from the probability mass assigned to A

and B where both A and B are also subsets of �. If the distribution function

assigning probability mass to A is m

1

(�) and the function distributing probability

mass to B is m

2

(�), then the mass assigned to C is de�ned by:

m

12

(C) =

X

A\B=C

m

1

(A)m

2

(B)

1�

X

A\B=;

m

1

(A)m

2

(B)

where the division normalises the new distribution by re-assigning any proba-

bility mass which is assigned to the empty set, ;, by the combination. To clarify



fToyota;GM;Chryslerg �

0.8 0.2

fNissan; Toyotag fToyotag fNissan; Toyotag

0.4 0.32 0.08

� fToyota;GM;Chryslerg �

0.6 0.48 0.12

Table 1. Applying Dempster's rule.

what is going on here we will consider a simple example of the use of Dempster's

rule in combining evidence.

Consider a world [14] with only four car manufacturers, Nissan, Toyota, GM

and Chrysler, all trying to break into a new car market. We are interested in

who will dominate the market. There are four singleton hypotheses correspond-

ing to the assertions that each of the four manufacturers will dominate the

market. Consider the case in which there are two mass functions m

1

and m

2

stemming from the opinions of two independent experts. Now, m

1

assigns 0.4 to

fNissan; Toyotag, the hypothesis that Japanese manufacturers dominate, and

the remaining 0:6 to the set fNissan; Toyota;GM;Chryslerg modelling igno-

rance about the behaviour of American manufacturers. Similarly, m

2

assigns 0.8

to the set fToyota;GM;Chryslerg and 0.2 to �, and Dempster's rule of com-

bination assigns the product of the two belief masses to the intersection of the

sets to which they are assigned. Table 1 explains the calculation.

The masses after combination are as follows:

m

12

(fToyotag) = 0:32

m

12

(fNissan; Toyotag) = 0:08

m

12

(fToyota;GM;Chryslerg) = 0:48

m

12

(�) = 0:12

The belief that a Japanese manufacturer will dominate is computed from the

sum of the belief masses of all the subsets of the hypothesis. Thus:

Bel

12

(fNissan; Toyotag) = m

12

(fToyotag) +m

12

(fNissan; Toyotag)

+m

12

(fNissang)

= 0:32 + 0:08 + 0

= 0:4

For this simple example, no normalisation is required.

The problems of the computational complexity of Dempster's rule have been

discussed by several authors. Barnett [2] showed that the apparent exponential

time requirement of the theory could be reduced to simple polynomial time if the

theory was applied to single hypotheses, rather than sets of hypotheses, and the

evidence combined in an orderly fashion. Gordon and Shortli�e [37] extended

Barnett's approach to compute approximate beliefs in a space of hierarchically



organised sets of hypotheses in linear time. This approach was then subsumed

by that of Shafer and Logan [84], who provided an exact algorithm for hier-

archically organised sets of hypotheses that is also linear in time whilst being

slightly more general than that of Gordon and Shortli�e. More recently, Shenoy

and Shafer[85] have introduced a method for the e�cient propagation of belief

functions in networks by means of local computations, and Nic Wilson [100] has

proposed a method in which the explicit use of Dempster's rule of combination

is avoided. This permits an exact calculation of belief to be performed in worse

than polynomial but better than exponential time even when the hypotheses are

not hierarchically structured. Wilson has also proposed an approximate calcula-

tion, based on a Monte-Carlo simulation, which gives results that are arbitrarily

close to the exact solution, and which can be performed in linear time. More

recent advances are explored in [61, 101].

The application of evidence theory is the subject of three papers in this

volume. Lalmas [50] uses it as a means of deciding which document to retrieve,

van Dam [96] uses it to control a radio communication system, and Duncan

Wilson [98] considers how to apply it to the classi�cation of faults in automated

inspection.

2.4 Possibility theory

A formal theory of possibilities, based on the notion of a fuzzy set [102], was �rst

introduced by Zadeh [103]. However, the concept of using the notion of possibil-

ities as an alternative to probabilities was mooted much earlier. The economist

G. L. S. Shackle [81], unhappy with the use of subjective probability for han-

dling uncertainty, proposed an alternative formalism. This formalism was the

calculus of potential surprise where uncertainty about an event is characterised

by a subjective measure of the degree to which the observer in question would be

surprised by its occurrence. Potential surprise is clearly linked to the intuitive

notion of possibility. If an event is entirely possible, then there is no surprise

attached to its occurrence. If an event is wholly impossible, or is believed to be

so, then if it occurs it will be accompanied by the maximum degree of surprise.

In this section we present a simple overview of Zadeh's theory, demonstrating

its similarity to and di�erences from probability theory, and brie
y discuss how

possibility theory may be combined with logic.

Firstly we need the concept of a fuzzy set [102]. A fuzzy set is a set whose

membership is not absolute, but a matter of degree, such as the set of tall people.

A fuzzy set F is characterised by a membership function �

F

which speci�es the

degree to which each object in the universe U is a member of F . One way of

considering F is as a fuzzy restriction on X , a variable which takes values in U ,

in that it acts as an elastic constraint upon the values that may be assigned to

X . The assignment of a value u to X has the form

X = u : �

F

(u)



where �

F

(u) is the degree to which the constraint F is satis�ed when u is assigned

to X . To denote the fact that F is a fuzzy restriction on X we write:

R(X) = F

Now, the proposition \X is F", which translates into \R(X) = F", associates a

possibility distribution �

X

with X and this distribution is taken to be equal to

R(X):

�

X

= R(X)

Along with this we have a possibility distribution function �

X

which is de�ned

to be equal to the membership function of F :

�

X

= �

F

Thus �

X

(u), the possibility that X = u, is taken to be equal to �

F

(u). As an

example, let U be the set of positive integers, and F be the fuzzy set of small

integers. This set is described by the following set of pairs each of the form

(u; �

F

(u)):

F = f(1; 1); (2; 1); (3; 0:8); (4; 0:6); (5; 0:4); (6; 0:2)g

Given this, the proposition \X is a small integer" associates the possibility dis-

tribution �

X

with X where �

X

is written as a set of pairs (u; �

X

(u)):

�

X

= f(1; 1); (2; 1); (3; 0:8); (4; 0:6); (5; 0:4); (6; 0:2)g

Thus, the possibility that X takes the value 3, given that X is a small integer,

is 0.8. We can use possibility distributions to de�ne possibility measures. If A is

fuzzy subset of U , then the possibility measure �(A) of A is de�ned by

Poss(X is A) = �(A)

= sup

u2U

min (�

A

(u); �

X

(u))

When A is a strict subset of U , this reduces to:

�(A) = sup

u2U

�

X

(u)

Possibility measures clarify the comparison between possibility and probability

theory. We can establish that:

�(A [ B) = max(�(A); �(B)) (1)

�(A \ B) = min(�(A); �(B)) (2)

which contrast with the corresponding results for probability theory

2

. Zadeh

stresses the fact that possibility and probability are di�erent concepts with the

2

The use of maximum and minimum is not compulsory. For further discussion of this

point, see [26].



example of Hans' breakfast. Consider the statement \Hans ate X eggs for break-

fast" with X 2 f1; : : : ; 8g. We can associate both a possibility distribution (based

on our view of the ease with which Hans can eat eggs) and a probability distribu-

tion (based on our observations of Hans at breakfast) with X , giving something

of the form:

u 1 2 3 4 5 6 7 8

�

X

(u) 1 1 1 1 0.8 0.6 0.4 0.2

Pr

X

(u) 0.1 0.8 0.1 0 0 0 0 0

So that, while it is perfectly possible that Hans can eat three eggs for breakfast,

he is unlikely to do so. There is a heuristic connection between possibility and

probability, since if some thing is impossible, it is likely to be improbable, but (as

the previous example shows) a high degree of possibility does not imply a high

degree of probability, nor does a low degree of probability re
ect a low degree of

possibility. Dubois and Prade [25] point out that a weak theoretical connection

exists since for all A,

N(A) � Pr(A) � �(A)

where N(A) is the necessity of A, de�ned by:

N(A) = 1��(:A)

It is possible to extend these ideas to possibility distributions that depend on

more than one attribute, and marginal possibility distributions. Explanations of

these concepts will be omitted in the interests of saving space (but see [103]),

but it should be noted that the kind of graphical structures discussed above in

relation to probability theory can be adapted for use with possibility theory as

well [35].

Possibility has been applied to reasoning with vague statements [27, 104]. For

example, suppose we have the following statement.

If the clothes are dirty then wash them in hot water

Both the concepts \dirty" and \hot" are vague or fuzzy in this context. For

a given collection of clothes, we are interested in using this general statement

to determine whether to wash them in hot water. In other words, we wish to

determine whether for some fuzzy value for dirty, we should derive the instruction

to wash the clothes in hot water.

Now, in classical logic we would perform this kind of reasoning using modus

ponens, a rule for reasoning which formalises the argument that if � is true

and � � � is true, then � is true. For reasoning with fuzzy statements such

as the one above about dirty clothes, we need to develop a notion of modus

ponens which can handle fuzzy concepts. Generalized modus ponens is such a

development [57]. For example, suppose the clothes are \not very dirty", then

\not very dirty" does not directly match with \dirty". We need to adapt the

statement to allow the data \not very dirty" to apply. This means changing the



consequence in some way, perhaps to \warm water". Since \dirty clothes" and

\hot water" can be modelled by fuzzy sets, the manipulations can be done on

the fuzzy sets. For this, we represent propositions as:

X is A

So for example, \clothes are dirty" is a a proposition, where X is \clothes", and

A is \dirty". Generalized modus ponens is then of the following form.

X is A

�

If X is A; then Y is B

Y is B

�

Here, B

�

is calculated from the possibility distribution of A

�

, and of A given B.

The possibility distribution for B provides an upper bound on the possibility

distribution for B

�

. This calculation decreases the possibility that Y is B

�

is

true, the further A

�

is from A. This combination of possibility theory and logic

into possibilistic logic has been investigated at length by Dubois and Prade [23,

24]. Possibilistic logic is one of the techniques explored by Bigham in his paper

in this volume [6], and both the contributions of Ramalho [75] and Sa�otti [79]

make use of fuzzy inference of the kind discussed above, while Bosc et al. [7]

consider the application of fuzzy techniques to databases.

2.5 Other approaches

There are a number of other numerical techniques which, although we do not

have space to consider them in any detail, are worth mentioning for their par-

ticular historical or theoretical interest. Certainty factors [86], perhaps because

of their simplicity and intuitive appeal, have been widely used to handle uncer-

tainty. The certainty factor approach assigns a numerical weight, the certainty

factor, to the consequent of every

If hevidencei then hhypothesisi

rule in a rule-based system. The value of the certainty factor, which lies in the

interval [-1, 1], is assessed by the domain expert from the degree, between 0

and 1, to which a given piece of evidence causes her belief and disbelief in the

hypothesis to be increased. The certainty factor is then the di�erence of the

degree of belief, MB and the degree of disbelief, MD:

CF = MB �MD

The certainty factors of rules �red during inference are then combined to give an

overall certainty for the support given to a particular hypothesis by the known

evidence. Recently several people have challenged the validity of the certainty

factor model. For instance, Heckerman [40] has shown that the original de�ni-

tion of the model is 
awed since the belief in a hypothesis given two pieces of



evidence will depend upon the order in which the e�ect of the pieces of evidence

is computed.

Smets has adapted evidence theory as introduced by Dempster and Shafer

in two important ways [87, 90]. The �rst was to relax the assumption that all

hypotheses have been identi�ed before the evidence is considered. Instead Smets

makes an open-world assumption that the frame of discernment does not neces-

sarily contain an exhaustive set of hypotheses. Under this assumption there is

no normalisation in Dempster's rule of combination since the mass pertaining

to the empty set is taken to indicate belief in a hypothesis outside the frame of

discernment. The open world assumption requires a modi�cation of the de�ni-

tions given earlier for the calculation of belief and plausibility from probability

mass distributions (which are just called \mass functions" by Smets). Belief is

de�ned as:

Bel(A) =

X

B�A;B 6=;

m(B)

while plausibility is de�ned as:

Pl(A) =

X

B\A6=;

m(B)

= 1� (m(;) + Bel(:A))

Dempster's rule of combination becomes:

m

12

(C) =

X

A\B=C

m

1

(A)m

2

(B)

Smets' other innovation was to introduce an alternative interpretation of the

theory of evidence called the transferable belief model. The transferable belief

model rejects any suggestion that the numbers manipulated by the theory are

probabilities. Instead they are taken to be pure expressions of belief suitable for

reasoning at an abstract credal level and are transformed into probabilities at

the pignistic level when decisions are necessary. In the model, the basic belief

mass m(A) in any subset A of a frame of discernment � is the amount of belief

supporting A, that, due to ignorance, does not support any strict subset of A.

If we have new evidence that excludes some of our original hypotheses, and

so points to the truth being in �

0

� �, then the basic belief mass m(A) now

supports A � �

0

. Thus the belief originally attributed to A is transfered to that

part of A not eliminated by the new evidence, thus giving the system its name.

Another interesting proposal is due to Driankov [21]. In Driankov's system,

we have degrees of belief and plausibility, related, as in the original theory of

evidence, by:

Bel(A) = 1� Pl(:A)

However the system also allows contradictory beliefs so that it is possible that:

Bel(A) + Bel(:A) > 1



These ideas lead to the de�nition of a calculus of belief intervals, where a belief

interval for A is [Bel(A);Pl(A)], in which combination is carried out by a fam-

ily of general functions called triangular norms and conorms [80], and explicit

reasoning about the degree to which a proposition is believed and disbelieved is

possible.

2.6 Limitations of numerical techniques

As one might expect, none of the systems mentioned in preceding sections is

perfect, and there are a number of problems common to all numerical formalisms.

The �rst is perhaps the simplest. When Cohen [14] criticises possibility theory

saying:

\relatively little has been made of the idea of fuzzy sets and possibility

theory . . . (this) may be because the idea does not improve on any of the

di�cult methodological problems that beset probability theory, such as

the assessment of prior probabilities"

he is restating an argument that has been made time and again, perhaps most

tersely by Cheeseman [11] who asked:

\where are all the numbers coming from?"

Obtaining the \numbers", be they probabilities, possibilities, or mass distribu-

tions does seem to be a major problem. Clearly, without good numerical as-

sessments sophisticated computational mechanisms are of little value. It is also

true that there are domains in which it is not possible to obtain the kind of

strong statistical data necessary to apply probability theory in its \frequentist"

interpretation, where the probability of an event is the value to which the ra-

tio of occurrences to non-occurrences converges after a large number of trials.

This has been used by many (see for example [32]) to argue against the use of

probability theory for dealing with uncertainty. However, the personalist and

necessarian [83] schools of probabilists argue that probabilities may always be

obtained, either from rational human reasoning, or because they exist as a mea-

sure of the degree to which sets of propositions con�rm one another. It seems,

then, as though there is no clear cut winner in this argument; the moral appears

to be:

\if you can obtain the numbers to your satisfaction, then use them."

As a �nal word, it is worth mentioning that it has also been convincingly argued

in several places (see for example [9, 71]) that even if the numbers are available,

they make little di�erence to the business of weighing up the evidence. This,

however, is a di�erent argument altogether, and we will say no more about it.

A second problem stems from the use of numbers; the interpretation of the

results of applying a numerical formalism given the notorious irrationality that

human beings exhibit when dealing with numbers [95]. All the techniques gen-

erate results as numerical values. These values, however, have been generated in



di�erent ways, and thus measure di�erent things, although they are just num-

bers and may be compared and contrasted by the uninitiated as though they

represented the same thing. Indeed, to interpret them correctly, it is perhaps

necessary to label them with the type of belief that they measure to prevent a

probability of 0.5 being compared unfavourably with a possibility of 0.8. In ad-

dition, there is the problem of ranking di�erent solutions. A common argument

for including numbers is in order to choose the best of several courses of action

that must be di�erentiated between using uncertain knowledge, and of course

numerical results can be used to do this. However, using the ordinal value of

the results alone to do this can obscure important information concealed in the

ratio of the results; namely how close the second largest value is to the largest.

If they are close, but separated by a wide margin from the third, then, rather

than choosing the �rst, it might be pro�table to review the criteria upon which

the assessment was made in the hope that some telling di�erence between the

alternatives might be found.

Finally, there are the problems associated with computational expense. The

massive amount of time needed to apply the full formal methods to realistically

large problems was one of the main reasons that such ad hoc methods as certainty

factors were introduced. Whilst, as outlined in earlier sections, there have been

several recent attempts to �nd computationally e�cient methods of calculating

the results of applying probability and evidence theories in particular situations,

the general problem of ine�ciency remains.

3 Symbolic approaches

Nonmonotonic logics were introduced in order to allow programs to deal with

incompleteness by exhibiting \commonsense" reasoning, thus avoiding the need

to state every possible exception to a general rule. Two key approaches are Re-

iter's default logic [76] and McCarthy's circumscription [60]. In this section we

start with a discussion of the limitations of �rst order logic as a basis for prac-

tical reasoning systems, introducing the notions of retraction, monotonicity and

defeasibility. Then we consider the family of default logic in more detail|as it is

probably the most developed approach for non-monotonic reasoning. In the sub-

sequent two sections, we consider the logic-based approaches of argumentation

and truth maintenance systems.

3.1 Overview

The common motivation behind all of the systems of nonmonotonic logic that

we will discuss below is the attempt to devise sound formal mechanisms for

reasoning that overcome the limitations of �rst order logic. At �rst sight, �rst

order logic seems to be a panacea for all the problems of knowledge representation

and deduction for AI systems. This is unfortunately a naive impression, and

there are many problems that beset the use of classical logic, especially when

attempting to model the kind of \commonsense" reasoning which human beings



excel at. Israel [44] credits Minsky with being the �rst to consider the matter,

pointing out that there are two particular properties of �rst order logic that

are at odds with commonsense human behaviour. The �rst results in the so

called quali�cation problem. Say, to take the classic example, we are interested

in building a system that reasons about animals and their athletic abilities. One

of the facts that we want to encode is the fact that generally birds can 
y.

Unfortunately, there is no \generally" quanti�er in �rst order logic, so we must

approximate this by asserting that all birds 
y:

8x; bird(x ) � 
ies(x ) (3)

This seems �ne until we recall that penguins don't 
y, and so we have to augment

the rule. This may be done in several ways, we will choose to write:

8x; bird(x ) ^ :penguin(x ) � 
ies(x ) (4)

However, this formulation becomes problematic when we want to reason about

ostriches, kiwis, and birds whose feet have been set in concrete. For any general

rule of this kind, we can think up an arbitrarily large number of exceptions,

and it is the provision of a compact means of handling all of these exceptions

that is the quali�cation problem. The second troublesome property is that of

monotonicity. In �rst order logic there is no mechanism for retracting inferences

once they have been made, or facts once they have been added to the database.

If a sentence S is a logical consequence of a theory A then it is still a consequence

of any theory that includes A, such as the theory A [ �. This is true even if we

have � = :S, though in this latter case adding � leads to inconsistency (since we

can derive both S and its negation). Monotonicity is particularly troublesome

when, in attempting to solve the quali�cation problem, we allow systems to

make \guesses" about the state of the world which are used in the absence of

more detailed information. For instance consider making the assumption that a

particular bird, Joe, 
ies when nothing is known to the contrary. In a monotonic

system, when it is learnt that Joe has been nailed to his perch there is no means

of retracting the inference that Joe can 
y. To solve such problems researchers

turned to nonmonotonic logical systems that allow for plausible inferences to be

made to defeat the quali�cation problem, and then allow those inferences to be

withdrawn if their falsity becomes apparent.

There are three main ways in which a solution to these problems have been

attempted; closed world reasoning, prototypical reasoning, and reasoning about

beliefs. These methods may be summarised as follows. Closed world reasoning

makes the assumption that all relevant positive knowledge has been explicitly

stated. Working on this assumption, systems are permitted to deduce any nega-

tive facts that they desire in order to reason about the state of the world. Thus

a system reasoning about connecting 
ights which has no knowledge of a 
ight

between London and Ankara is allowed to deduce that there is no such 
ight,

and is only allowed to postulate the existence of a 
ight joining London and

Paris if such a 
ight is explicitly recorded in its database. Prototypical, or de-

fault, reasoning proceeds from rules relating to typical individuals of some class



to make plausible assumptions about particular individuals. If and when speci�c

information about the individual that contravenes the plausible deduction comes

to light, the assumptions are retracted. Our example about 
ying is of this kind.

We know that birds 
y in general, so that when we hear of a bird Opus we

assume that he can 
y. Later we learn that Opus is a penguin, and knowing that

penguins don't 
y allows us to retract our assumption that Opus is capable of


ying. Finally, reasoning about beliefs allows a system to make sound deductions

based on what it believes to be true. Assuming rationality, the system is allowed

to logically deduce facts from what it knows and what it believes to be true, and

what it believes to be false, which is everything that it does not believe to be

true. Thus a system reasoning about its siblings can deduce that it is an only

child because if it wasn't, it would know about a brother or sister.

In addition to the distinction between closed world reasoning, prototypical

reasoning, and reasoning about beliefs, there is another distinction between sys-

tems of nonmonotonic logic which it is worth making. This is between brave

systems and cautious systems (also known as credulous and skeptical systems,

respectively). Brave systems are those which are prepared to accept any conclu-

sion which they can hypothesise. As a result they typically su�er from being able

to derive two contradictory conclusions, both of which they deem to be accept-

able but are unable to choose between. Cautious systems on the other hand are

only prepared to accept conclusions which cannot be contradicted. As a result

if they can hypothesise both � and :�, they conclude neither, even though one

must be true.

3.2 Default logic

Default logic, introduced by Reiter in [76], models prototypical reasoning by

allowing special inference rules, known as default rules, to be added to a standard

�rst order logic. These rules di�er from �rst order rules of the form:

8A(x) � B(x)

in that they include an explicit consistency check that prevents the rule being

applied in inappropriate situations and allow the expression of rules such as:

Bird(x) : F lies(x)

F lies(x)

which is read as \if x is a bird, and it is consistent to believe that x 
ies, then

conclude that x 
ies". Default rules can be considered as meta-rules that tell

us how to complete �rst order theories that are incompletely speci�ed. Now, a

default theory (W;D), is a set of �rst order axioms W , and a set of default rules

D of the form:

�(~x) : �

1

(~x) : : : �

m

(~x)


(~x)

Where �(~x), �

i

(~x) and 
(~x) are all formulae whose free variables are among those

in ~x = x

1

; : : : ; x

n

. �(~x) is termed the precondition or prerequisite, the �

i

(~x) are



known as the gating facts or justi�cations, and 
(~x) is called the consequent.

Given a set of default rules D and a �rst order theory W , it is possible to

de�ne an extension of the default theory as the closure of W plus a maximal

consistent set of consequences of D. It is possible to distinguish several classes

of such default rules, some of which have attractive properties such as always

having extensions. Chief among these are those with a single justi�cation �(~x)

which divide into normal defaults, the set of defaults such that �(~x) = 
(~x), and

semi-normal defaults where �(~x) = 
(~x) ^ !(~x) for some !(~x).

An extension E of a default theory is a minimal set of beliefs that contain W

are deductively closed, and maximally consistent with the rules in D. Thus E is

an extension for (W;D) if � (E) = E where for any set of sentences S, � (S) is

a minimal set such that:

W � � (S)

Th(� (S)) = � (S)

where Th(T ) is the deductive closure of T , and if D contains:

�(~x) : �

1

(~x) : : : �

m

(~x)


(~x)

and both �(~x) 2 � (S) and :�

i

(~x) 62 � (S) for all i, then it is the case that


(x) 2 � (S).

Reiter proved some interesting results for normal default theories that include

no free variables. Firstly every closed normal default theory has an extension, so

something can always be conjectured about such a theory. Secondly, if a closed

normal default has two extensions, then the union of these are inconsistent, so

that multiple extensions are only generated if the default rules have inconsistent

consequents. Finally, Reiter showed that closed normal default theories are semi-

monotonic. This means that if we have two default theories where the sets of

default rules of one are a subset of the default rules of the other, then an exten-

sion of the theory with the smaller set of defaults will be a subset of an extension

of the other. Thus adding default rules to a theory does not cause its extensions

to need revision, instead new default inferences are simply added to the existing

extensions (they may of course cause new extensions to arise). There are also

some more general results, applicable to all closed default theories, the most im-

portant of which are that if such a theory (D;W ) has an inconsistent extension,

then it is its only extension, and it is inconsistent because W is inconsistent.

Thus default rules alone do not generate inconsistent extensions.

Many authors have worked on default logic in the years since it was �rst

introduced. One those whose work is worth considering is  Lukaszewicz, who

proposed two important extensions to the original formulation. The �rst of these

[54] takes the form of translations between di�erent types of default, in particular

to replace the general default:

�(~x) : �(~x)


(~x)



by the semi-normal default:

�(~x) : �(~x) ^ 
(~x)


(~x)

and to replace the semi-normal default:

�(~x) : �(~x) ^ 
(~x)


(~x)

by the normal default:

�(~x) : �(~x) ^ 
(~x)

�(~x) ^ 
(~x)

The �rst is non-controversial, but the second, despite being applicable for a large

range of practically occurring defaults, has some rather alarming exceptions [30].

By using both translations sequentially, we can replace the eminently sensible:

has motive(x ) : guilty(x )

suspect(x )

by the rather unreasonable:

has motive(x ) : suspect(x ) ^ guilty(x )

suspect(x ) ^ guilty(x )

In a further paper,  Lukaszewicz [55] generalises default logic, providing an al-

ternative formalisation of an extension, and proving that semi-normal default

theories are guaranteed such extensions. He also shows that semi-normal default

theories are semi-monotonic, that is monotonic with respect to default rules.

Despite the maturity of the theoretical work on default logic, there are as

yet few applications, partly because there has been less attention paid to pro-

viding prospective application builders with useful tools for using default logic

than has been paid to providing tools for using approaches such as probability.

However this situation is beginning to change. This volume includes a paper by

Nicolas and Schaub [62] which describes a system on which to build default logic

applications, while Brazier et al. [8] have applied default logic to a problem from

ecology.

3.3 Argumentation

Argumentation is the process by which arguments are constructed and compared.

Following Toulmin [94], an argument can be structured so that from facts a

quali�ed claim (a conclusion) can be argued (inferred) if and only if:

1. there is some warrant (some further assumptions) that can be used with the

facts to logically derive the claim, and

2. there is no other argument that would act as a rebuttal of the claim (a

counter-argument).



Argumentation can be further developed with the notion of an undercutting

argument, which is an argument that acts as a rebuttal for one of the assumptions

of an argument.

An argument can be modelled by a pair (�; �), where � is a set of formu-

lae, and � is a formula derived as a conclusion from the assumptions �. These

assumptions are also known as the grounds of the argument. For an argument

(�; �), a rebutting argument is an argument (	;:�), and an undercutting argu-

ment is an argument (�;:
), where 
 2 �. For a set of arguments f�

1

; :::; �

n

g,

let � denote the union of the set of assumptions, ie. � = �

1

[ :: [ �

n

. Often in

argumentation� will be inconsistent, and it may incorporate more than one min-

imally inconsistent subset

3

. Now, we can identify some arguments as safer than

others according to the nature of the arguments and counter-arguments (both

rebutting arguments and undercutting arguments). For example, an argument

with no counter arguments is safer than an argument with counterarguments.

As a result, we can rank conclusions on the basis of how safe the arguments

for it are. As an example, suppose all maximally consistent subsets of � imply

�, and so all arguments for � are relatively safe, yet a more preferred conclu-

sion is a formula that follows from the intersection of the maximally consistent

subsets of �. This approach to argumentation has been developed in [3, 29]. A

number of other approaches to argumentation, including [70, 72, 97], focus on

default reasoning by incorporating default connectives (which can be used to

build up default statements similar to the default rules in default logic) into

their languages together with associated machinery.

Argumentation can also be used to handle uncertain information by extend-

ing the pair (�; �) to a triple (�; �; �) in which � is a measure of the degree to

which � is believed to be true on the basis of �. In this way, argumentation

can be used as a framework which can capture a number of di�erent formalisms

for handling uncertainty, with di�erent formalisms entailing di�erent meanings

for � (often called the \sign" of the argument) and di�erent ways of handling

the signs. This approach is described in more detail in this volume [33], and

elsewhere [46], and its historical development is charted in [65]. It also forms the

basis for one of the applications case studies in this book [47].

3.4 Truth maintenance systems

When reasoning with inconsistent information, questions of belief in assumptions

and belief in conclusions arise. These questions include [58]:

Inferences from beliefs. How do new beliefs follow from existing beliefs?

Default beliefs. How do we record that a belief depends on the absence of

other beliefs?

Dependency recording. How do we record that one belief depends on another

belief?

3

A minimally inconsistent set is a set of propositions which is inconsistent in the sense

that p^:p can be derived from it for some p, and which is such that the removal of

any one proposition from it will mean that the resulting set is not inconsistent.



Disbelief propagation. How do we withdraw belief in the consequences of a

proposition that is disbelieved?

Revision of beliefs. How do we change beliefs in order to remove a contradic-

tion?

These kinds of question led to approaches for truth maintenance

4

. A truth main-

tenance system (TMS) records information about each inference that is gener-

ated from a set of assumptions. The two main types of truth maintenance sys-

tem are the justi�cation-based truth maintenance system (JTMS) [20] and the

assumption-based truth maintenance system (ATMS) [15]. A JTMS records a

single set of consistent facts and all the inference which may be proved form

them. When an inconsistency is detected some external system (which may be

the user) is invoked to resolve the inconsistency and the JTMS then retracts

the necessary inferences. In its simplest form, an ATMS maintains all the con-

sistent subsets of the set of known facts and all the inferences which may be

drawn from each. Inconsistency is handled by creating new consistent subsets

and identifying which inferences may be made from them. Both types of system

make it possible to identify consistent sets of beliefs and so make it possible to

isolate inconsistency and avoid trivialization.

Truth maintenance can be considered to be concerned with lemma storage

for non-monotonic reasoning. Thinking in terms of default logic, a JTMS can be

considered to be a means of establishing a single extension and an ATMS as a

means of establishing all the possible extensions. In a JTMS the discovery of a

new fact which contradicts something in the existing extension will prompt the

revisions necessary to establish a single new extension (if any exists). In an ATMS

the introduction of a piece of contradicting information will generate a new set of

extensions (if such extensions exist). The question of computational viability is

then dependent upon the balance between on inferencing (consistency-checking

and theorem proving) versus storage requirements (consistent subsets of data

and inferential interdependencies). The aim of a TMS is to �nd the most parsi-

monious choice. A number of di�erent implementations are given in [31], and a

particular approach to assumption-based reasoning is described by Haenni [38].

In addition, more sophisticated truth maintenance systems will emerge from ad-

vanced theoretical frameworks such as that described by Benferhat and Garcia

[4].

The notion of arguments discussed above provides useful concepts for formal-

ising truth maintenance: For each explicit argument (�; �) there is classical proof

of � from � so addressing the question of inferences from beliefs, and for the

belief �, � is dependent on � so addressing the question of dependency record-

ing. Let us assume that (�; �) follows from some assumptions �. To disbelieve

some contradictory inferences from � requires a minimally inconsistent subset,

� of � to be removed. Furthermore, � needs to be removed from the assump-

tions of all the argument, so all arguments (	; �) become (	 � �; �). This of

course may involve withdrawing some arguments since the revised assumptions

4

Now often referred to as \reason maintenance".



no longer imply the conclusion. In this way it is possible to address the questions

of disbelief propagation and the revision of beliefs.

Truth maintenance systems have proved to be of particular interest for incor-

poration in diagnostic systems. Given some set of observations, such as symp-

toms, diagnosis involves determining the cause of those observation by selecting

an appropriate consistent set of hypotheses from which the observations can be

logically derived. So diagnosis can be viewed as constructing an argument. Fur-

thermore, since the diagnostic process can take place over time, new observations

can be obtained that can be inconsistent with the current diagnosis, so forcing

the need for revision of beliefs. Diagnosis can therefore bene�t from appropriate

truth maintenance.

4 Combining approaches

Most of the research into uncertainty handling formalisms which has been men-

tioned so far has dealt with the use of single formalisms in isolation. However, if

one accepts, as we do, that the eclectic position outlined in Section 1 is correct,

then the following argument may be made. If di�erent formalisms are good for

representing di�erent aspects of ignorance, then it follows that there are some

problems which require the modelling of aspects of ignorance which are best

covered by two or more di�erent formalisms. Thus there is merit in investigat-

ing both the use of several formalisms in combination, and on determining the

di�erences between di�erent formalisms, and there is a growing body of work on

this subject (though it should be noted that not all researchers working on such

matters would explicitly acknowledge the validity of the eclectic position).

Possibly the most interesting strand of this kind of work is that which com-

bines essentially logical techniques with numerical measures. This is commonly

done by using a logical technique to establish a set of possible hypotheses from

a larger initial set of exhaustive hypotheses, and then using a numerical tech-

niques to rank the plausible set. Typical of such systems are those of Provan

[73], Bigham [5] and Laskey and Lehner [51]. In all three of these systems, the

semantic equivalence of the ATMS [15] and the Dempster-Shafer method, proved

by Provan, is exploited ensuring that no information is lost in the initial round

of inference. Bigham's system is particularly interesting in that it includes an

extension of the clause based approach of McAllester's logic-based truth main-

tenance system (LTMS) [59] as a symbolic inference engine, and also permits

beliefs based on possibility theory to be propagated. A similar system is de

Kleer and Williams' [16] GDE for fault diagnosis. In GDE all inference directed

at discovering the fault is carried out by symbolic methods, with probabilities

invoked, not to determine the most likely of several solutions in a static analysis,

but to suggest the next measurement to be taken by the user of the system.

This measurement leads to new information which, when entered, leads to fur-

ther symbolic computation. Thus the numerical computation sparks o� another

round of symbolic inference, and the cycle continues until the fault is found.



In contrast to these ATMS-based approaches, van Dam [96] uses a JTMS in

combination with Dempster-Shafer theory.

It is also possible to use possibility measures with an assumption-based truth

maintenance system instead of belief functions or probabilities. This is exactly

the course followed by Dubois, Lang and Prade in their possibilistic ATMS [22].

A possibilistic ATMS is an ATMS in which both assumptions and justi�cations

may be associated with a possibility weight, and, since the propagation of the

weights is carried out for every clause in the ATMS, there is no separation of the

management of uncertainty from the usual functionality of an ATMS. Bigham

[6] has extended this work by adapting the possibilistic ATMS to take account of

temporal information. Furthermore, the possibilistic ATMS allows inconsistent

knowledge bases to be revised using the principles of epistemic entrenchment

[34].

Another set of interesting developments which bridge the gap between sym-

bolic and numerical techniques is the discovery of relationships between default

logic and evidence theory. Wilson [99] considers the similarities between belief

functions and default logic. He shows that, despite their initial dissimilarities

they are, in fact, closely related. Indeed, in  Lukaszewicz's [55] modi�cation of

default logic, the extensions of general closed default theories correspond to the

sets of formulae whose beliefs, calculated by the theory of evidence, tend to 1

when the reliability of the sources of evidence tend to 1. The existence of a

strong relationship between default logic and the theory of evidence is borne

out by Smets and Hsia [89] who demonstrate how to represent normal defaults

(both with and without prerequisites) using the transferable belief model. Both

of these papers can be seen as an extension of the work of Rich [77] and Ginsberg

[36], who considered ways of applying numerical certainty measures to logical

inference rules.

It is also possible to use argumentation to combine symbolic and numerical

reasoning. For instance, Fox and Krause [49] discuss a simple inference mecha-

nism, based on argumentation, which is suitable for joint symbolic and numerical

reasoning. Nonmonotonic reasoning about Tweety's ability to 
y is handled in

the following way. The result of applying the default rule that \typically birds


y" is marked as supported by a \possible" argument, thus explicitly record-

ing the fact that the conclusion need not be true. A certain inference of the

form that Tweety doesn't 
y because she is an ostrich is supported by a true

argument. When two facts are in con
ict, reasoning that a default fact is a less

powerful argument than a true one resolves the situation. Similarly, numerical

techniques generate arguments quanti�ed by numerical degrees of belief, which

can be compared to order hypotheses. However, this method is more than just

a fancy method for quantifying propositions. The quanti�er also allows the rea-

soning mechanism to refer to the grounds of the argument, identifying why the

argument was generated. This provides the vital connection between the degree

of belief and the underlying uncertainty that is missing from most methods of

approximate reasoning. From the grounds, we can establish the reasons for the

uncertainty, and the nature of the uncertainty, and reasoning about this allows



us to proceed when we would otherwise be held up by the incomparability of the

degrees of belief with which the propositions we are dealing with are quanti�ed.

5 Summary

In this introduction to uncertainty formalisms we have only been able to brie
y

cover some of the many uncertainty formalisms which have been proposed over

the years

5

. However, despite this diversity, we strongly believe that no single

approach is appropriate for all uncertainty handling problems. Furthermore, for

some uncertainty handling problems, we believe that a mixture of approaches

is required. While this statement is still controversial in some quarters, there

seems to be a growing realisation that the position it represents has some merit,

and so there are clear arguments for the development of a range of uncertainty

formalisms. In particular, there is still more work to be done in developing the

range of uncertainty formalisms and in learning more about how to use them

e�ectively in a wider range of uncertainty problems.
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